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Abstract The development of automated morphological classification schemes can
successfully distinguish between morphological types of galaxies and can be used for
studies of the formation and subsequent evolution of galaxies in our universe. In this
paper, we present a new automated machine supervised learning astronomical classi-
fication scheme based on the Nonnegative Matrix Factorization algorithm. This scheme
is making distinctions between all types roughly corresponding to Hubble types such as
elliptical, lenticulars, spiral, and irregular galaxies. The proposed algorithm is per-
formed on two examples with different number of image (small dataset contains 110
image and large dataset contains 700 images). The experimental results show that
galaxy images from EFIGI catalog can be classified automatically with an accuracy of
∼93% for small and ∼92% for large number. These results are in good agreement when
compared with the visual classifications.

Keywords Galaxies: classification . Nonnegative matrix factorization (NMF): image
processing

1 Introduction

Galaxies are gravitationally bound celestial object composed of gas, dust, and billions
of stars. Shape and general visual appearance of galaxies gives astronomers much
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information about their composition and their evolution. The morphology of galaxies is
a significant role in the large scale to understanding observed phenomena and study the
universe. This is the first step towards a greater understanding of the origin and
formation process of galaxies. Many authors conclude that the galaxies morphological
analysis is a problem of interest in astronomy because it is often considered as a
convenient way to distinguish between galaxies that have different physical properties
[1–4].

Recently, increasing size of telescopes and the CCD camera have allowed
extremely large datasets of images to be produced. In modern sky surveys
containing millions of galaxies, there are too much data to feasibly analyze
manually, one of the most prominent examples of this is the Sloan Digital Sky
Survey. This has reinforced the need for robust methods that can perform mor-
phological analysis of large galaxy image databases. Artificial neural networks
(ANNs) have recently been utilized in astronomy for a wide range of problems,
e.g., from adaptive optics to galaxy classification. Recently, the advancements in
computational tools and algorithms have started to allow automatic analysis of
galaxy morphology according to the different Hubble types. These algorithms are a
widely studied problem in the field of astronomy and include model-driven
methods such as [5, 6] and galaxy morphologies [7, 8]. GALFIT [9], GIM2D
and refinance their in, CAS [10], Gini [11], Ganalyzer [12], SpArcFiRe [13] and
[14] and references therein. Automated classification of galaxies not only using
CCD images, but also using spectra, [15, 16]. Not only classifiers can differentiate
between broad galaxy morphological types of elliptical and spiral galaxies ([17];
and refinances their in [18]) but also can differentiate between four basic objects
[19] and references their in. Clearly, automated classification algorithms will prove
invaluable for the analysis of such datasets, but these algorithms are yet to be
applied on such scales.

The classification of galaxies based on images and spectra has been a long-term goal
in astronomy. Artificial neural networks were first applied to astronomical data sets in
order to classify stellar spectra [5]. Classification of galaxies based on spectra in
supervised [16] and unsupervised [15]. A common problem facing many of the
astronomical sciences today is an increasing amount of data, this will leads to make
the classification is a hard problem. Therefore, the dimension reduction methods is
needed before apply classification method. Since galaxies images are represented by its
light intensity and it is measured by a nonnegative value.

In recently years, the nonnegative matrix factorization (NMF) has become a popular
dimension reduction method. The NMF refers to the problem of approximating a
nonnegative matrix by a product of two nonnegative matrices.

The main goal of this paper is to developed an algorithm for automated classification
of galaxies images based the NMF method. The proposed algorithm is compared with
human classifications and other algorithms. The NMF extract a list of features for
galaxy images based on some nonnegative constraints are imposed. Therefore, the
image can be reconstructed from this list of features.

The paper is organized as follows: Galaxy classification was described in Section 2.
In section 3, the Nonnegative matrix factorization is introduced. The classification
method and algorithm are presented in Section 4. We briefly describe Data and Results
in section 5. The conclusion is presented in last section.
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2 Galaxy classification

Classification of galaxies was established only more than 90 years ago, i.e., during
the 1920s. Before that, galaxies were listed in catalogs of nebulae objects that
appeared fuzzy in a telescope and were therefore not stars. However, Sir. Edwin
Hubble, the American astronomer who showed conclusively for the first time that
one of the nebulae (the Andromeda “nebula” M31) is a galaxy in its own right.
Hubble was also the first who tried to set out a scheme for classifying the
galaxies. His classification scheme which is known as Hubble’s tuning fork
diagram as shown in Fig. 1, Hubble [20], including some later additions and
modifications, are still in use up to today. Hubble recognized three main types of
galaxy: ellipticals, lenticulars and spirals, with a fourth class, that would not fit
into any of the other categories called the irregulars. He proposed the following
classifications: elliptical: E0, E3, E5, E7; spiral: S0, Sa, Sb, Sc; barred spiral: SBa,
SBb, SBc; irregular: Im, IBm. This scheme is commonly referred to as the
“Hubble Tuning Fork.” This classification updated by de Vaucouleurs to obtain
the Revised Hubble System (RHS) in 1959. Other schemes were proposed by
Morgan in 1958 and Van Den Berghin 1960. A global classification known as the
revised morphological types was provided by NASA.

Classifying these galaxies into categories is of great value to astronomers. By
studying the structures of galaxies in the same category, we understanding the struc-
tures processes. In the past, large catalogs of classified galaxies have had many
practical applications. Astronomers have used such catalogs to test theories about the
universe. The availability of these large datasets has introduced the need for tools that
can automatically analyze astronomical images.

There is currently much interest in applying classification algorithms for this prob-
lem. The challenge is to design an algorithm which will reproduce classification to the
same degree a human expert can do it. Automated classification algorithms will improve
the analysis of data sets, but these algorithms are not being applied on all fields of
astronomy. The goal of such algorithms is to learn the characteristics of each of the

Fig. 1 Hubble’s tuning fork diagram of galaxies classification
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categories and build a model on this data. This model can then be used to predict the
category of futures objects without known classification information. Such an automat-
ed procedure usually involves two steps: (i) feature extraction from the digitized image,
e.g., the galaxy profile, the extent of spiral arms, the color of the galaxy, or an efficient
compression of the image pixels into a smaller number of coefficients (e.g., Fourier or
principal component analysis) and (ii) a classification procedure, in which a computer
learns from a training set for which a human expert provided his or her classification.

Several machine learning algorithms have been applied to photometric data extract-
ed from galaxy images and applied to direct galaxies images in order to automatic
classification [21–23].

There are many algorithms that classify galaxy images based on ANN such
as [8] use artificial neural networks techniques for galaxies classification. The
Sloan Digital Sky Survey has already used for morphological classification
using automated machine-learning techniques [16]. Also the artificial neural
networks were applied to astronomical datasets in order to classify stellar
spectra [5, 6] and [24, 25]. This has been one of the most successful attempts
at automatic classification.

The matrix factorization is an example of a prevalently used scene-based classifica-
tion method. There are many types of this factorization such as NMF [26] and principle
component analysis (PCA), [27] and independent component analysis (ICA) [28].

However, galaxy images are represented by a set of nonnegative numbers, e.g.,
numbers of occurrences or light intensities. Because of the nonnegativity is a
crucial feature that one needs to maintain during the analysis of objects. Hence,
the PCA and ICA are not suitable for images since the results of them contain
negative data and some features which nonnegative objects by their nature never or
hardly possess, such as zero sum and orthogonality. To solve this, we must add the
nonnegativity constraint and this constraint is important in human perceptions. So,
the NMF method has been proposed to construct these features not only a good
reconstruction of images but also the nonnegativity of the features. Therefore, each
feature can be considered again as an image. Together with the participation of
each feature in an image, one can establish the composition of every image in a
very comprehensible way.

3 The nonnegative matrix factorization

The NMF method has been proposed as a novel subspace method in order to obtain a
parts based representation of objects by imposing nonnegative constraints. Also, it is
represents data as a linear combination of basis images by using nonnegativity
constraints.

The problem addressed by NMF is as follows: Given a nonnegative matrix
V∈Rn ×m (data matrix, consisting of m vectors of dimension n), it is possible to find
nonnegative matrix factors W ∈Rn × r and H ∈Rr × m (r≪min(n,m)) in order to
approximate the original matrix:

V≈WH ð1Þ
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A standard NMF aims to minimize the squared Euclidean distance between VandWH:

min
H;W

f W ;Hð Þ ¼ 1

2
V−WHk k2F

subject to∀i; j; Wij;Hi j≥0

ð2Þ

where . F is Frobenius norm, the interpretation of W and H is different based on the
application. For example, in blind source separation (BSS) [29] and [30]), when V
represents the mixed signals,W is a mixing matrix and H is a matrix of original sources.
In classification W is a basis matrix and H is coefficient matrix as in [26]. The
multiplicative algorithms proposed by Lee and Seung highly popularized to perform
decomposition, which alternatively updates W and H as follows:

Wkþ1 ¼ Wk
V Hkð ÞT

WkHk Hkð ÞT ; s:t Wij≥0 ð3Þ

Hkþ1 ¼ Hk
Wkþ1ð ÞTV

Wkþ1ð ÞTWkþ1Hk
; s:t Hi j≥0 ð4Þ

where (.)T represents the transpose of matrix, the multiplicative algorithm is commonly
used and simple to implement. However, the multiplicative update algorithm lacks the
convergence guarantee for large-scale problem [31, 32].

Many algorithms have been proposed to solve these problems, such as, in [31, 32]
the projected gradient update for NMF is introduced, in which the Armijo rule (as in
Eq. 7) is used to estimate the learning parameters. In the projected gradient NMF, the
two matrices W and H are updated as:

Wkþ1 ¼ max 0;Wk−αk∇W f Wk ;Hð Þð Þ ð5Þ

Hkþ1 ¼ max 0;Hk−αk∇H f W ;Hkð Þð Þ ð6Þ

where αk is the fixed step size that selected by an Armijo rule along the projection
direction (direction of update variable H or W) to determine the step lengths in the
iterative updates. For the computation of H such a value of αk is defined as:

αk ¼ βtk ð7Þ

where the parameters β∈ (0, 1) and tk is the first nonnegative integer t that satisfies

f W ;Hkþ1ð Þ− f W ;Hkð Þ≤σ ∇ f W ;Hkð Þ Hkþ1−Hkð Þ ð8Þ

where σ ∈ (0, 1) decide about a convergence speed, here we put σ=0.01 and β=0.1
following [31, 32] as the initial value, and these parameters are updated using (6) and (7).
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4 The proposed algorithm

The overall process of our algorithm based on projected gradient NMF (PG-NMF
algorithm) is given in Fig. 2 and we called it Galaxy-PGNMF Classifier. In which the
input to this algorithm is training set and test set (where our algorithm not needs to
dimension reduction as preprocessing step since (r<<min (n, m)). Also, the number of
galaxy types (groups) is input (i.e., if it is determined from prior knowledge about
catalog). Otherwise, (if it is unknown) we determine the best number of galaxy types by
using the consensus matrix, where it reflects the probability that images i and j belong
to the same type. It is defined as the average of connectivity matrix over runs, where the
consensus matrix is defined as:

C ¼
X NR

k¼1
Ck

NR
ð9Þ

where NR is the number of run and Ck is the connectivity matrix of size m×m and its
element is defined as:

ci j ¼ 1 if i and j belong to the same type
0 otherwise

�
ð10Þ

By using the off-diagonal of C the best number of type is determined.
Then, our algorithm consists of two main steps: The first is the training step in which

each training sample is normalized using l2—norm to make all images have the same
scale. Then, the PG-NMF algorithm is used to decompose these sets into basis matrix

Fig. 2 Nonnegative matrix factorization galaxy classification scheme
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Wand coefficient matrix H. The second main step is the test or prediction step, where
the test set S is normalized. The coefficient matrix A of the S is computed based on
basis matrix W, where the basis matrix W contains all information about different
galaxy types (i.e., spiral, elliptical, lenticulars, and irregulars) and these basis make
the process of separating the images that belong to the same type is easy (like blind
source separation).

To predict the class of an unknown sample Si, we used a MAX rule that selects the
maximum coefficient in ai (the coefficient vector of A), and then assign the class label
of the corresponding training sample to this new sample. The pescdocode of our
algorithm is given in algorithm 1.
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5 Results and discussion

The experiments were implemented in Matlab and run in windows environment
with 64 bit support. Performance of the algorithms was evaluated by using
different measures of performance such as NPV, sensitivity, accuracy, Specific-
ity, and F-measure. These measures are defined as follows:

(1) The classification accuracy is defined as:

Accuracy ¼ TP þ TN
TP þ FP þ FN þ TN

� 100 ð11Þ

where TP, TN, FP and FP are represented the true positive, true negative, false
positive and false negative, respectively.

(2) Sensitivity measures (also called recall):

Sensitivity ¼ TP
TP þ FN

� 100 ð12Þ

Table 1 Features of ellipticals, lenticulars and spirals, and the irregulars galaxies

Galaxy type Feature

Spiral 1. Bulge, the bulge is a spherical structure found in the center of
the galaxy. The feature mostly contains older stars.

2. Disk, the disk is made up of dust, gas, and younger stars. The disk
forms arm structures which look like a spiral

3. Halo. The halo is a loose, spherical structure around the bulge
and some of the disk. The halo contains old stars clusters, as globular clusters.

Elliptical Elliptical galaxies have complete 2-dimensional symmetry. They have
round but stretch longer a long one axis than along the other.

Lenticular Lenticular galaxies have a centeral bulges and disks but no spiral arms.
If the disk is faint, it is easy to mistake a lenticular galaxy for an
elliptical galaxy- S0 galaxies look very much like E0 galaxies.

Irregular Irregular galaxies have no regular or symmetrical structure,
they have a wide variety of shapes and characteristics. They are
frequently the result of collisions between galaxies or gravitational
interactions between galaxies.

Table 2 The performance of proposed algorithm for small dataset

Average Accuracy Sensitivity Error Rate Spirals Ellipticals Lenticulars Irregulars

TP Accuracy TP Accuracy TP Accuracy TP Accuracy

92.7 93 7.27 28 93 29 90 27 90 18 97
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(3) Specificity:

Specificity ¼ TN
FP þ TN

� 100 ð13Þ

(4) The F-measure or F-score is defined as:

F−measure ¼ 2 precisionþ recallð Þ
precision� recall

ð14Þ

5.1 Data description

The proposed algorithm is applied to classify an images of the EFIGI catalog [33], a
database contains sample all different Hubble types galaxies. The catalog merges data
from standard surveys and catalogs (Principal Galaxy Catalogue, Sloan Digital Sky
Survey, Value-Added Galaxy Catalogue, HyperLeda, and the NASA Extragalactic
Database). The final EFIGI database is a large sub-sample of the local universe which
it samples densely. It must be noted that the peculiar, interacting, duple and merging
galaxies images are not included in our images. The images that contain an unknown
object are not included also. The main feature of galaxies types used in the paper can be
explained in Table 1.

5.2 Discussion

Since supervised learning is used, the classifier can be biased by the intuition of the
person who prepares the standard training data. Therefore, training data for an image
classifier that can be used for practical galaxy morphology classification should be
selected and reviewed carefully.

5.2.1 Small data

In this section, we illustrate the performance of the proposed algorithm by
selecting small number of galaxy imgaes. In which we selected 30 images from

Table 3 Confusion matrix of the classification of spirals, ellipticals, lenticulars, and irregulars for small
dataset

Spirals Ellipticals Lenticulars Irregulars

Spirals 28 0 1 1

Ellipticals 0 29 2 0

Lenticulars 1 1 27 1

Irregulars 1 0 0 18
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each classes ellipticals, lenticulars and spirals, and 20 images from fourth class
the irregulars.

The results are show in Tables 2 and 3, where Table 2 illustrates the
accuracy and Table 3 shows the count matrix). From Table 2, we can conclude
that the performance of the proposed algoritm for ellipticals, lenticulars and
spirals, and the irregulars galaxies is 90, 90, 93, and 97%, respectively. The
mean accuracy over all galaxies type is 92.7%. Also, in this table, the measure
TP represents the true positive for each type of galaxies.

5.3 Large dataset

In this section, we select a large number of galaxy images from catalog as
ellipticals, spirals, lenticulars, and irregulars galaxies, 225, 388, 99, and 34
respectively. This dataset is divided into training and testing set which represent
nearly 75% (∼558 images) and 25% (∼188 images) from dataset respectively.
The results of the proposed algorithm is given in Tables 4 and 5, where the
accuracy for spirals, ellipticals, lenticulars, and the irregulars are 92, 94, 88,
and 92% respectively. Also, the average over all types is 91.9%, the F-measure
is 72% which indicates that high performance of the proposed algorithm.

In our sample, there are some galaxy images are poorly classified over
different morphological classes. A standard problem in automatic classification
is the projection of the galaxies on the sky. Not only these poorly classified is
results from overlapping or foreground objects and the sky projection but also

Fig. 3 Images which are not well classified

Table 5 Confusion matrix of the classification of spirals, ellipticals, lenticulars, and irregulars for small
dataset

Spirals Ellipticals Lenticulars Irregulars

Spirals 51 2 5 2

Ellipticals 1 4 4 1

Lenticulars 2 2 86 4

Irregulars 1 1 4 18
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the most poorly classified galaxies have noise. Our algorithm can work well
when SNR is low, in general, all observed images have noise so it would be
reasonable to state, e.g., that 90% of the galaxies with a SNR of more than
60 at their effective radius (i.e., half light radius) could be classified correctly.
There are some images are not well classification with different morphological
type as shown in Fig. 3, with high SNR.

5.3.1 Comparison with other methods

We compare the proposed algorithm with other related works in Table 6. From
this table we can conclude that, average of accuracy for most of the different
algorithms nearly 91%. However, the number of galaxies type range from two
to three types; therefore, the accuracy of the Galaxy-PGNMF algorithm is in

Table 6 The accuracy of related works

Reference Aim and accuracy

[34] Used neural network and a locally weighted regression for classification. This
paper compare between three types (E, S and Irr) with accuracy 91% and
also compare between two types (E and S) with accuracy 95%

[35] The author describes an supervised learning algorithm to automatically
classify galaxy images. This algorithm used a large set of features is
extracted from each image, and then select subsect from these features
using Fisher scores. Experimental results of classify spiral, elliptical and
edge-on galaxies with accuracy of 90% compared to the classification
carried out manually by the author.

[19] The method presented in this paper is divided into three main tasks. The first
one consists of locating and matching the objects in the multispectral
images. In the second task a new representation for each astronomical
object is created using its multispectral images, and also a set of features
using principal component analysis are selected. In the last task the
classification of the astronomical objects using neural networks, locally
weighted linear regression and random forest algorithms. The results show
that the method obtains over 93% accuracy classifying stars and galaxies.

[36] the paper introduced an algorithm to classifiy images after Enhancement faint
regions in images. This algorithm uses the segmentation and
Morphological feature descriptors to the segmented images after a
preprocessing stage and to extract the galaxy image structure for use in
training the support vector machine learning classifier. The proposed
algorithm compare between several types of galaxy images for example
Irregular/Regular, Elliptical/Not Elliptical, Lenticular/Spiral and
Spiral/Barred Spiral and it is accuracy nearly 80%.

[37] This paper presented a three algorithms to galaxy classification
(namely, Naive Bayes classifier, the rule-induction algorithm C4.5 and random forest
(RF)).

The experiments show that RF obtains the best results considering three, five
and seven galaxy types. For all the galaxy classes, i.e., 91.64% accuracy for
the three-class case, 54.72% accuracy for the five-class case, and 48.62%
accuracy for the seven-class case; Naive Bayes obtained accuracy was of
43.62%. The number of PCs, are 13

[14] Accuracy 90%
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the same range of accuracy (or increase with small difference). Also, the
Galaxy-PGNMF algorithm classify four types of galaxy images.

6 Conclusions

In this paper, we described an algorithm that can automatically classify images
of spiral, elliptical, lenticular and Irregulars galaxies based on Nonnegative
Matrix Factorization (NMF) algorithm. The data set used for the described
experiments consists of galaxy images manually classified by Baillard and also
classified visual by the authors (in this paper four morphological classes are
used). In fact, our experiments show that the accuracy for small and large
datasets is 92.7 and 91.9% respectively. There are many factors that effect on
the accuracy of the proposed algorithm such as, a noise in the image, bias, dust
scattering, overlapping or foreground objects, sky projections, and low surface
brightness. The correct classification within four Hubble types is different from
early type galaxies to late type galaxies as followe, for small (large) example
90% (94%) of ellipticals classifications and 90% (88%) of lenticular classifica-
tions 93% (92%) of spiral type classifications, and 97% (92%) for fourth class,
the irregulars classifications. These results are compatible with those obtained
by the human eye and as learned. We found that early types generally have a
high optimum values where the late type low optimum values.

Finally, we conclude from the results that the Galaxy-PGNMF algorithm
is a powerful alternative for galaxy morphology classification in CCD
images.

Future work to improve classification requires more training data and integrating
photometric features measured in different morphological types, repeating the experi-
ments with a larger set of galaxies.
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