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Abstract Next generation radio telescopes will require orders of magnitude more
computing power to provide a view of the universe with greater sensitivity. In the
initial stages of the signal processing flow of a radio telescope, signal correlation is
one of the largest challenges in terms of handling huge data throughput and intensive
computations. We implemented a GPU cluster based software correlator with various
data distribution models and give a systematic comparison based on testing results
obtained using the Fornax supercomputer. By analyzing the scalability and through-
put of each model, optimal approaches are identified across a wide range of problem
sizes, covering the scale of next generation telescopes.

Keywords Radio astronomy · Software correlator · GPU computing ·
Heterogeneous computing · Supercomputing · GPU cluster · OpenCL

1 Introduction

Signal correlation is one of the most computationally demanding and communi-
cation intensive tasks in the signal processing flow of a radio telescope array. It
has been traditionally processed using field programmable gate arrays (FPGAs) to
achieve excellent power efficiency. However, high development challenges and lack
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of portability make it an expensive task either to design a system from scratch, to
scale an existing one or to introduce new functionalities. With the fast development
of general purpose hardware platforms, it is likely that at some point the relatively
low development cost and high flexibility of software correlators make them a viable
option.

There have been a growing number of software correlator projects over the last
decade. The most widely used CPU cluster based VLBI correlator DiFX designed
by Deller et al. [1, 2] implemented a time division multiplexed system, in which
the inter-node synchronization is less critical and hence it achieves excellent perfor-
mance even given unbalanced computing resources or non-ideal network conditions.
Recent research by Dodson et al. [3] showed that DiFX can be efficiently imple-
mented on supercomputers with Infiniband networks as well as on the Intel MIC
architecture, and it scales linearly up to 50 nodes after which network bottlenecks
cut in.

Another well-known software correlator was designed for the Low Frequency
Array (LOFAR). Being one of the first new generation telescopes intensively using
interferometry techniques, LOFAR was also one of the first real world projects
to use a dedicated software correlator. A Blue Gene/L supercomputer is used in
the LOFAR system for correlation and post-correlation processing by Romein et
al. [4, 5]. Computationally intensive jobs in the LOFAR software system are opti-
mized using assembly language and as a result, it has achieved 98 % of the peak
floating-point capability of the hardware architecture.

While the CPU-based software correlators proved the capability, GPUs (Graphic
Processing Unit) appear to be increasingly applicable for this type of work. In
a comparison of correlation on different hardware architectures by Nieuwpoort
et al. [6], NVIDIA GPUs showed the best absolute performance and the sec-
ond best power efficiency, which revealed the feasibility of building a powerful
GPU-based correlation system. GPUs were first used for correlation a decade
ago by Schaaf et al. [7], when graphic programming techniques such as the Cg
language had to be heavily involved to get a general computing problem solved on
a GPU.

Over the last few years there have been several GPU-based software correla-
tors. These took advantage of NVIDIA’s Compute Unified Device Architecture
(CUDA), in which GPUs can be treated as generic computing devices in addi-
tion to graphic chips. This significantly reduced the programming challenge, and
hence more efforts could be put into the optimization, rather than making algorithms
compatible with the hardware. The first CUDA-based GPU correlator designed
by Harris et al. [8] took advantage of the CUFFT library for its F-engine and
implemented a series of X-engines in different parallel fashions, which achieved
a considerable performance gain compared with CPU correlators. Another project
conducted by Wayth et al. [9] implemented similar parallel approaches to those
presented by Harris et al. [8] and constructed a real-time correlator for the proto-
type of the Murchison Widefield Array (MWA). The most recent work by Clark
et al. [10] presented a highly optimized implementation on NVIDIA’s GTX480
GPU and achieved 79 % of the peak single precision capacity of the hardware
architecture.
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The world’s largest radio telescope, the Square Kilometer Array (SKA), is
also considering a correlation system based on GPU clusters as described by
D’Addario [11]. However, previous research has focused on single-GPU approaches
with very little consideration given to data distribution across multiple GPUs.
The data distribution pattern used in CPU cluster correlators are yet to be veri-
fied with GPU clusters given the number of distinctive features of GPU correlator
engines.

This paper presents a software correlator for heterogeneous high performance
computing clusters, especially GPU clusters, mainly focusing on data distribution
models. Two space-division network models are proposed in this paper and are com-
pared with a re-implemented time-division model which was first introduced by
Deller et al. [1]. The correlator engines presented by Harris et al. [8] are adopted
and re-implemented in the Open Computing Language (OpenCL) for compatibility
with different computing devices. The scope of this work is to investigate possi-
ble solutions for solving large-scale correlation problems such as those SKA would
face.

2 FX correlator

There are two main approaches to radio astronomy signal correlation. The first,
a lag or XF correlator, correlates signals in the time domain, before transforma-
tion to the frequency domain via the Fourier Transform. This method is often
used in hardware implementations where the initial correlation can be performed
at lower bit precision. The second, an FX correlator, instead transforms the sig-
nals using the Fourier Transform, and then performs the correlation via conjugate
multiplication. This method is predominantly used in software correlators, as it
requires fewer total operations. In both methods the results are usually then accumu-
lated. As this work will utilize the FX correlator, a brief mathematical introduction
follows.

For a discrete time signal s[n] of N samples, with n ∈ [0, N − 1], the Dis-
crete Fourier Transform is first applied to obtain the spectra S[k] for frequencies
k ∈ [0, N − 1] as shown in (1):

S[k] =
N−1∑

n=0

s[n]e−j (2πN)kn (1)

Then for Sa,i[k] and Sa,j [k], where a is the index of the spectra over time, i and
j are the index of each signal in the pair, the complex visibilities Cij [k] are obtained
using (2):

Cij [k] =
A−1∑

a=0

S∗
a,i[k]Sa,j [k] (2)

In an FX correlator implementation, the two steps are usually named the
F-engine and the X-engine. This work takes advantage of the Apple OpenCL
FFT to implement the F-engine. For the X-engine, the 1xGxG model used by
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Harris et al. [8] is adopted and re-implemented in OpenCL with modifications to fit
cluster models.

3 Time-division model

The time-division pattern for correlation, which was used by Deller et al. [1], is
the first data distribution model we implemented in this work. As shown in Fig. 1,
input data streams on streaming nodes are divided into time slices and distributed to
correlation nodes. Each correlation node is responsible for some of the time slices
across all input streams. An input stream here refers to the sampled digital data
from an antenna, which does not include the case where the data is channelized
into sub-bands or where multiple polarizations are present per stream. The time-
division model is highly efficient in terms of data transfers as all input data chunks
are transferred only once. Moreover, every correlation node processes indepen-
dent data, and as a result, synchronization between correlation nodes becomes less
important.

However, as the time-division model was originally proposed for a CPU clus-
ter correlator, simply replacing the FX engines with GPU implementations could
potentially cause problems. Based on our preliminary testing, when the number of
input data streams becomes very large, the efficiency of the FX engines drops dra-
matically. In this case the time-division model is not necessarily optimal on a GPU
cluster even though it is highly efficient in terms of data transfers. Furthermore, the
time-division model processes all baselines on a single node, thus when it comes to
a point where the number of data streams is so large that the GPU memory is not
able to hold all baseline data at a minimum length of a single FFT, the model would
fail. Thus it is relevant to consider other data distribution models for GPU cluster
correlators.

Fig. 1 Shown is the data distribution pattern of the time-division model. Each streaming node con-
tains multiple input data streams. Data streams are divided into time slices and transferred separately to
corresponding correlation nodes based on the time-division allocation
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4 Space-division models

An alternative approach is to implement data distribution models based on divi-
sion in space rather than time. Shown in Fig. 2 are correlation jobs divided
into groups based on the space-division pattern. Instead of processing all cor-
relation pairs inside a single node and assigning different nodes with different
time slices, a space-division model divides correlation pairs into groups, and each
node assigned with a certain group is responsible for all time slices. Thus, given
the total number of input streams, the number that a single node needs to pro-
cess is reduced, which would improve the GPU X-engine performance for cases
with a large number of streams. The exact number of streams per node would
still be dependent on the total number of correlation nodes required to achieve
real-time processing. Ultimately, to completely control the number of streams
per node, a hybrid system would need to be used, but this is left for future
investigations.

Space-division models involve necessary modifications to the X-engine, since X-
engines designed for single GPU correlators process all input data streams at once in
a triangle pattern for all non-redundant pairs, while some of the nodes in the space-
division model need to process two parts of the input streams in a rectangle pattern
for cross-correlations only. Moreover, it involves redundant data transfers as corre-
lation nodes in the same row or column require the same input data. It is then of
significant importance to design network topologies intelligent enough to handle the
huge data efficiently. In this paper, we propose two network topologies to investigate
the performance of the space-division model.

4.1 Broadcasting model

The first space-division based network topology we designed is the broadcasting
model shown in Fig. 3a, which uses streaming nodes to broadcast the data across

Fig. 2 Shown is the group
pattern of correlation pairs. Each
signal pair undergoing
correlation is presented using a
box, indexed by its constituent
streams i and j . Groups labeled
using numbers in the larger font
correspond to correlation nodes
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a b

Fig. 3 Shown are the topologies and data flows of our space-division network models. Circles represent
data sources while squares are correlation nodes. Data sources can be only streaming nodes within the cor-
relator allocation for the broadcasting model due to the broadcast and buffer management tasks involved,
while in the passing model, they could also be external streaming sources or data files instead

correlation nodes. Equation (3) shows how the number of streaming nodes, ns , varies
with the number of correlation nodes, nc.

nc = ns(ns + 1)

2

ns =
√

8nc + 1 − 1

2
(3)

Given the data distributing pattern, there are two methods for the data transfer. One
of them is to use a native broadcast routine, which could be either at the MPI level, or
a hardware multicast, while the other is to send and receive data in loops using basic
point-to-point communications. Figure 4 shows the diagrams of both methods based
on the instance given in Fig. 3a with 10 correlation nodes and 4 streaming nodes.

An important fact revealed by Fig. 4 is that a native broadcast routine, or even
a hardware multicast, would not help improve the overall data transfer efficiency
for our models if it is implemented with blocking collective calls. This is because
blocking broadcasts for each stream cannot occur concurrently, due to the overlaps
between destinations of streaming nodes doing broadcast. In this case, streaming
nodes have to broadcast in sequence as shown in Fig. 4a, and this results in the
same cost, if not more, as basic point-to-point communications in Fig. 4b. Moreover,
non-blocking point-to-point communications do not help either, as there is a limita-
tion of bandwidth rather than latency. However, if a non-blocking multicast routine
is available, all broadcasts in Fig. 4a can occur in two relative time units in prin-
ciple, since there are at most two listening events overlapped on every correlation
node.

To examine the timing in more detail, we first assume that all communications
are blocking, every correlation node is assigned with constant correlation tasks, and
every streaming node deals with data in a constant size. We also consider tt the
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Fig. 4 Shown are diagrams of all streaming nodes and correlation nodes with the broadcast routine and
the point-to-point routine based on an instance having 10 correlation nodes and 4 streaming nodes. Time
is presented in a relative unit where we define a send and receive pair take one unit. In order to simplify
the illustration, it is assumed that an execution of the FX engines takes 5 units, while in practice the data
transfer to execution ratio varies in a wide range with different configurations. It is also assumed that the
broadcast routine works ideally and takes exactly the same as a send and receive pair, while in reality a
broadcast usually takes longer depending on implementations

time taken by a single data transfer, which could be either a send and receive pair or
a broadcast. Given te is the time taken by an execution of the FX engines, ns is the
number of streaming nodes, then the time taken by an entire processing cycle, tc, can
be obtained using (4) for both cases show in Fig. 4.

tc = nstt + te (4)

This indicates that by using blocking communications, the larger the number of
streaming nodes, the more significant influence data transfers have on the overall
performance, which leads to bad scalability. On the other hand, if non-blocking point-
to-point communications and double buffering are both applied, then

tc = max(nstt , te). (5)

Improvements are seen in this case but when ns is so large that ns · tt > te, the
data transfer would still become a bottleneck, and the scalability problem still exists.
However, if non-blocking multicasts are used in this model, then

tc = max(2tt , te). (6)

Hence non-blocking multicasts can largely improve the efficiency, and in this case
the time taken by a processing cycle is independent of the cluster size, which results
in an excellent scalability as well.

In practice, collective broadcasts usually mean more overhead and synchroniza-
tion cost. Hence the actual performance would never reach the ideal situation,
especially when using blocking routines. The broadcast routine used by OpenMPI
as presented by Fagg et al. [12] utilize a variety of software algorithms. However,
the performance of these routines would be less than a true hardware multicast. In
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this work we only used the OpenMPI broadcast routine due to the limitation of
the developing platform. We also completed another implementation based on basic
point-to-point communications to verify our analysis above.

4.2 Passing model

In order to avoid the scalability problem while making it suitable for generic environ-
ments without requiring a specific non-blocking multicast support, we proposed the
passing network topology as our second space-division model. As shown in Fig. 3b,
in this model the input data is passed between neighbor nodes. Since all correlation
nodes take part in data streaming, dedicated streaming nodes are no longer neces-
sary, which improves the node efficiency as a whole. Figure 5 illustrates the diagram
of the passing model working with 10 correlation nodes, from which we can see that
in this model each correlation node deals with four data transfers at most, being two
sends and two receives, per processing cycle. With the same definitions as in (4), the
time taken by a processing cycle can be obtained by (7).

tc = 4tt + te (7)

Similarly, if non-blocking communications and double buffering are applied, then

tc = max(4tt , te). (8)

Thus the data transfer to execution ratio is independent of the cluster scale, which
means a better theoretical scalability than the broadcasting model with blocking com-
munication calls. Additionally, by starting data flows from the auto-correlation nodes,
it is ensured that every cross-correlation node has an identical distance from the two
data sources it claims. As a result, for a cross-correlation node, the two chunks of

Fig. 5 Shown is the diagram of the passing model working with 10 correlation nodes. Time is presented
in a relative unit where we define a send and receive pair take one unit. In order to simplify the illustration,
it is assumed that an execution of the FX engines takes 5 units, while in practice the data transfer to
execution ratio varies in a wide range with different configurations
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input data from two different sources arrive at the same time, which saves any extra
synchronization cost for input.

It is noticeable from Fig. 5 that correlation nodes are working asynchronously.
More specifically, correlation nodes farther away from data sources have longer
delays over time, although a processing cycle on different nodes still costs the same.
Taking this into account, given ns is the number of data sources, which is equal to
the number of auto-correlation nodes lying on the hypotenuse of the triangle, and
np is the number of processing cycles in total, Equation (7) should be re-written
as

tc = 2nstt + (4tt + te)np

np

. (9)

When np → ∞, we have

tc
np→∞= 4tt + te. (10)

Hence the average amount of time taken by a processing cycle is not affected
by the delay given the number of processing cycles is sufficiently large. However,
the delay of a correlation node, d , increases with the distance from the node to data
sources, l, as given by (11), and this could have some negative effects on latency-
critical systems.

d = 2ltt . (11)

Since the passing model proves to have an excellent scalability in principle, we
implemented it in both blocking and non-blocking styles for comparison and analysis.
Double buffering is also applied in the non-blocking routine to make all data transfers
happen concurrently.

5 Testing

Testing was carried out on the Fornax supercomputer, which was designed for data
intensive research, especially radio astronomy related data processing. Fornax con-
sists of 96 nodes, each having two Intel Xeon X5650 CPUs, a NVIDIA Tesla C2075
GPU and 72 GB of system memory. The Intel 5520 Chipset is used in the compute
node architecture, which enables the NVIDIA Tesla C2075 GPU to work on an x16
PCI-E slot and two 40 Gbps QLogic Infiniband IBA 7322 QDR cards on two x8 PCI-
E slots. The main storage of Fornax is a 500TB Lustre-based shared file system. One
of the two Infiniband networks is dedicated to the communication between compute
nodes and the Lustre cluster.

In terms of the software environment, Fornax runs CentOS 6.2 with 2.6.32-
131.21.1.el6.x86 64 Linux kernel. The OpenMPI version adopted in this work is
1.6.0. Default configurations are applied for all communication stacks since our pre-
liminary testing showed that the data transfers almost achieved the theoretical limit
of the Infiniband network by doing so. CUDA 4.1.28 library with OpenCL 1.1 sup-
port was used for GPU computing. The FFT implementation used for the F-engine
was Apple OpenCL FFT 1.6.
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All models presented were tested with the Apple OpenCL FFT for the F-engine
and the modified 1xGxG model proposed by Harris et al. [8] for the X-engine. As
the main purpose of this paper is to compare different data distribution models, the
F-engine does not include station-based functions other than the FFT, such as fringe
rotation. Furthermore, this paper is essentially looking at SKA-scale arrays consist-
ing of 300 to 3000 antennas, and in this case the X engine is more critical as its
computational demand scales quadratically with the number of data streams while
the F engine scales linearly.

The metric FLOPS used in all testing results is in single-precision and refers to
the actual mathematical operations that are necessary for an FX correlator, which
does not include indexing and redundant calculations for optimizing either the
GPU memory access or the data transfers. This is a fair method to compare the
performance between implementations on different hardware architectures, as the
cost of indexing and redundant calculations could vary by several times in order
to optimize algorithms for different hardware architectures or different network
patterns, while that of the ultimate mathematical operations needed by the cor-
relation algorithm does not change. In our tests all input data is packed in 8-bit
integers.

Testing first investigated how the performance in Tera-FLOPS scales with the
number of correlation nodes across all network models. As shown in Fig. 6, testing is
conducted in four schemes, with the number of input data streams varying from 128
to 3072. The six configurations used are the broadcasting model with the MPI Bcast
routine and point-to-point data transfers, the passing model with single buffering and
double buffering, and the time-division model with 4 and 8 streaming nodes. When
the number of streams reaches 3072, the time-division model is no longer available
since a single GPU does not have enough memory to process all the streams. This
is not an issue for the space-division models, as they subdivide the problem between
GPUs.

The number of correlation nodes, which is also the number of GPUs executing the
FX engines, excluding streaming nodes, varies from 6 to the maximum configuration
obtainable on Fornax for each method. An FFT length of 256 is used across all tests,
as our preliminary tests showed that the throughput of the Apple OpenCL FFT does
not significantly vary with the FFT length in the range from 128 to 2048, and the X
stage performance is invariant with respect to FFT length as long as there is sufficient
data to feed the massively parallel model of GPU computing.

Shown in Fig. 7 is the overall performance averaged over the total number of
correlation nodes. This demonstrates the node efficiency across all network models.
Based on our preliminary testing, the peak performance that the FX engines achieved
on a single GPU is approximately 105 GFLOPS. Thus results shown in Fig. 7 also
reveal how the overall performance is affected by the network transport involved for
the cluster model.

Testing then investigated the sampling rate of input data achieved using our models
with different configurations. As shown in Fig. 8, the number of data streams scales
from 64 to 3072. The lower limit was chosen as below it the streams are too few to
feed the space-division models, while the upper limit was chosen as it is the largest
number of data streams likely to be used in the foreseeable future. The time-division
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Fig. 6 Shown is the overall performance in single-precision TFLOPS achieved using various network
models and configurations on the Fornax supercomputer. Testing is conducted in four schemes for the
number of input data streams. In each scheme, the number of correlation nodes varies from 6 to the
maximum number available. The broadcasting model was tested with two subroutines: Bcast which uses
the MPI Bcast routine; and P2P which uses point-to-point transfer loops. The passing model was tested
with single and double buffering for data transfers. The time-division model was tested with 4 and 8
streaming nodes respectively

model was only tested with up to 2048 data streams due to the limit of the model
suitability for the GPU hardware architecture.

The output visibilities were not collected for the performance tests presented
above. For correctness tests, we used the Adaptive IO System (ADIOS) devised by
Jin et al. [13] to write visibility files for up to 300 input data streams. By using
ADIOS on the Lustre file system, data chunks for different subsets can be filled
into a global data space asynchronously, and this enables each correlation node to
write visibility data independently while keeping the data in a globally correct order.
Taking advantage of the buffering technique and the non-blocking IO mechanism
provided by ADIOS, the performance loss caused by IO was too little for us to mea-
sure for the testing schemes presented above working with up to 300 input data
streams.
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Fig. 7 Shown is the performance per GPU in GFLOPS achieved using different network models and
configurations. Testing is conducted in two schemes for the number of input data streams. In each scheme,
the number of correlation nodes varies from 6 to the maximum number available. The performance shown
is averaged over the total number of correlation nodes

6 Discussion

Testing results revealed that on current hardware architectures the time-division mul-
tiplex model is still the best choice for a GPU cluster correlator when the number of
data streams is less than 1024, as shown in Fig. 8. In the range between 1024 and
2048, space-division models start to overtake. Most applications in the foreseeable
future will be dealing with less than 1024 streams for which the time-division model
is optimal. The only exception we are aware of so far is the SKA Mid Phase 2 which
is likely to have 3000 antennas forming a single beam.
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Fig. 8 Shown is the sampling rate achieved using different network models and configurations. Testing is
conducted in two schemes varying the number of correlation nodes. In each scheme, the number of input
data streams varies from 64 to 3072. Each sample is an 8-bit real integer value
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However, this is not to say space-division models will be the only way to deal
with such large-scale correlation tasks. Rather than the network itself, the GPU archi-
tecture is one of the most significant factors leading to the performance turnover
between 1024 and 2048 streams. Due to the fact that the output data rate scales
quadratically with the number of input streams, the larger the number of input streams
is, the bigger proportion of GPU memory the output buffer takes. As the num-
ber of input streams increases, at a certain point the output buffer takes so much
GPU memory that the input buffer is no longer large enough to hold data that can
feed the massively parallel model of GPU computing, which is the major cause
of the performance drop. If future GPUs integrate more GPU memory, then it is
possible to extend the optimum range of the time-division model. Moreover, the
turnover point might shift with a wide range of factors from both hardware and
software aspects. This includes but is not limited to the hardware platform and con-
figuration, the optimization of FX engines and the involvement of other correlator
functionalities.

Another implication of the GPU memory limitation is that varying the FFT length
would not significantly affect the performance, as long as the GPU memory is enough
for both input and output buffers. As the two buffers are both proportional to the
FFT length, increasing it does not change the proportion of GPU memory that the
input buffer takes, and hence it does not negatively affect the parallel scale of the X-
engine. The F-engine might be slightly affected depending on FFT implementations.
The performance of the Apple OpenCL FFT we used in this work does not vary
significantly for the FFT length up to 4 K. However, the FFT length does affect the
maximum number of input streams that a single GPU is able to process, as both the
input and output buffers need to be at least large enough to hold all intended data at
the length of a single FFT. Moreover, this work did not investigate extra-long FFTs
beyond 8K, which potentially have some significant impacts on performance.

6.1 Network

The overall throughput that the time-division model can provide depends on the
number of streaming nodes. As shown in Fig. 6, the model achieved better scala-
bility when it was given 8 streaming nodes instead of 4. Furthermore, for real-time
SKA-scale correlation, 8 streaming nodes are still far from sufficient, otherwise each
streaming node needs to handle more than hundreds of gigabytes of data per second,
which is orders of magnitude beyond what the current technology can provide. How-
ever, unless the throughput is being limited by the streaming nodes, then adding more
streaming nodes does not improve performance. Therefore, we did not test the time-
division model with more than 8 streaming nodes since this was sufficient in most
cases across our testing schemes.

The time-division model is likely to have excellent scalability even on larger clus-
ters than our testing platform because firstly, based on our testing results shown in
Fig. 6, the time-division model achieves a more linear scalability than space-division
models, and secondly, the scalability is only limited by the number of streaming
nodes rather than the network topology and a series of factors for space-division
models.
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It seems from Fig. 6 that the broadcasting model achieves better performance than
the passing model on the same number of GPUs when the number of data streams is
large. However, this is based on the prerequisite that a considerable number of extra
nodes are allocated as streaming nodes, as given by (3).

The passing model is promising in solving large scale correlation problems in the
future. An obvious advantage is that it does not need any dedicated streaming nodes
to re-organize and distribute data, for the auto-correlation nodes are the only nodes
that receive input from external sources, and are able to receive streaming data in
its original form. The topology also prevents network bottlenecks to a large extent,
as the number of data transfers that each node deals with does not scale. In princi-
ple, the performance would scale linearly. Our passing model testing results showed
a near linear trend in which the performance falls behind the broadcasting model
when large datasets are applied because the passing model does not perfectly suit the
switch-based topology applied on Fornax. It is likely to scale better on supercomput-
ers with multi-dimensional torus topology, in which neighbor nodes have dedicated
communication channels, as well as clusters with custom networks built-in to match
our model.

6.2 FX engines

For the space-division models, it is debatable whether or not to process FFT and
CMAC coherently on the same node. Redundant FFTs are introduced if they are
on the same node, as correlation nodes in the same row or column claim the same
input data streams. On the other hand, if they are processed on separate nodes,
the network load would increase by several times, as the data for a sample is usu-
ally packed in a small number of bits before FFT and is expanded to the complex
floating-point format in 64 bits afterward. Thus it is ultimately a trade-off between
compute and network. From Fig. 7 we can see that even using our optimum net-
work model under its favorable configuration, the performance per node is still
reduced by approximately 30 % when the number of total correlation nodes scales
up to 90, compared with the peak single GPU performance which is 105 GFLOPS.
This indicates that for large-scale correlation problems, the network is where bot-
tlenecks would mostly appear, rather than compute. Additionally, in large-scale
correlation systems, the FFT only takes a small proportion of the entire FX corre-
lator in terms of execution time, due to the fact that the computational demands of
the FFT scales linearly with the number of data streams while that of the CMAC
scales quadratically. In this case, redundant FFTs introducing minor performance
loss are more desirable than increasing the network load by potentially an order of
magnitude.

The GPU FX engines used in this work achieved approximately 10 % of the
capacity of C2075 GPUs by using the metric that counts only the mathematical oper-
ations. To include the indexing and redundant calculations, a factor ranging from
approximately 2 to 4, depending on the FFT length, the accumulation size and the
network model, needs to be multiplied. The optimization techniques in GPU comput-
ing change significantly with hardware architectures, while the FX engines used in
this work was designed several generations ago in terms of the GPU architecture. It
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is likely that FX engines optimized for newer GPU architectures can largely improve
the performance of the GPU cluster correlator. The network models presented in this
paper are applicable to such newer GPU FX engines, and also can be integrated in
systems based on other hardware architectures such as CPUs and FPGAs.

6.3 Visibility data

In our tests, the output visibility data was only written to files on the Lustre file sys-
tem for up to 300 input streams for correctness verification. There are two reasons
behind this, firstly for next-generation telescopes which generate enormous amount
of data, the visibility data is not likely to be stored on hard disks, but rather being
streamed directly to post-processing stages. In this case, the visibility data resulted
from our models would need to be re-ordered in time-stamped sub-bands or poten-
tially other patterns. This re-formatting process can occur concurrently with the GPU
X-engine, and be fully parallelized and completed on each correlation node inde-
pendently for the time-division model, where every correlation node processes all
baselines.

For the space-division models, visibility data containing a subset of the baselines
on each correlation node can be first split into sub-bands locally, and then gathered on
post-processing nodes for all baselines. Each post-processing node deals with a sub-
band, so that the corner turning and imaging algorithms can be applied concurrently
on each node without gathering all data onto a single node. There needs to be a
streaming many-to-many network connecting correlation nodes and post-processing
nodes, which is similar to what we implemented in our models to send input data
from streaming nodes to correlation nodes.

Secondly, the output data rate is usually less critical than the input. Shown in
Table 1 are calculated input and output data rates for the SKA Phase 1 correlator
from Ford et al. [11]. As seen in these figures, the output data rates are much lower
than the input. Hence in immediate future the actual problem we are likely to face
is still an input-limited correlation system rather than output-limited. Correlators for
the full scale SKA might be output-limited. However, while trying to meet science
requirements, the final design will also largely depend on how relevant technologies
develop in the next decade and how the cost can be controlled in a reasonable range.
Taking these into account the implementation of the output network is left to future
work.

Table 1 Shown is a summary of projected total input and output data rates for SKA Phase 1 correlator
from Ford et al. [11]

Case SKA 1 Low SKA 1 Mid

Total Input Data Rate 18.24 TB/s 750 GB/s

Total Output Data Rate 2.405 TB/s 136.7 GB/s

The data rates are given for both low and mid frequency SKA 1. The reader is referred to Ford et al. [11]
for further details on the calculation of these values
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6.4 Real-time capacity

Next-generation telescopes are likely to have an entirely streaming work flow in order
to reduce the expense of storing intermediate data. This requires all correlation data
to be processed in real time. However, being limited by current technology, when the
problem size approaches the SKA scale, the sampling rate of input signals achieved
in our testing, as shown in Fig. 8, falls far behind what is required. This situation
can be changed in three aspects in the future. Firstly, new generation GPUs are likely
to double the performance every other year, and by the time SKA-scale telescopes
come into reality, the newest GPUs would be at least an order of magnitude faster
than what we used in our testing.

Secondly, as the GPU computing industry grows and more developer resources
become available, optimizing the GPU FX engines would become easier. The hard-
ware architecture and compiler would also evolve towards a direction that provides
simpler ways to utilize more of the GPU capacity. While the GPU FX engines used
in this work still have considerable space to optimize on current GPU architecture,
evolving with new technology becomes even more important.

Thirdly, for SKA-scale real-time correlation, it would eventually be necessary to
scale our models on much larger clusters. This could be at the level of 10 to 100 times
as large as our testing platform. In this case the network would become increasingly
critical, and implementing our passing model on a cluster with multi-dimensional
torus network would be a promising solution. The time-division model is another
choice if future GPU architectures allow a single GPU to process all baselines of the
telescope array.

7 Conclusion and future work

This work has investigated several ways to scale a single GPU based software correla-
tor to clusters. We have investigated two major strategies, which are the time-division
and space-division multiplex systems, and compared the performance over a range
that is large enough to meet the requirements in the foreseeable future. Our testing
results have shown that for numbers of data streams smaller than 1024, the time-
division model is more efficient, while the passing topology of the space-division
model showed advantages for large numbers of streams due to the more efficient use
of the GPU memory.

As it is difficult to predict the development of technology in the next decade, it is
still too early to make statements as to how achievable it is to build a real-time GPU
cluster correlator for a 3000-antenna telescope such as the SKA Mid Phase 2. Mean-
while there is still considerable space for our models to be optimized. Future work
will therefore firstly focus on replacing the GPU FX engines with newer and more
optimized implementations, the xGPU developed by Clark et al. [10] for instance,
and optimizing models for real world projects.

In terms of the network patterns, there is a possibility of designing a hybrid
model combining advantages of both space-division and time-division models.
Orthogonal correlation triangles separating frequency channels prior to the CMAC
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stage is another promising direction to investigate, which can generate output vis-
ibilities in a more friendly pattern for post-processing but involves the design of a
complex communication network between FFT and CMAC. Some non-performance-
critical functionalities such as the delay compensation are also to be added to make a
fully integrated system, as this work only investigates the compute intensive stages of
an FX correlator. With the high flexibility of a software correlator, it is also sensible
to integrate other functional techniques into the correlation flow, such as a coherent
fast transient detector proposed by Law et al. [14] which needs to be placed between
conjugate multiplications and accumulations within the X-engine.
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