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Abstract
When it comes to experiments with multiple-round decisions under risk, the current 
payoff mechanisms are incentive compatible with either outcome weighting theories 
or probability weighting theories, but not both. In this paper, I introduce a new pay-
off mechanism, the Accumulative Best Choice (“ABC”) mechanism that is incentive 
compatible for all rational risk preferences. I also identify three necessary and suf-
ficient conditions for a payoff mechanism to be incentive compatible for all models 
of decision under risk with complete and transitive preferences. I show that ABC is 
the unique incentive compatible mechanism for rational risk preferences in a multi-
ple-task setting. In addition, I test empirical validity of the ABC mechanism in the 
lab. The results from both a choice pattern experiment and a preference (structural) 
estimation experiment show that individual choices under the ABC mechanism are 
statistically not different from those observed with the one-round task experimen-
tal design. The ABC mechanism supports unbiased elicitation of both outcome and 
probability transformations as well as testing alternative decision models that do or 
do not include the independence axiom.
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1 Introduction

Archer is recruited as a human subject to participate in an economic experiment. 
His job is to make choices in a series of tasks. His primary concern is how much 
he gets paid. If Archer is told he will earn $20 flat, he might go through the tasks as 
fast as possible without even reading the options. If Archer is told he will get paid 
for all his choices combined, he may construct a portfolio with all the decisions and 
optimize as he progresses. However, those are not what experimentalists want. We 
want subjects to reveal their preferences truthfully in every task. Archer’s “single-
task preference” between options A and B refers to Archer’s ranking of the options 
revealed by his choice in a single-task setting; this has been called “true preference” 
in earlier literature (Starmer and Sugden 1991; Cubitt et  al. 1998). How can we 
ensure Archer’s choices in a many-decisions setting are consistent with his “single-
task preference” in each decision (also known as incentive compatibility)? We must 
find an incentive compatible payoff mechanism. Let us focus on experiments involv-
ing decision making under risk for now.

A universal solution is the one-round task design. That is, if we would like to 
know Archer’s “single-task preference” between A and B, we ask Archer to pick 
one from A and B and pay him his choice. It is the only known incentive compatible 
payoff mechanism (ICPM) for all risk theories. Therefore, choices under the one-
round task design have served as the gold standard to test empirically the incentive 
compatibility of other mechanisms–whether choices under a certain mechanism are 
significantly different from those under the one task only. However, the drawback of 
one-round task design is that we only get one data point from each subject, which 
would be insufficient if we want to test, say, the Allais Paradox. Another solution 
in practice is to randomly select one choice to pay each subject (also well-known 
as Random Lottery Incentive System, RLIS)1. The rationale is that since any round 
could count as payment, Archer should treat every round seriously. However, with 
RLIS, we must assume that Archer’s preference satisfies independence axiom, as 
first discussed in Holt (1986) and Karni and Safra (1987). What if it does not?

There is no known ICPM with the multiple-round task setting when prefer-
ences are from rational domain (complete and transitive, otherwise unrestricted). 
That is the gap this paper addresses. An ICPM, Accumulative Best Choice (ABC) 
mechanism is proposed for all risk models representing complete and transi-
tive preferences. Three necessary and sufficient conditions for the family of ICPM 
are identified through two propositions and the main theorem: ABC is the unique 
ICPM when no assumptions restrict subjects’ anticipation about the future. The 
validity of ABC–individual choices or the estimates of their risk attitude parame-
ters under the one-round task design are statistically the same as under the ABC 

1 Such mechanism has been called differently in previous literature, such as Random Problem Selection 
(RPS) in Beattie and Loomes (1997) and Azrieli et al. (2018, 2020), Random Lottery Incentive Mecha-
nism (RLIM) in Harrison and Swarthout (2014), Random Incentive System (RIS) in Baillon et al. (2014) 
and Pay One Randomly (POR) in Cox et al. (2015).
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mechanism–is tested via lab experiments: The results from two experiments fail to 
reject such hypothesis at 5% significance level.

Risk theories representing rational preferences include expected utility theory 
(EUT) [initially proposed by Bernoulli, and axiomatized by von Neumann and Mor-
genstern (1944)], dual expected utility theory (DT) (Yaari 1987), rank dependent 
utility theory (RDU) (Quiggin 1982) and cumulative prospect theory (CPT) (Tver-
sky and Kahneman 1992)2. Models allowing violation of transitivity are beyond 
the scope of this work, such as prospect theory with endogenous reference point 
(Schmidt et  al. 2008) or reference-dependent utility theory (Kőszegi and Rabin 
2006), regret theory (Bell 1982; Loomes and Sugden 1982) and disappointment 
aversion (Bell 1985; Gul 1991)3.

2  Accumulative best choice (ABC) mechanism

ABC operates in (0) an n-round sequential choice task where the set of options is 
fixed and predetermined, with the following conditions: 

(1) Every subject gets paid the realized outcome of their last choice;
(2) For each but the last round, subject’s current choice carries over to become one 

accessible option in the next round;
(3) Each subject does not know the new options they will face in future rounds.

At the beginning of the experiments, subjects are informed of (0)(1)(2)(3).
The following elaborates the ABC mechanism with minimal notations: The 

experiment is an n-round individual decision task. Suppose there is a general lot-
tery set L  . For Round i(i = 1,… , n) , decision task consists of choosing from some 
subset Di of L  . The set of lotteries subject encounters in the whole experiment, 
L0 = {l ∶ l ∈ ∪i=1,…,nDi} , is fixed and predetermined. Let ci denote individual 
choice in Round i, that is, ci ∈ Di.

ABC works as follows with Archer as our example subject:
Round 1: Decision 1 ( D1 ): Archer makes a choice, c1 , from set D1 = T1 , where 

T1 ∈ L  is determined by the experimenter. Archer only knows lotteries in D1;
Round 2: Decision 2 ( D2 ): Archer makes a choice, c2 , from set D2 = T2 ∪ {c1} , 

where T2 ∈ L  is determined by the experimenter. Archer only knows lotteries in 
D1,D2;

...

2 RLIS is incentive compatible with EUT, and another payoff mechanism “Pay All Correlated”, pro-
posed by Cox et  al. (2015), is incentive compatible with DT. However, no currently known payoff 
mechanism is incentive compatible with RDU or CPT with the fixed reference point in a multiple-round 
experiment. The popular theories mentioned here, EUT, DT, RDU, CPT, also satisfy first-order stochas-
tic dominance. However, the ABC mechanism does not require further assumptions on first-order sto-
chastic dominance, just rational preferences.
3 There exists no incentive compatible mechanism for testing these models other than the one-round task 
“mechanism” in which each subject makes only one decision and all tests use only between-subjects data.
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Round i: Decision i ( Di ): Archer makes a choice, ci , from set Di = Ti ∪ {ci−1} , 
where Ti ∈ L  is determined by the experimenter and ci−1 is Archer’s choice in 
Round i − 1 . Archer only knows lotteries in D1,D2,… ,Di;

...
Round n: Decision n ( Dn ): Archer makes a choice, cn , from set Dn = Tn ∪ {cn−1} , 

with Tn being chosen by the experimenter.
Payment: Archer gets paid the realized outcome of cn.
Before making any decisions, Archer is informed of: n (the number 

of rounds of decisions); that the set of lotteries in the whole experiment, 
L0 = {l ∶ l ∈ ∪i=1,…,nTi} , is fixed and predetermined but not what the specific lot-
teries are; the carry-over task structure (his preceding decision carries over to the 
next round to become one of the options in the task); that he will get paid the real-
ized outcome of the last choice cn.

At every round, ABC incentivizes Archer to reveal his single-task preference. 
Suppose at some arbitrary round, Archer prefers lottery A to lottery B, but contem-
plates choosing B instead of A (not stating the single-task preference). Since he does 
not know the lottery options he has not met, two possible situations await him : (i) 
the best lottery in the future is weakly better than A; (ii) the best lottery in the future 
is worse than A. For (i), as long as Archer picks the best lottery and keeps it to the 
end, he will get paid that lottery. In this scenario, choosing A or B, sticking to or 
deviating from truthful revelation, makes no difference for Archer. For (ii), if all 
the lotteries in the future are worse than A, then no matter how Archer chooses, 
he will end up with some lottery less favorable than A. However, if he chooses A, 
he can keep and get paid A. In scenario (ii), Archer is worse off by deviating from 
the always truthfully revealing strategy. In all, with ABC as the payoff mechanism, 
always stating single-task preference in every round is Archer’s only weakly domi-
nant strategy. The following example illustrates such an idea:

Example 1 Let L0 = {A,B,E} where A,B,E ∈ L  . Suppose there is a 2-round deci-
sion task with ABC: T1 = {A,B} and T2 = {E} . Before making any choices, Archer 
knows: n = 2 ; L0 = {l ∶ l ∈ T1 ∪ T2} is fixed and predetermined but does not know 
A, B, E specifically; the carry-over task structure, c1 ∈ D2 ; he will be paid the real-
ized outcome of c2 . Suppose that the Archer’s preference is: A ≻ B ≻ E . Let’s con-
sider two scenarios:

(1) Truthful revelation4:
Choice set D1 = T1 = {A,B} , Archer chooses A, c1 = A;
Choice set D2 = T2 ∪ {c1} = {E,A} , Archer chooses A, c2 = A.
Archer gets paid according to A.
(2) Misrepresentation:
Choice set D1 = T1 = {A,B} , Archer chooses B, c1 = B;
Choice set D2 = T2 ∪ {c1} = {E,B} , Archer chooses B, c2 = B.
Archer gets paid according to B, which is worse than the result with truthful 

revelation.

4 Truthful revelation or revealing truthfully henceforth means revealing single-task preference.
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Besides the theoretical incentive compatibility, ABC has another appealing fea-
ture on the practical side: It is easy to explain. The intuition with ABC is some 
form of a tournament: Individuals eliminate the loser options, carry on their current 
champion option, and eventually get paid their final champion option. It is easy for 
subjects to understand the procedure as well as why truthful revelation is their best 
strategy.

3  Recent related literature

Holt (1986) and Karni and Safra (1987) are the first to discuss the incentive com-
patibility issue with payoff mechanisms, more specifically, RLIS. Another wave of 
discussion has arisen recently. There are four closely related research streams that 
provide theoretical and empirical bases for this research: Cox et al. (2015), Harrison 
and Swarthout (2014), and Azrieli et al. (2018, 2020). The following explores each.

In Cox et al. (2015), the authors examine RLIS and several other payoff mecha-
nisms commonly used in experiments. They use five binary lottery decisions to 
compare subjects’ choices (proportion of choosing safer/riskier lotteries) under dif-
ferent mechanisms. The lottery pairs are also for detecting violations of independ-
ence axiom and its dual axiom by directly checking choice patterns in certain pairs 
of those five binary lotteries.

Their findings indicate that individual behavior is significantly affected by payoff 
mechanisms (Table 4 in Cox et al. 2015). By comparing the choices with the gold 
standard, the one-round task design, they show that both theoretically and behav-
iorally, the payoff mechanism issue does not exist with only RLIS, but does with 
almost all the popular payoff mechanisms. They left a remaining important ques-
tion unaddressed: Other than the one-round task design, what payoff mechanism is 
incentive compatible for multiple popular theories which do or do not involve the 
independence axiom? The present paper addresses this question for a class of exper-
imental designs.

Cox et  al. (2015) distinguish between two different implementations of RLIS: 
With or without prior information. “With no prior information” implementa-
tion subjects are only informed of the lotteries in the past and the current rounds, 
whereas “with prior information” implementation subjects know all lotteries in the 
experiment before they make any decisions. This paper demonstrates the informa-
tion property is crucial in constructing an incentive compatible payoff mechanism 
(for example, see (3) in the ABC mechanism described above). For replicability, the 
Cox et al. (2015) experiment using the ABC mechanism is conducted.

Rather than a choice-pattern experiment, Harrison and Swarthout (2014) conduct 
a risk preference estimation experiment–relying on econometric technique to esti-
mate the risk preference parameters and treatment dummies. They report that esti-
mates in the RLIS treatment differ from those in the one-round task treatment when 
RDU is assumed. The current paper “replicates” the (Harrison and Swarthout 2014) 
experiment with the same lottery set as well as the same analysis technique to com-
pare the choices under ABC with those under the one-round task design.
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Azrieli et al. (2018) provide a general theoretical framework for the analysis of 
payoff mechanisms. They conclude that, in a multiple-round experiment, RLIS (or 
RPS, in their terms) is the only ICPM with the assumption of a weaker version of 
independence, which they call “monotonicity” in the paper.5 In a follow-up article, 
Azrieli et al. (2020) focus more on the objective lotteries as the choice objects. The 
authors show that ICPMs can be extended beyond RLIS when all tasks are exog-
enously given and subjects’ preferences satisfy: (a) monotonicity or compound 
independence, as in Azrieli et  al. (2018), (b) first-order stochastic dominance; (c) 
not transforming the objective probabilities associated with the random device that 
determines the payment objects.

Unlike Azrieli et  al. (2018, 2020), none of the above assumptions restricts the 
preferences domain in the theoretical framework in the current paper. Preferences 
are limited to rationality (completeness and transitivity) only. On the other hand, 
instead of fixing all options in every round, in this paper only the set of options 
subjects see in the whole experiment is fixed. Next section argues that forgoing the 
full exogenous task order and connecting the tasks through individual choices (for 
example, as (2) in the ABC mechanism) is one necessary condition for ICPM with 
all rational preferences. In summary, comparing the settings, Azrieli et  al. (2018, 
2020) impose more assumptions on the preferences while this paper relinquishes 
exogenous control of the task structure. Restricting on the exogenously fixed order 
of decision tasks, the only ICPM with all rational preferences is the one-round task 
design. The existence of ICPM with multiple tasks requires additional assumptions 
on preferences, such as “monotonicity” or “compound independence” [See Propo-
sition 0 and 1 in Azrieli et al. (2018)]. Such restriction on the full exogenous task 
order precludes the possibility of the existence of the mechanism developed in this 
paper.

4  Necessary and sufficient conditions for incentive compatible 
payoff mechanisms

Section  2 explained why ABC is incentive compatible under a multiple-round 
decision task. It is natural to ask: In an individual experiment where subjects are 
required to make more than one decision, is ABC the unique ICPM? If not, what are 
the necessary and sufficient conditions for ICPMs? This section provides answers to 
those questions.

4.1  Theoretical framework

The formal theoretical framework is set up as the following:
The experiment is an n-round individual decision making task. Suppose there is a 

general lottery set L  including all the simple and compound lotteries and for Round 

5 This property has been called “compound independence” in earlier literature (see Segal 1990; Camerer 
and Ho 1994).
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i(i = 1,… , n) , decision task is Di , where Di ⊂ L  . L0 = {l ∶ l ∈ ∪i=1,…,nDi} is fixed 
and predetermined.

Choices Individual decisions are recorded as � = (c1,… , cn) where 
ci ∈ Di,∀i = 1,… , n.

Task structure Denote D = (D1,… ,Dn) as the n-round task structure. If 
Di(i = 1,… , n) are completely exogenously determined by the experimenter, it is 
our conventional n-round decision task under risk as in the literature. I relax the 
assumption by allowing Di(i > 1) to be dependent on subject’s previous choices 
c1,⋯ , ci−1.

Rational risk preference (relation) Each individual has a rational preference rela-
tion ⪰ over L  if ⪰ is complete and transitive: (1) Completeness: ∀X, Y ∈ L  , X ⪰ Y  
or Y ⪰ X or both; (2) Transitivity: ∀X, Y , Z ∈ L  , if X ⪰ Y , Y ⪰ Z , then X ⪰ Z . {⪰} 
is the set including all rational preferences.

General risk theories Denote U⪰(⋅) ∶ L → ℝ as a utility representation for 
the complete and transitive risk preference ⪰ over the domain of L  . That is, 
∀X, Y ∈ L,X ⪰ Y  if and only if U⪰(X) ≥ U⪰(Y) . General risk theories refer to 
{U⪰(⋅)} , the set of all possible utility representations for all rational preferences.

Information (over the lottery options) At Round i, individual information set of 
the known lotteries is denoted as Ii . {l ∶ ∀l ∈ Dk, k = 1,… , i} ⊂ Ii ⊂ L0, i = 1,… , n 
and In = L0 since each subject knows the lotteries they met in earlier and current 
rounds. Denote I = (I1,… , In) as the information structure of the experiment.

Payoff rule and Payoff prospect A payoff rule specifies the rule to select the pay-
ing round(s). Denote N = {1,… , n} , and we use the power set 2N  to represent all 
the possible paying events: ∀X ∈ 2N  , if i ∈ X , then we can interpret it as Round i or 
ci is paid; if i ∉ X , Round i or ci is not paid. A payoff rule is a probability measure 
ℙ over the sample space of 2N .6 In experiments, such probability measure or payoff 
rule is chosen by the experimenter.

Payoff prospect, P(c1,… , cn) , refers to the grand lottery describing subject’s pay-
ment, indicated by the payoff rule ℙ and subject’s choices �.

Here are some examples with Archer, our representative subject, that show the 
relationship between some commonly used payoff rules ℙ and the payoff prospects 
P(c1,… , cn) that identify subject’s payments.

Example 2 

(1) Flat-payment scheme: if the experimenter informs Archer before he makes 
any decisions that he will get paid $10 in total regardless of what he chooses 
($10 with certainty as a lottery itself may not appear in the decision prob-

6 Take a 2-round task as an example: N = {1, 2} and 2N = {�, {1}, {2}, {1, 2}} represents {Nei-
ther round is paid, Only Round 1 is paid, Only Round 2 is paid, Both Round 1 and 2 are paid} . 
A probability measure ℙ1 : ℙ1(�) = ℙ1({2}) = ℙ1({1, 2}) = 0,ℙ1({1}) = 1 shows Round 1 is 
paid for sure. Another probability measure ℙ2 ∶ ℙ2({1, 2}) = 1,ℙ2(�) = ℙ2({1}) = ℙ2({2}) = 0 
represents that both Rounds 1 and 2 are paid with certainty. A third probability measure ℙ3 : 
ℙ3({1}) = ℙ3({2}) = 0.5,ℙ3(�) = ℙ3({1, 2}) = 0 means that either Round 1 or Round 2 is paid with 
probability of 0.5 each.
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lems at all), then we could treat such scheme as a payment to none of Archer’s 
choices. Such payoff rule, the probability measure over 2N  is represented as: 
ℙ(�) = 1,ℙX∈2N��(X) = 0 , resulting in P(c1,… , cn) = $10.

(2) Pay all scheme: If Archer gets paid all of his choices, then 
ℙ({1,… , n}) = 1,ℙX∈2N�{1,…,n}(X) = 0 , and P(c1,… , cn) = c1 +⋯ + cn.

(3) Pay one round scheme: (i) Pay Round i with certainty. If the experimenter 
pays Archer only his choice in Round i, that is, ℙ({i}) = 1,ℙX∈2N�{i}(X) = 0 , 
then P(c1,… , cn) = ci  .  ( i i )  Pay one random round.  RLIS is 
ℙ({1}) = ⋯ = ℙ({n}) = 1∕n,ℙ(X) = 0,∀X ∈ 2N�{1}{2}…{n}  .  T h e n , 
P(c1,… , cn) = (c1, 1∕n;… ;cn, 1∕n) . That is, only the realized outcome of one 
random choice lottery from all rounds is paid.

(4) Pay multiple random rounds scheme: One example of a more complicated 
payoff rule is to randomly select multiple rounds to pay (Charness and 
Rabin 2002). Take randomly selecting 3 rounds to pay as an example: It can 
be represented as ℙ({i, j, k}) = 1∕(n

3
),ℙX∈2N�{i,j,k}(X) = 0,∀i ≠ j ≠ k , thus, 

P(c1,… , cn) = (ci + cj + ck, 1∕(
n
3
))(i ≠ j ≠ k) where (n

3
) is the 3-combinations 

from an n-element set, to represent the payoff prospect.

Payoff mechanism A payoff mechanism is defined as (D, I,ℙ) or (D, I,P(�)).7
Experiment A general n-round individual decision experiment is defined as 

(L0,D, I,ℙ) (or ( L0,D, I,P(�))). For an experiment, each subject is informed of the 
payoff mechanism (D, I,ℙ)8 as well as L0 being fixed and predetermined.

Subject’s optimization problem Given D, I,ℙ , by choosing � , the subject tries to 
optimize the payoff prospect P(c1,… , cn) . That is, the subject chooses (c∗

1
,… , c∗

n
) 

where c∗
i
∈ Di , such that P(c∗

1
,… , c∗

n
) ⪰ P(c�

1
,… , c�

n
),∀c�

i
∈ Di, i = 1,… , n . Such 

optimization is constrained on D, I.
Note that there are no further assumptions on how individuals evaluate the pay-

off prospect P(c1,… , cn) other than following completeness and transitivity. It is 
because we want to keep the domain of preferences unrestricted. However, there is 
an implicit assumption made here: realization of the random events and revelation of 
the results to subjects happen at the same time. It is not an issue for the experiments 
of decision tasks under risk, but matters for those under uncertainty (Baillon et al. 
2014).

Now, we can define ABC formally.

7 In Azrieli et al. (2018), the payoff mechanism � is defined as a mapping from subjects’ choices to the 
possible payments they receive and (D,�) is referred to as a general experiment. � there corresponds to 
ℙ here but defined from different angles to represent what to pay to the subjects. Also, in their setting, 
D = (D1,… ,D

n
) is exogenously given and they didn’t mention I. In this paper, both D and I are parts of 

the payoff mechanism. In the discussion below, the task structure D and information structure I play an 
important role in order to achieve incentive compatibility.
8 Subjects are informed of D refers that they know the internal connection between their choices and the 
tasks if there is any including the number of rounds, n, but not the specific lotteries in each D

i
 . Whether 

and when they know about the specific lotteries in each D
i
 is given by the information structure I.
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Definition 1 (Accumulative Best Choice (ABC) mechanism) With an n-round deci-
sion making experiment (L0,D, I,ℙ) , L0 = {l ∶ l ∈ ∪i=1,…,nDi} is fixed and prede-
termined for each subject, a payoff mechanism (D, I,ℙ) is called Accumulative Best 
Choice mechanism if it satisfies: 

1. ℙ({n}) = 1,ℙX∈2N�{n}(X) = 0 , that is, P(c1,… , cn) = cn;
2. For every Round i(i = 1,… , n − 1) , ci ∈ Di+1;
3. For every Round i(i = 1,… , n) , Ii = {l ∶ ∀l ∈ Dk, k = 1,… , i}.

Each subject is informed of all the above information about ABC before making any 
decisions.

Incentive compatibility and incentive compatible payoff mechanism can be 
defined as the following:

Definition 2 (Incentive Compatible (IC) and Incentive Compat-
ible Payoff Mechanism (ICPM)) An experiment is (L0,D, I,ℙ) . A pay-
off mechanism (D, I,ℙ) is incentive compatible (IC) if, for any rational 
preference ⪰ , for any (c1,… , cn) with c1 ∈ D1,… , cn ∈ Dn , we have 
[P(c1,… , cn) ⪰ P(c�

1
,… , c�

n
),∀c�

i
∈ Di, i = 1,… , n] ⇔ [ci ⪰ c�

i
,∀c�

i
∈ Di, i = 1,… , n] . 

We named such (D, I,ℙ) an incentive compatible payoff mechanism (ICPM).9

In words, IC means that optimal choices for the whole experiment are identical 
to optimal choices for the individual rounds separately. That is, truthful revelation in 
each round is the only weakly dominant strategy for the whole experiment.

Let us denote S(A) = {x ∶ x ⪰ y,∀y ∈ A} as the set of the most preferred option(s) 
of set A, and s(A) refers to an element, s(A) ∈ S(A) . We use s∗

i
 to represent any arbi-

trary element in S(Di)(i = 1,… , n) . In Round i, choosing s∗
i
 indicates subject truth-

fully reveals their single-task preference.

4.2  Main theoretical results

In this part, we identify three necessary and sufficient conditions for the family 
of ICPM via two propositions and the main theorem. Propositions 1 and 2 can be 
viewed as stepping stones to the main theorem: ABC is the unique ICPM. Please see 
appendices for formal proof. In this section, only informal arguments are provided.

Proposition 1 (D, I,ℙ) is an ICPM for general risk theories, if and only if it has the 
following three properties: 

9 Relate this definition with related works by Cox et al. (2015) and Azrieli et al. (2018), both of them use 
notations of another preference relation ⪰m or ⪰∗ to refer to subject’s preference given the payoff mecha-
nism. Here, since I defined that the preference is over L  consisting of all the simple and compound 
lotteries, I can use the symbol of the original preference directly. In essence, they all are equivalent. Cox 
et al. (2015) also distinguish strong and weak incentive compatibility; while in this paper, all incentive 
compatibility refers to their weak incentive compatibility.
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1. ℙ({n}) = 1,ℙX∈2N�{n}(X) = 0 , that is, P(c1,… , cn) = cn;
[The realized outcome of the last choice is paid with certainty, and no other decision 

is paid.]
2. If n > 1 , ∀i = 1,… , n − 1 , there exists a unique ki(i < ki ≤ n) , such that ci ∈ Dki

 ;
[For every round before the last round, the current choice carries over as a selectable 

option in a later round.]
3. If n > 1 , ∀i = 1,… , n − 1 , with subject’s previous choices are s∗

1
,… , s∗

i−1
 , 

∀x ∈ Ii�Di , and x ∈ Dj(i < j ≤ n) , then we need to have s∗
i
≻ x for all rational 

preferences.
[Assume subject keeps truthfully revealing their single-task preference. If subject is 

ever aware of another option that will show up in a later round, that option needs 
to be strictly worse than their most preferred option from the current round.]

First, let us check the sufficiency side: if a payoff mechanism satisfies Proper-
ties 1, 2, and 3, then it is an ICPM.

Sufficiency: The following is to explain why truthful revelation in every round is the 
only weakly dominant strategy under such a payoff mechanism that satisfies Properties 
1, 2, and 3. Let us still take Archer as our example subject. First, from Properties 1 
and 2, since the whole experiment is a chained sequence, if Archer always declares his 
favorite option in every round, eventually he gets paid the most preferred option in the 
whole experiment lottery set L0 . Thus, truthful revelation weakly dominates all other 
strategies. Then, let us see what happens if Archer deviates from truthful revelation. 
Suppose Archer first misreports at Round k and his favorite lottery in Round k is, say, 
lottery Z. Since he truthfully reports in all previous rounds, if there is any other future 
lottery Archer has known, from Property 3, lottery Z is strictly better than that. Con-
sider the possible scenario that all the lotteries Archer meets in the future are worse 
than Z. From Properties 1 and 2, Archer eventually gets paid his last choice, which is 
worse than Z. He could have obtained Z by choosing Z in Round k and kept it to the 
end. Therefore, Archer may regret it if deviating from truthful revelation.

Let us now turn to the necessity of ICPM. Each property is explored separately below.

Necessity: Property 1: The realized outcome of the last choice is paid with cer-
tainty, and no other decision is paid.

Incentive compatibility for the last round is required if incentive compatibil-
ity for every round is desired. The former demands payment of the subject’s last 
choice. It is evident that if we tell Archer his last choice is paid, he will state his 
single-task preference in the last round. On the other hand, if we pay anything 
other than the realized outcome of the last choice, without further assumptions 
about Archer’s preference and accessible lotteries, the weighting over outcomes 
or probabilities (or both) may ruin IC.

Moreover, we can directly get the following corollary:

Corollary 1 When n = 1 , the only ICPM (D, I,ℙ) is ℙ({1}) = 1 (or 
P(c1) = c1), c1 ∈ D1.
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The one-round task design is IC for general risk theories.

Necessity: Property 2: For every round before the last round, the current choice 
carries over as a selectable option in a later round.

This condition states that the whole experiment is a connected sequence. From 
Property 1, Archer knows only his last choice is paid, then how can we incentiv-
ize him to take earlier rounds seriously? A chained sequence of tasks provides 
such an incentive. If Archer knows his choices from the previous rounds can 
affect the paying round, then he should treat those nonpaying rounds carefully. 
Suppose there is some round that is not connected with later rounds. Archer then 
knows that no matter what he chooses in that round, the lottery options in the 
paying round will not be affected; he could pick randomly in that round. That 
ruins incentive compatibility.

What if a choice lottery is connected with multiple later rounds? Then again, 
it may lead to incentive incompatibility. Suppose in some earlier round, Archer’s 
choice is lottery X. Now it is the round where Archer first sees X carried over. 
If he knows X will appear again in the future even if he does not choose it now, 
picking another option rather than keeping X in the current round does not reduce 
his payout. If lottery X happens to be Archer’s most preferred option in the cur-
rent round, then he is not incentivized to reveal truthfully. (Also see example in 
the appendices.)

What if a choice lottery “maybe” carries over to some later round? That pos-
sibility can create a new layer of risk and compound with the risks in the lottery 
options. In that case, either IC is compromised or we need more assumptions on 
the preferences. The following numerical example illustrates the point.

Example 3 There is a 2-round experiment with L0 = {A1,B1,A2} . 
A1 = $15,B1 = ($49, 0.5;$0, 0.5),A2 = $14 . D1 = {A1,B1} , D2 = {A2, 50% of c1} 
(whether c1 ∈ D2 is determined by a random device after subject chooses c1 ). 
That is, 50% chance D2 = {A2} , and 50% chance D2 = {A2, c1} . ℙ({2}) = 1 or 
P(c1, c2) = c2 . Subjects are informed of: the task structure, last choice being paid as 
well as L0 being fixed and predetermined.

Suppose Archer’s preference fits Rank Dependent Utility theory with u(x) =
√

x 
and w(p) = p0.9 and satisfies reduction of compound lottery axiom. Therefore, to 
Archer, A1 ≻ B1 ≻ A2.

Two possible information structures: 

(1) Archer knows A2 at Round 1: He will think ahead what he would face at Round 2: 
If he chooses A1 , 50% chance he will have D2 = {A2,A1} and 50% chance he will 
have D2 = {A2} . If the former, Archer will choose A1 in Round 2 since A1 ≻ A2 
and P(c1, c2) = c2 ; if the latter, Archer will be paid the singleton A2 without 
any choice need to be made in Round 2. So by choosing A1 in Round 1, Archer 
faces a lottery of (A1, 0.5;A2, 0.5) = ($15, 0.5;$14, 0.5) in terms of his final 
payment. Similarly, by choosing B1 in Round 1, Archer constructs a lottery of 
(B1, 0.5;A2, 0.5) = (($49, 0.5;$0, 0.5), 0.5;$14, 0.5) = ($49, 0.25;$14, 0.5;$0, 0.25) 
b y  a p p l y i n g  r e d u c t i o n  a x i o m .  We  c a n  v e r i f y  t h a t 
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RDU(B1, 0.5;A2, 0.5) > RDU(A1, 0.5;A2, 0.5) . That is, Archer will choose B1 in 
Round 1 despite of A1 ≻ B1 , which violates IC.

(2) Archer does not know A2 at Round 1: Notice that we do not have any restrictions 
on subject’s anticipation of the unknown future options. At Round 1, Archer may 
guess A2 say, ($14, 1) , that can lead him to choose B1 instead of A1.

Remark 1 From the example above, readers may argue that the chance would be 
slim that Archer guesses the future correctly, which is a valid argument. However, 
the key is that in the current framework, there are no assumptions on individual 
beliefs about future options: they can guess as they want. Belief is hard to control in 
practice, and that is why we start with leaving it unrestricted in theory now. Regard-
less of how subjects speculate about the future, carry-over with certainty removes 
the possibility to construct a compound lottery from anticipation. If we assume that 
subjects do not guess the future options, as pointed out by one referee of this paper, 
we cannot pin down the carry-over probability to be 1.

The connected sequence feature also leads to a further conclusion that an 
ICPM should allow subject to choose their most preferred option in the whole 
experiment if they truthfully reveal their single-task preference in every round:

Corollary 2 If (D, I,ℙ) is an ICPM, then, for all rational preferences, with the strat-
egy s∗ = (s∗

1
,… , s∗

n
) , there must be s∗

n
∈ S(∪i=1,…,nDi) = S(L0).

Necessity: Property 3: Assume subject keeps truthfully revealing their single-
task preference. If subject is ever aware of another option that will show up in 
a later round, that option needs to be strictly worse than their most preferred 
option from the current round.

If this does not hold, IC cannot be guaranteed. For instance, at some round, 
suppose there is a future lottery Y that Archer has known. Y is not shown now, 
and it is weakly better than his favorite lottery in the current round. From Proper-
ties 1 and 2, Archer knows that he can carry and keep Y, and eventually get paid 
Y. That is, Archer can secure Y as his worst paid lottery. Given Y is weakly better 
than all the lotteries at present, Archer’s choice now does not matter to his final 
payment. Thus, he has no incentive to reveal his single-task preference in the cur-
rent round.

From Property 3, we can get the following corollary:

Corollary 3 If a payoff mechanism (D, I,ℙ) has an information structure I with 
I1 = ⋯ = In = L0 , with n > 1 , there is no existence of ICPM for general risk 
theories.

Hitherto, we see the condition stated in Proposition 1 from both necessary and 
sufficient sides for an ICPM. Without more restrictions on the preferences, we can 
get the following proposition:
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Proposition 2 (D, I,ℙ) is an ICPM, if and only if it has the following four properties:

1. ℙ({n}) = 1,ℙX∈2N�{n}(X) = 0 , that is, P(c1,… , cn) = cn;
2. If n > 1 , for all i = 1,… , n − 1 , there exists a unique ki(i < ki ≤ n) , such that 

ci ∈ Dki
;

3. For all i = 1,… , n , Ii = {l ∶ ∀l ∈ Dk, k = 1,… , i};
[Each subject is only informed of the options in the past and the current rounds.]
4. For all i = 1,… , n , if the subject’s previous choices are s∗

1
,… , s∗

i−1
 , then 

s∗
i
⪰ s∗

i−1
⪰ … ⪰ s∗

1
 for all rational preferences.

[For each round, if the subject keeps revealing truthfully, their favorite lottery in a 
later round needs to be always weakly better than any lottery in any earlier round.]

Properties 1 and 2 are the same in Proposition 2 as in Proposition 1. Given those 
two properties, the formal proof of equivalence between Property 3 in Proposition 1 
and Properties 3 and 4 in Proposition 2 is provided in the appendices. From Proposi-
tion 2, we can pin down the uniqueness of the ABC mechanism:

Theorem (Uniqueness of ABC) With no more assumptions on the preferences or 
beliefs about future options, the ABC mechanism is the only ICPM for all general 
risk theories with rational preferences.

First, ABC meets all four properties in Proposition 2. Therefore, ABC is an 
ICPM. On the other hand, suppose there exists some Round k, ck ∉ Dk+1 . With no 
restrictions on the rational preferences domain, we can pick an arbitrary complete 
and transitive preference that has s∗

k
≻ s∗

k+1
 , then Property 4 in Proposition 2 is vio-

lated. Therefore, ci ∈ Di+1 is the only way of chaining to satisfy Property 4 in Propo-
sition 2.

Remark 2 It should be noted that with more assumptions over preferences, Prop-
ositions 1 and 2 are not always equivalent, and the uniqueness of ABC may not 
hold. Here is an example that shows why the specific ABC way of sequencing is 
not necessary in some cases with rational preferences having first-order stochastic 
dominance.10

Example 4 There is a 4-round experiment. Lotteries are 
L0 = {A1,B1,A2,B2,A3,B3,E} and there is strict first-order stochastic domi-
nance relations between them: A3,B3 strictly dominate A2,B2 , and A2,B2 
strictly dominate A1,B1 , and A1,B1,A2,B2,A3,B3 strictly dominate E. Use 
ci, i = 1, 2, 3, 4 to record subjects’ choices. An ICPM (D, I,ℙ) that is not ABC is: (1) 

10 Lottery A first-order stochastically dominates lottery B (denoted as A ≥FOSD
B ) if for all outcome x, 

the cumulative distribution functions of the two satisfy F
A
(x) ≤ F

B
(x) . A preference relation, ⪰ , satisfies 

FOSD if A ⪰ B for all A, B such that A ≥FOSD
B (the strict version is: if A >FOSD

B , then A ≻ B).
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ℙ({4}) = 1,ℙX∈2N�{4}(X) = 0 or P(c1,… , c4) = c4 ; (2) Di = {Ai,Bi} for i = 1, 2, 3 , 
and D4 = {c1, c2, c3,E} ; (3) At Round i = 1, 2, 3, 4 , Ii = {l ∶ ∀l ∈ Dk, k = 1,… , i}.

Since we assume preferences sastisfy FOSD, we know that A3,B3 are strictly bet-
ter than A2,B2 , and A2,B2 are strictly better than A1,B1 , and E is the least preferred 
among all. Then, the mechanism above is an ICPM since it fulfills all the properties 
in Propositions 1 and 2 when preferences are rational and satisfy first-order stochas-
tic dominance.11 However, when the dominance relations break down in the above 
example, such a payoff mechanism can be problematic. If A1 is Archer’s most pre-
ferred lottery and appears in Round 1, then he can choose A1 in Round 1, then ran-
domly chooses in Rounds 2 and 3, and chooses A1 in Round 4 again and gets paid 
according to A1 . Alternatively, if we remove the first-order stochastic dominance 
assumption, the payoff mechanism above cannot guarantee incentive compatibility.

Also, the uniqueness of ABC fails to hold if we assume subjects do not guess the 
future unknown options, as discussed in Remark 1.

Remark 3 In both Proposition 2 and ABC, the feature of 
Ii = {l ∶ ∀l ∈ Dk, k = 1,… , i}, i = 1,… , n is mentioned. That is, subjects are only 
informed of the lotteries in the past and the current rounds. As mentioned earlier, 
it is called “with no prior information” protocol in the literature (Cox et al. 2015). 
One example experiment with risk tasks with no prior information is Hey and Orme 
(1994). On the contrary, multiple price list experiments (for example, Holt and 
Laury 2002) are usually conducted “with prior information” (each subject is fully 
informed of all the lotteries in the whole experiment before making any decisions, 
that is, I1 = … = In = L0).

However, without prior information, it may generate uncertainty for subjects: 
Archer may think the future options he sees are affected by his previous and cur-
rent decisions. Thus, Archer may make choices strategically based on his subjec-
tive belief and uncertainty preference. Epstein and Halevy (2017) discuss that one’s 
uncertainty attitude about how different tasks are related could affect his choices 
under risk. That is why we keep L0 fixed and predetermined: Let the subjects know 
that their choices do not affect the lotteries they see in the whole experiment, even 
though the lottery order may depend on their choices. Thus, we only deal with risk 
preferences here.

Remark 4 Another possibility is that Archer may have degenerate or optimistic 
belief: he is sure about the options he will meet, or the options will only get bet-
ter in later rounds. For example, Archer is facing lottery X, Y(X ≻ Y) in the current 
round, and he is sure that a lottery strictly better than X will appear later. Therefore, 
he may randomly pick X or Y now. If he guesses correctly, this will not matter in the 

11 In addition, in this example, even if the subject is informed of E before making any decisions, the pay-
off mechanism still meets all the properties in Proposition 1 and therefore is incentive compatible (since 
E is dominated by all other lotteries and would never be chosen by any first-order stochastic dominance 
preference).



1033

1 3

The ABC mechanism: an incentive compatible payoff mechanism…

end. However, since Archer is not informed of later options, he may never meet any 
option that is better than X. In this case, such random picking will make him worse 
off eventually. Even though Archer is sure subjectively, there is no guarantee that his 
subjective belief turns out to be true.

From the implementation side, however, such concern needs to be addressed with 
more caution. If possible, experimenters should try to prevent or dispel the belief 
that options will be monotonically improving for subjects. Two things can be done. 
One is to control the number of rounds to keep the experiment short. Random pick-
ing is more likely to happen when subjects are tired or bored. The other is to break 
down the monotonic pattern by varying the order of appearance of “good” and 
“bad” lotteries. Sophisticated and deliberate design may be required depending on 
the research question and the lotteries.

Remark 5 Experimenters sometimes prefer the comparison between designated pair-
wise lotteries. However, in ABC, only one option carries over to the next round. 
In this case, we can use the payoff mechanism in Example 4 to preserve the pair-
wise comparisons by taking advantage of dominance relations. Most of the popular 
risk models satisfy first-order stochastic dominance. If the lotteries in later rounds 
always dominate those in earlier rounds, then Property 3 in Proposition 1 can be 
satisfied, as illustrated in Example 4. Alternatively, we can apply ABC by inserting 
“ladder” rounds: use the lotteries with dominance relation to moving subjects from 
one pair to another by climbing up those ladders. The “ladder trick” is implemented 
in Experiment I in the next section. Ultimately, it seems that we have to compromise 
to some extent in order to ensure IC for general risk models. If we insist on having 
particular lotteries paired-up, we need to have some lotteries with dominance rela-
tions; otherwise, we drop the full exogenous control of all lotteries in each round of 
task.

5  Empirical properties of the ABC mechanism

Harrison and Swarthout (2014) argue that studying choice patterns and the prefer-
ence estimation approach are complementary to each other. Cox et al. (2015) use the 
choice pattern design, preferred in testing for violations of certain properties such as 
Common Consequence Effect, Common Ratio Effect (violations of the independence 
axiom), as they focus on choice behavior in certain lottery pairs. Harrison and Swarth-
out (2014) adopt the approach in Hey and Orme (1994): No specific choice pattern 
can be observed directly to reject the hypothesis or assumptions; they mainly rely on 
econometric techniques (specifically conditional maximum likelihood) to infer the pref-
erences. In addition, both (Cox et al. 2015) and (Harrison and Swarthout 2014) have 
found the differences in choices or estimates in the RLIS treatment from the one-round 
task treatment.

For thoroughly examining the ABC mechanism, both methodologies are adopted 
from Cox et al. (2015) and Harrison and Swarthout (2014) (same lotteries, same ways 
of lottery representations, same show-up fees) with the ABC mechanism procedure. 
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Both papers have one-round task data, which will be used for comparison with ABC 
data. In both experiments, the null hypothesis is: The choices or the estimates under 
the ABC mechanism are the same as those under the one-round task design. If ABC 
works, then such a null hypothesis should not be rejected.

The applications of ABC for these two types of experiments are a little different. In 
a Hey and Orme (1994) or Harrison and Swarthout (2014) type experiment, there are 
no restrictions that each lottery must have its counterpart. Therefore, to apply ABC, we 
can randomize the order of the lotteries beforehand, and carry a subject’s most recent 
choice over to the next round. However, to implement ABC on the (Cox et al. 2015) 
lottery pairs (choice pattern type of experiment) is a little tricky. Each lottery has its 
counterpart, and only comparisons within some certain lottery pairs are meaningful 
for detecting paradoxical risk preferences. However, in the ABC mechanism, current 
choice carries over to the next round. Then the question is, how can we get subjects’ 
choices for certain pairs of lotteries if we do not know their preferences beforehand? 
For this, the additional assumption is that a lottery that is first-order stochastically dom-
inated is not chosen. Details on how to use first-order stochastic dominance relations as 
ladders in a choice pattern experiment are provided below.

5.1  Experiment I: choice pattern experiment (non‑structural)

5.1.1  Lottery pairs

Cox et  al. (2015) five lottery pairs allow us to directly observe the Common Ratio 
Effect (CRE), Common Consequence Effect (CCE), Dual CRE, and Dual CCE that are 
violations of the independence axiom or the dual independence axiom. They use the 
same lottery pairs with different payoff mechanisms. One of their treatments uses the 
one-round task design: each subject is randomly assigned one of the five pairs, makes 
one choice, and gets paid that choice. This treatment is their baseline, the gold standard 
among all payoff mechanisms.

Another attribute of their lottery pairs is that between S (Safer) lotteries and 
between R (Riskier) lotteries in different pairs. There are lotteries that are strictly first-
order stochastic dominance related ( S5 >FOSD S4 >

FOSD S2 >
FOSD S3 >

FOSD S1 , and 
R5 >

FOSD R4 >
FOSD R2 >

FOSD R3 >
FOSD R1 ). Such first-order stochastic dominance is 

the crucial feature to get the paired-up lottery choices ( S1 vs. R1 , ... , S5 vs. R5 ) through 
the ABC mechanism procedure.

5.1.2  The ABC mechanism experiment procedure

The needed comparisons are between Si and Ri as shown in Table  1. Recall that 
ABC carries over only the chosen lottery in each round. Therefore Si and Ri might 
not be feasible in the same task, which is not appealing. The key to solving the prob-
lem is first-order stochastic dominance: with the design, an individual whose risk 
preferences reflect first-order stochastic dominance will encounter every lottery pair 
Si and Ri i = 1,… , 5 in the experiment. Since there are five S lotteries and five R 
lotteries, there are ten lotteries in total, and the ABC mechanism needs nine rounds.
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For easier description, let us swap the orders of lotteries in Pair 2 and Pair 3 in Cox 
et al. (2015). That is, define S�

2
= S3,R

�
2
= R3, S

�
3
= S2,R

�
3
= R2 , and S�

i
= Si,R

�
i
= Ri 

for i = 1, 4, 5 . Then we have S′
5
>FOSD S′

4
>FOSD S′

3
>FOSD S′

2
>FOSD S′

1
 , and 

R′
5
>FOSD R′

4
>FOSD R′

3
>FOSD R′

2
>FOSD R′

1
 . The procedure goes like this for Archer, 

our example subject:

• Step 1 Round 1: Archer faces {R�
1
, S�

1
} , and makes his choice c1 ∈ {R�

1
, S�

1
};

• Step 2 Round 2: if Archer chooses c1 = R�
1
 in Round 1, then he will face {R�

1
,R�

2
} 

( R′
1
 carries over from Round 1, and R′

2
 is the new added option); if Archer 

chooses c1 = S�
1
 in Round 1, then he will face {S�

1
, S�

2
} ( S′

1
 carries over from 

Round 1, and S′
2
 is the new added option). It is shown in Fig. 1 as the procedures 

between Round 1 and Round 2. Option on each arrow refers to a subject’s choice 
of that round. Given that R′

2
>FOSD R′

1
, S′

2
>FOSD S′

1
 and Archer follows first-order 

stochastic dominance, at Round 2, Archer will choose c2 = S�
2
 if he faces {S�

1
, S�

2
} , 

and c2 = R�
2
 if he faces {R�

1
,R�

2
} . It is shown in Fig. 1 as the solid arrows between 

Round 2 and Round 3.
• Step 3 Round 3: if Archer chooses c2 = R�

2
 , then he will face {R�

2
, S�

2
} ( R′

2
 carries 

over from Round 2 and S′
2
 is the new added option); if Archer chooses c2 = S�

2
 , 

then he will face {S�
2
,R�

2
} ( S′

2
 carries over from Round 2 and R′

2
 is the new added 

option), too. Therefore, no matter what Archer chooses in Round 1, S′
1
 or R′

1
 , as 

long as he follows first-order stochastic dominance in Round 2, he faces {S�
2
,R�

2
} 

in Round 3.
• Step 4 Round 4: subjects are divided into two paths again based on their choices 

in Round 3, either S′
2
 or R′

2
 . If c3 = S�

2
 for Archer, then he will face {S�

2
, S�

3
} ; if 

c3 = R�
2
 , he will face {R�

2
,R�

3
} , as shown in the procedures between Round 3 and 

Round 4 in Fig. 1. And so on and so forth...

If individuals always follow first-order stochastic dominance, their behavior can 
be represented by the solid-line paths in Fig. 1. At even rounds, they make choices 
between two lotteries that are ordered according to first-order stochastic dominance; 
in odd rounds, they make choices between Si and Ri(i = 1, 2, 3, 4, 5) . If they do not 
follow first-order stochastic dominance, they still will meet all the same ten lotteries 
through nine rounds of the ABC mechanism (see the dashed arrow paths in Fig. 1, 
as well as the mathematical expressions in the appendices).

The experiment was run in the laboratory of the Experimental Economics 
Center (ExCEN) at Georgia State University in June 2015. The subjects were all 

Table 1  Lottery pairs in 
experiment I

Pair Less risky (S) More risky (R)

1 ($0, 0.75; $3, 0.25) ($0, 0.8; $5, 0.2)
2 ($6, 1) ($0, 0.2; $10, 0.8)
3 ($0, 0.75; $6, 0.25) ($0, 0.8; $10, 0.2)
4 ($6, 0.25; $12, 0.75) ($0, 0.05; $10, 0.2; $12, 0.75)
5 ($18, 1) ($12, 0.2; $22, 0.8)
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undergraduates. I recruited 49 subjects from the same population and conducted the 
ABC mechanism using the same lotteries and the same representation of the lot-
teries as Cox et al. (2015). There were nine rounds of individual decision tasks for 
ten lotteries with the ABC mechanism. Subjects were informed that the choice they 
made in the previous round would be carried over to the next round, and they would 
be paid the realized outcome of their last choice. It was also explained why choos-
ing one’s preferred lottery in every round is the dominant (best) strategy (see sub-
ject instructions in the appendices for detail). As in Cox et al. (2015), no show-up 
fee was offered. Instead, after subjects finished all their choices, I announced that I 
would like to pay them $5 (the same amount as in Cox et al. (2015)) for completing 
a demographic survey. The experiment was conducted with ZTREE software (Fisch-
bacher 2007).

Fig. 1  Complete path of experiment I with the ABC mechanism
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5.1.3  Data results

We can examine behavioral compliance with first-order stochastic dominance as 
a byproduct of this design. The data shows that only 3 (out of 49) subjects made 
choices violating the dominance assumption. Such violations led them to miss 
some of the paired-up lottery comparisons (that is, Si vs. Ri, i = 1,… , 5 ). Therefore 
their choices are excluded in the following analysis. The choices in five {Si,Ri} lot-
tery pairs, completed by the 46 subjects who never chose dominated lotteries are 
reported.

The null hypothesis is:

Hypothesis 1 The choices come from the same population under the one-round task 
design and the ABC mechanism.

If ABC works, we expect not to reject such hypothesis. The results are displayed 
in Table 2 and Tables D.1 and D.2 in the appendices. (The data of one-round and 
RLIS are from Cox et al. (2015), including undergraduate students only.) In Table 2, 
the proportions of risky (R) lottery choices in all pairs (overall risk tolerance) and 
within each pair are reported. Table  2 shows that in the sense of being close to 
the baseline, except for Pair 1, ABC outperforms both versions of RLIS (with and 
without prior information). We can see that for two-tailed Tests of Proportions, the 
p-value of Pair 1 is significant at 10% level but not at 5% level, and all other p-values 
are not significant.12

Table  D.1 in the appendices reports more thorough comparisons within demo-
graphic subgroups. ABC displays more insignificant results than both versions of 
RLIS compared with the one-round task baseline in general. From Table  D.2, all 

Table 2  Proportions of subjects choosing riskier lottery in experiment I

The numbers with the bold font show the closest to the “One-Round” baseline in each row
Stars indicate the significant level of two-tailed Test of Proportions (z-Test) compared with the baseline
∗
p < 0.1,∗∗ p < 0.05,∗∗∗ p < 0.01

One-round ABC RLIS

(Baseline) No prior Info. Prior Info.

All pairs:  R

R+S
% 71.43 (231 obs) 75.22 (230 obs) 55.50∗∗∗ (200 obs) 60.51∗∗ (195 obs)

Pair 1:  R

R+S
% 60.53 (38 obs) 78.26∗ (46 obs) 62.50 (40 obs) 71.79 (39 obs)

Pair 2:  R

R+S
% 84.48 (58 obs) 78.26 (46 obs) 55.00∗∗∗ (40 obs) 48.72∗∗∗ (39 obs)

Pair 3:  R

R+S
% 72.41 (58 obs) 76.09 (46 obs) 52.50∗∗ (40 obs) 56.41 (39 obs)

Pair 4:  R

R+S
% 71.05 (38 obs) 69.57 (46 obs) 67.50 (40 obs) 76.92 (39 obs)

Pair 5:  R

R+S
% 61.54 (39 obs) 73.91 (46 obs) 40.00∗ (40 obs) 48.72 (39 obs)

12 T test and Pearson test provide the same qualitative results.
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four Probit regression models show that the choices under ABC are not significantly 
different from those with the one-round task, while both versions of RLIS have sig-
nificant differences.

By and large, the null hypothesis cannot be rejected at 5% significance level. In 
other words, the ABC mechanism works empirically for this choice pattern experi-
ment. ABC outperforms both versions of RLIS.

5.2  Experiment II: preference estimation experiment (structural)

5.2.1  Lotteries and ABC mechanism experiment procedure

In the setting of Harrison and Swarthout (2014), there are 69 lottery pairs. Those 
pairs consist of 38 different lotteries (see appendices for the detailed lottery list). 
The ABC mechanism is conducted as follows: 21 lotteries out of 38 are randomly 
selected for each subject, and the orders of lotteries are independently randomized 
for each subject beforehand. In each round, each subject faces two lotteries and is 
required to pick one. Individual choice in the previous round carries over to the fol-
lowing round, and eventually, one gets paid the realized outcome of their last chosen 
lottery. There are 20 rounds in the experiment. Subjects are informed of the above 
information.

The experiment was run in July 2015 and April 2016, and all 51 subjects were 
students from Georgia State University. To get better comparisons with Harrison 
and Swarthout (2014), I adopted their $7.50 show-up fee and used pie representa-
tions of lotteries as they did. The experiment was conducted with ZTREE software 
(Fischbacher 2007).

5.2.2  Data results

Among those 38 lotteries, some are first-order stochastically dominated by others. 
Subjects may see such dominance pairings in some rounds. Even though first-order 
stochastic dominance is not required when we analyze the data, it can be used to 
check whether subjects understand the ABC procedure. For example, one subject 
kept the same option for all 20 rounds and violated first-order stochastic dominance 
6 times. I treat this subject as not understanding the procedure and exclude the data 
from this subject in the analysis. I also exclude the data of three subjects who were 
graduate students since all subjects from Harrison and Swarthout (2014) were Geor-
gia State undergraduates. Each of the remaining 47 subjects violated first-order sto-
chastic dominance no more than 3 times.13

There are no dominance lottery pairs within 69 tasks in Harrison and Swarthout 
(2014) . However, given the sequence of choices in ABC and the randomization of 
the lottery orders, there can be dominance pairs in the ABC treatment. For example, 
a subject may face the lotteries ($5, 0.75;$20, 0.25) (Lottery No. 3 in Table E.1  in 

13 Together, all 47 subjects violated first-order stochastic dominance only 18 times (2.5%).
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the appendices, which lists all the lotteries in Harrison and Swarthout (2014)) and 
($10, 1) (Lottery No. 4) at Round k − 1 . According to ABC, at Round k, the task 
consists of their choice in Round k − 1 and the new added option, which is, say, 
($20, 1) (Lottery No. 14). Then, with this example, in Round k, the subject will make 
choices between a pair of lotteries where one dominates the other regardless of their 
choice in Round k − 1 . Choices from dominance lottery pairs usually inform little 
about testing competing models or estimating parameters. Choosing the dominant 
one fits most risk theories, including EUT and RDU. Therefore, we focus on the 
choices from non-dominance pairs only (219 observations). Results from all pairs 
(940 observations) are also reported as robustness check.

The data set consists of the ABC data with one-round task data (75 observations) 
from Harrison and Swarthout (2014). Following their non-parametric estimation 
approach (as well as Hey and Orme 1994 and Wilcox 2010), in the EUT model, we 
assume

and in RDU model, we assume more probability weighting parameters:

Please see Harrison and Rutstrom (2008) or the appendices for details on the estima-
tion methods.

The focus in the regression is the coefficient for the binary treatment dummy var-
iable “pay1” (to keep the same variable name as in the original paper). The “pay1” 
dummy equals 1 for the one-round task treatment and 0 for ABC. Such a treatment 
dummy is added to each estimate of outcome or probability weighting mentioned 
above. The hypothesis is:

Hypothesis 2 The estimated coefficients for the variable “pay1” are not significantly 
different from 0.

The results from Table H.1 in the appendices show that “pay1” coefficients are 
not significant, under either EUT or RDU model, for both “ABC non-dominance 
pairs only” and “all ABC observations”. The insignificant coefficients are not only 
for individual parameter estimates, but also from testing the joint effect across all 
utility or weighted probability parameters or both. Appendices also provide robust-
ness checks allowing heterogeneity in gender or race or both.

In summary, all estimates of coefficients for the “pay1” dummy variables are 
insignificant. Hypothesis 2 cannot be rejected.

5.3  Summary: implementation and robustness of the ABC mechanism

Experiments I and II are two implementations of the ABC mechanism in conven-
tional individual decision making under risk. In Experiment I, lotteries are paired-
up, and first-order stochastic dominance exists between lottery pairs. When subjects 

U($5) = 0,U($10) = u10,U($20) = u20,U($35) = u35,U($70) = 1

�(0) = 0,�(1∕4) = �1∕4,�(1∕2) = �1∕2,�(3∕4) = �3∕4,�(1) = 1
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never choose dominated lotteries, the implementation with ABC includes all the 
tasks consisting of the desired lottery pairs (in this case, {Si,Ri}(i = 1, ..., 5) ) along 
with transition tasks consisting of the dominance lottery pairs. Compared with the 
conventional n-round pairwise lottery comparison with other payoff methods, to 
ensure incentive compatibility, the ABC mechanism with binary comparison needs 
additional n-1 rounds.14 In the ABC treatment, each subject met the same ten lotter-
ies in the experiment. However, the orders may be different for individuals depend-
ing on their previous choices. Thus, individual decisions affect the order in which 
lottery pairs are encountered but not the lottery set, which is fixed for all subjects. 
Note that as long as the preference relation is complete and transitive, the order 
should not affect choices in the original five lottery pairs. In a general choice-pattern 
experiment, in order to let subjects meet all the desired pairs, experimenters can use 
dominance pairs and control the intermediate steps to make subjects transition from 
one pair to another by climbing up such “ladders”. To summarize, choice-pattern 
experiments with the ABC mechanism cannot be completely “path-free”.

In Experiment II, where researchers mainly rely on econometric estimates rather 
than focusing on possible paradoxes from the choice pattern, no two specific lot-
teries must pair-up. In this case, the lottery set can be randomly and independently 
predetermined for each subject. The lottery set for two individuals may not be the 
same, but it is fixed during the experiment and independent of their choices. Also, in 
this case, there are no transition steps. Every choice might reveal some information 
about individual risk preferences. However, in this experiment, information revealed 
with ABC is not as effective and efficient as the conventional decision tasks where 
both lotteries are exogenously given. In the ABC treatment, subjects had more com-
parisons between lotteries has dominance relations since they determined one of the 
options in each round. If one met their favorite option at early rounds, then they 
would carry it over in later rounds and to the end. In a general preference estimate 
experiment, the efficiency of ABC could be improved by selecting the lottery set to 
reduce comparisons between dominance pairs.

With the data analysis, the same methods as those in the original studies with 
other payoff mechanisms were applied. Statistical tests and Probit models are imple-
mented with Experiment I data, similar to Cox et al. (2015); error noise is allowed 
in Experiment II data, matching Harrison and Swarthout (2014). In the aspect of 
robustness, the ABC mechanism is neither better nor worse compared with the tradi-
tional decision-making tasks.

In terms of subject payments, with everything else similar, ABC is expected to 
cost more than RLIS and less than paying all choices since each subject gets paid for 
their one favorite lottery among all options.

In conclusion, the purpose of the ABC mechanism is to provide incentive com-
patibility in multiple-task experiments with general risk theories. Trade-offs include 
the increased number of rounds, reduced information effectiveness from each round, 
and maybe also higher experiment expense.

14 To check 2n lotteries, ABC needs 2n-1 rounds with one option from the preceding round carrying 
over to the following round.
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6  Conclusion and discussion

This paper addressed the question “other than the one-round task design, is it possi-
ble to find an incentive compatible payoff mechanism for general risk theories?” The 
answer is the Accumulative Best Choice (ABC) mechanism proposed here: in an 
experiment with a fixed and predetermined lottery set, subjects are not informed of 
the lotteries they will face in future rounds; the preceding choice carries over to the 
following round as one selectable lottery option in the task; and eventually subject 
gets paid the realized outcome of their choice in the last round. I prove that ABC 
is the unique incentive compatible payoff mechanism (ICPM) under the assump-
tions of complete and transitive risk preferences and no restrictions on how a subject 
might anticipate their unknown upcoming options.

The intuition behind these conditions rests on avoiding wealth effect and portfolio 
effect, thus requiring that experimenters pay the choice of one certain round. It is 
hard to engage subjects after the paying round. Thus, the one certain paying round 
has to be the last. On the other hand, one must find a way to incentivize subjects for 
the nonpaying decisions, resulting in the need for bridges to connect earlier choices 
to the final paying round. Therefore, all the tasks must be a chained sequence. When 
facing any nonpaying round, Archer knows his current nonpaying choice can affect 
the options he sees at the paying round. That is the incentive for him to take it seri-
ously. In other words, any ICPM requires that the decision tasks cannot be entirely 
exogenous even though the lottery set is exogenous and fixed.

ABC is also empirically tested in the lab. The data from both the choice pattern 
experiment (Experiment I) and the preference estimation experiment (Experiment 
II) show that there are no significant differences between the choices under the one-
round task design and the ABC mechanism.

How applicable is the ABC mechanism for experimenting with decision tasks 
under risk? From Experiment I, we see ABC can be applied in experiments that test 
the classic paradoxes of decision theory if different lottery pairs have first-order sto-
chastic dominance between each other. It is “path-dependent” in the sense that sub-
jects may face different orders of the lotteries due to their choices. Nevertheless, in 
the end, each subject has encountered tasks with every required lottery pair if their 
behavior follows first-order stochastic dominance. From Experiment II, we see ABC 
supports econometric estimation of general risk preferences when no specific lotter-
ies need to be paired. In this scenario, to apply ABC, we can predetermine a random 
order of (a subset of) the lotteries, and a subject’s current choice will not affect the 
order of the lotteries they see in the future.

ABC can also be used to elicit certainty equivalents of risky options. For exam-
ple, if we are interested in individual’s certainty equivalent of lottery X, we can add 
a series of degenerate lotteries Ai = (ai, 1) (prize ai with 100%)(i = 1,… , k) , where 
a1 < a2 < ... < ak where a1 and ak are the smallest and the largest prizes in lottery 
X. Then, apply ABC by comparing X from A1 to Ak : without informing subjects 
the options, Round 1: {X,A1} , denote the choice as c1 ; Round 2: {c1,A2} , denote 
the choice as c2 , and so forth. If we observe the subject switching from lottery X 
to a sure amount at Round j, that is X ⪰ Aj−1 and Aj ⪰ X , then we can infer their 
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certainty equivalent for lottery X is between aj−1 and aj . As discussed in Remark 2, 
when implementing ABC, experimenters may mix the orders of small outcomes to 
make the series not monotonic. It is to dispel the belief subjects may form that the 
prize amounts will only get larger, which may lead them to random picking until the 
final round.

Now that we have an ICPM for general risk theories, it opens the door to explore 
other questions. For example, to research ICPM for general uncertainty models or to 
test some fundamental assumptions of preferences such as the independence axiom, 
the reduction axiom, or transitivity.

Notice that ABC is not just incentive compatible when the set of options contains 
lotteries but could have more general applications, such as intertemporal options and 
commodity goods. While general applicability of ABC is beyond the scope of this 
paper, two examples below illustrate how one can apply ABC to generate useful data 
that are not contaminated by the payoff protocol.

6.1  Application 1: ABC with multiple price lists in time preference elicitation 
experiments

Time preference embeds risk preference. In a seminal paper, Andersen et al. (2008) 
jointly estimate risk and time preference by using two multiple price lists, which are 
displayed below. Subjects are asked to make choices, A or B, for every row in both 
tables.

We denote Option A and B in Row i(i = 1,… , 10) in Table 3I as IAi and IBi , and 
Option A and B in Row i(i = 1,… , 10) in Table 3II as IIAi and IIBi.

In Table  3I, we want subjects to make comparisons between IAi 
and IBi . On the other hand, IA10 >

FOSD IA9 >
FOSD

⋯ >FOSD IA1 and 
IB10 >

FOSD IB9 >
FOSD

⋯ >FOSD IB1 . We can apply ABC in the way similar to 
Experiment I in this paper: Without knowing future options, at Round 1, subjects 

Table 3  Time preference elicitation experimental design in Andersen et al. (2008)

I: Risk aversion experiments (Holt and Laury 2002) II: Discount rate experiments

Row Option A (Lottery) Option B (Lottery) Row Option A (Payoff) 
(in 1 month)

Option B 
(Payoff) (in 7 
months)

1 (2000, 0.1;1600, 0.9) (3850, 0.1;100, 0.9) 1 3000 3075
2 (2000, 0.2;1600, 0.8) (3850, 0.2;100, 0.8) 2 3000 3152
3 (2000, 0.3;1600, 0.7) (3850, 0.3;100, 0.7) 3 3000 3229
4 (2000, 0.4;1600, 0.6) (3850, 0.4;100, 0.6) 4 3000 3308
5 (2000, 0.5;1600, 0.5) (3850, 0.5;100, 0.5) 5 3000 3387
6 (2000, 0.6;1600, 0.4) (3850, 0.6;100, 0.4) 6 3000 3467
7 (2000, 0.7;1600, 0.3) (3850, 0.7;100, 0.3) 7 3000 3548
8 (2000, 0.8;1600, 0.2) (3850, 0.8;100, 0.2) 8 3000 3630
9 (2000, 0.9;1600, 0.1) (3850, 0.9;100, 0.1) 9 3000 3713
10 (2000, 1;1600, 0) (3850, 1;100, 0) 10 3000 3797
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face IA1 and IB1 . If they choose IA1 , then at Round 2, they face IA1 and IA2 ; if they 
choose IB1 , then at Round 2, they face IB1 and IB2 . As long as subjects follow first-
order stochastic dominance, they should choose IA2 or IB2 in Round 2. For either 
case, at Round 3, they face IA2 and IB2 , and so on and so forth. First-order sto-
chastic dominance leads subjects to complete all the comparisons between IAi and 
IBi(i = 1,… , 10) , and subjects meet all 20 lotteries in the table.

In Table 3II, subjects are supposed to stick with A or B or switch from A to B 
once and never switch back to A. We also see that IIA1 = IIA2 = ⋯ = IIA10 , and we 
call it IIA. On the other hand, IIB10 ≻ IIB9 ≻ ⋯ ≻ IIA for all non-satiated prefer-
ences. With ABC, at Round 1, subjects face IIA and IIB1 . The accessible options in 
Round i(i = 2,… , 10) are subject’s choice from preceding round and IIBi . There-
fore, if subjects choose IIA over IIBi in Round i, then they compare the carried-over 
IIA and the added IIBi+1 , which are in Row i + 1 of Table 3II. If subjects ever choose 
IIBi at some round, the remaining tasks are obvious since IIB gets better going down 
the table, and they will not want to switch back to IIA.

Notice that if we want subjects to complete both tables, we need to connect the 
two tasks, too. For example, to make subjects transition from Table 3II to 3I, we 
may need to change the payoff scale in Table 3I. Let us set the scale, say, 2.5. Then, 
IA1 becomes (5000,  0.1;  4000,  0.9). Thus, no matter what option subjects end up 
choosing in Table 3II, IIA or IIB10 , their carry-over choice is strictly worse than the 
adjusted IA1 . That motivates subjects to move from the last choice in one table to the 
first choice in the other. Eventually, subjects get paid for their last choice in Table 3I.

Compared with RLIS, which can elicit unbiased risk attitude modeled by payoff 
transformation only, the adoption of ABC allows both payoff and probability trans-
formation. Since only the former, not the latter, affects decisions in Table 3II, ABC 
can lead us to a better estimate than RLIS by not confounding probability transfor-
mation with payoff transformation in risk preferences elicited from Table 3I.

6.2  Application 2: ABC with generalized axiom of revealed preference (GARP) 
testing experiments

Generalized Axiom of Revealed Preference (GARP) is a necessary and sufficient con-
dition for choice to support the utility maximization hypothesis (Varian 1982). Vari-
ous experimental studies test whether individual behavior violates GARP by chang-
ing the incomes and the prices of goods. Here is an example of testing GARP with 
ABC15: suppose there are three budget lines with different relative prices (different 
slopes): a (flattest), b, and e(steepest). As in Fig. 2a, A1,A2 are on a; B1,B2 are on b; 
E1,E2 are on e. A1,B1,E1 have the same amount of Good X, and E1 has more Good Y 

15 The design is a simplified version similar to the experiments in Harbaugh et al. (2001). In the study, 
the subject pool was 7- and 11-year-old kids. In order to adapt to children’s cognitive level, the authors 
offer bundles of juices and chips to let them choose. In each task, all options are from the same budget 
line.
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than B1 , and B1 more than A1 . A similar pattern applies to E2,B2,A2 , as shown in the 
figure. Pairwise violations of GARP are: (1) A1 and E2 ; (2) B1 and E2 ; (3) A1 and B2.

The conventional way to do the experiment is through a three-round task with 
{A1,A2}, {B1,B2}, {E1,E2} . The conventional payoff mechanisms are paying all 
choices or RLIS, paying one choice randomly. The issue of paying all is the portfo-
lio incentive provided; the issue of RLIS is that the independence axiom presumed 
confounds GARP: if we detect the GARP violation behavior, maybe it is because 
people violate independence. Either way, we test the joint hypothesis instead of 
merely GARP.

We can apply a design with ABC as follows (illustrated in Fig.  2b): Without 
knowing the future options, at Round 1, subjects face {A1,E2} to make a choice. 
If c1 = A1 , at Round 2, they will face {A1,B1} (the left path); if c1 = E2 , at Round 
2, they will choose between {E2,B2}(the right path). Given that preferences are 
non-satiated, subjects should choose B1 on the left path or B2 on the right path. In 
Round 3, on the left path, the new option is B2 , and B1 on the right path. In Round 
4, the path diverges: the new added option being E1 or A2 , depends on subject’s 
choice in Round 3. In Round 5, the path converges again due to the non-satiated 
preferences. Up to Round 5, regardless of choices, each subject meets the same six 
bundles A1,A2,B1,B2,E1,E2 . Round 6 is added to complete the test for all pair-
wise violations of GARP.16 GARP is violated if we observe subjects choosing the 
pairs of {A1 in Round 1,E2 in Round 6} , or {E2 in Round 1,A1 in Round 6} , or 
{B2 in Round 3,A1 in Round 6} , or {B1 in Round 3,E2 in Round 6}.17 ABC provides 
a direct test of GARP which avoids confounds from the payoff mechanism.

Fig. 2  Experiments to test GARP

16 Even though at Round 6, we bring back one option subject discarded in Round 1, we still keep the 
whole lottery set fixed throughout the experiment. Since Round 6 is the last round, it is not invasive in 
terms of changing subjects’ anticipations about the future options.
17 This is not the unique implementation with ABC. An alternative path is provided in the appendices.
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