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Abstract
Azrieli et  al. (J Polit Econ, 2018) provide a characterization of incentive compat-
ible payment mechanisms for experiments, assuming subjects’ preferences respect 
dominance but can have any possible subjective beliefs over random outcomes. If 
instead we assume subjects view probabilities as objective—for example, when dice 
or coins are used—then the set of incentive compatible mechanisms may grow. In 
this paper we show that it does, but the added mechanisms are not widely applica-
ble. As in the subjective-beliefs framework, the only broadly-applicable incentive 
compatible mechanism (assuming all preferences that respect dominance are admis-
sible) is to pay subjects for one randomly-selected decision.

Keywords  Experimental design · Decision theory · Mechanism design

JEL Classification  C90 · D81 · D84

1  Introduction

Consider an experiment in which subjects make two choices. The first is to choose 
from the set {apple,left shoe} , and the second is to choose from the set {banana,right 
shoe} . Most subjects would prefer the apple over the left shoe and the banana over 
the right shoe. But when both choices are paid then subjects may choose the shoes 
instead, because they prefer a pair of shoes over having both an apple and a banana. 
In other words, complementarities between choice objects may distort subjects’ 
choices when multiple decisions are given. An experimenter might infer incorrectly 

 *	 Paul J. Healy 
	 healy.52@osu.edu

	 Yaron Azrieli 
	 azrieli.2@osu.edu

	 Christopher P. Chambers 
	 cc1950@georgetown.edu

1	 Department of Economics, The Ohio State University, Columbus, USA
2	 Department of Economics, Georgetown University, Washington, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s10683-019-09607-0&domain=pdf


2	 Y. Azrieli et al.

1 3

that the left shoe is preferred to the apple and that the right shoe is preferred to the 
banana. In this case we say that the payment mechanism is not incentive compatible 
(IC) because it did not incentivize subjects to reveal their true preference in each 
individual problem separately.1

A proposed solution to the problem of complementarities (due to Allais 1953) 
is to pay for one randomly-selected decision. We call this the Random Problem 
Selection (RPS) mechanism.2 With this mechanism subjects cannot receive both 
shoes, and therefore have no incentive to choose the shoe in either decision prob-
lem. Although this solves the complementarities problem, it introduces randomness. 
And there are examples of preferences over lotteries for which the RPS mechanism 
is not IC.3 Thus, exact conditions under which this mechanism is incentive com-
patible were not well understood. Neither was it known whether other mechanisms 
can be used to guarantee truthful revelation of choices in experiments with multiple 
decisions.

In our earlier work (Azrieli et  al. 2018) we filled this gap by studying experi-
ment incentives in a general framework in which subjects are permitted to have any 
subjective belief over random outcomes. Assuming state-wise monotonicity (which 
requires that subject’s preference respects dominance) and nothing else, we showed 
that the RPS mechanism is the only incentive compatible mechanism that can be 
applied to any experiment. There can be contrived examples of experiments for 
which other mechanisms are incentive compatible, but these are almost never seen 
in practice.

But what if an experiment consists entirely of objective lotteries? For example, 
suppose the experimenter flips a fair coin to determine which problem is paid. In 
this case allowing subjects to have any belief distribution over random outcomes 
may be too permissive. But if we restrict beliefs to equal the objective probabilities 
then we restrict the model, and in doing so we may open the door for additional 
incentive compatible mechanisms. Thus, it is important to study whether the set of 
incentive compatible mechanisms grows when we assume objective lotteries, and 
whether any of the new mechanisms would have broad applicability.

In this paper we assume objective probabilities and that all preferences which 
respect stochastic dominance are admissible. In this framework we show that the set 
of IC mechanisms is strictly larger than that characterized by Azrieli et al. (2018). 
But the newly-identified mechanisms are again only applicable in certain contrived 
experiments. In almost every real-world experiment the RPS mechanism is the 
unique incentive compatible mechanism under our assumptions.

As in Azrieli et al. (2018), we model an experiment as a list of decision problems, 
i.e. a list of sets of choice objects from which the subject should choose. The sub-
ject announces a chosen object from each decision problem. The experimenter then 

1  Shoes are an extreme example of complementarities. For a more realistic example, suppose each shoe 
is a risky lottery, and the pair of lotteries together constitutes a less-risky portfolio of lotteries.
2  This is often called the Random Lottery Incentive Mechanism (RLIM). We choose RPS to stay con-
sistent with our terminology in our other paper.
3  An early example is Holt (1986). See Azrieli et al. (2018) for a detailed discussion of such examples.
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maps that announced vector of choices into a payment, which may be random. For 
example, the RPS mechanism takes the announced vector of choices and randomly 
chooses one of them for payment.

A crucial observation in this analysis is that the choice objects and the payment 
objects in an experiment are typically non-overlapping sets. In the example above 
the set of all choice objects would be {apple,banana,left shoe,right shoe} . The exper-
imenter is interested in learning the subject’s preferences over those choice objects, 
which we denote by ≻.4 But the subject actually is being paid lotteries over these 
choice objects. Thus, the set of payment objects is a set of lotteries over the choice 
objects.5 Which choice objects the subject chooses in the experiment will therefore 
be driven by their preferences over payment objects (lotteries), not their preference 
over choice objects. We denote the preference over payment objects (lotteries) by 
⪰∗ . In the experiment the subject chooses (or “announces”) the choice objects that 
map into her most-preferred payment object (according to ⪰∗ ). We say that the pay-
ment mechanism is incentive compatible if what she announces coincides with her 
most-preferred choice objects according to ≻ . In other words, incentive compatibil-
ity ensures that the subject will reveal truthfully her most-preferred choice in every 
problem.

We refer to ⪰∗ as an extension of ≻ . For us to study incentive compatibility we 
must make some assumptions about how ⪰∗ relates to ≻ . If they are not related—
meaning every extension is admissible—then no mechanism can be incentive 
compatible. This is Proposition 0 of Azrieli et  al. (2018). A natural restriction on 
extensions is that they satisfy monotonicity with respect to first order stochastic 
dominance (FOSD), relative to the underlying preference ≻ . Formally, an extension 
is monotonic if lottery f is preferred to lottery g whenever f dominates g in the sense 
of FOSD. Monotonicity places no restrictions on lotteries that are not ranked by 
dominance.

We show in Theorem 1 that, as long as all admissible extensions are monotonic, 
the RPS mechanism is IC. In other words, if a subject’s preferences are such that she 
never prefers a dominated gamble, then any RPS mechanism provides her the right 
incentives to truthfully reveal her favorite element in each decision problem. The 
logic is simple: any time a subject switches from telling the truth to lying on any 
decision problem, they shift probability away from their most-preferred object and 
onto a less-preferred item. The resulting lottery is therefore stochastically dominated 
by the lottery induced by truth-telling. Notice that expected utility is not needed for 
this argument; the RPS mechanism is incentive compatible as long as monotonicity 
is satisfied.6

4  Or, at least, which objects are most preferred in each set.
5  Specifically, the 50-50 lottery between an apple and a banana, the 50-50 lottery between an apple and a 
right shoe, the 50-50 lottery between a left shoe and a banana, and the 50-50 lottery between the left and 
right shoes.
6  If additional axioms are assumed on ⪰∗ then expected utility may become necessary. For example, if 
⪰∗ satisfies the reduction of compound lotteries, then assuming monotonicity implies that ⪰∗ satisfies 
expected utility. We discuss this in Sect. 6.
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Monotonicity is satisfied by nearly every decision-theoretic model of choice 
under uncertainty. Indeed, it is often viewed as normative, and models that violate 
monotonicity are often dismissed as implausible; see Quiggin (1982), for example. 
Thus we view monotonicity as a minimal assumption on ⪰∗ , though we discuss its 
limitations in the sequel and more extensively in Azrieli et al. (2018).

Assuming all monotonic extensions are admissible (and that beliefs coincide with 
objective probabilities), we characterize the class of all IC mechanisms for any given 
experiment. The main result of this paper, Theorem 2, shows that, in a certain sense, 
any IC mechanism resembles the RPS mechanism, but that the class of IC mecha-
nisms may extend beyond the RPS mechanism in certain contrived experiments.

To understand how incentive compatibility could extend beyond the RPS mech-
anism in some experiments, consider the following example. Let D1 = {x, y} , 
D2 = {y, z} and D3 = {x, z} be the three decision problems in some experiment. 
Now, for every (strict) preference over {x, y, z} , if the subject truthfully announces 
her choices, then her favorite alternative from the set E = {x, y, z} will also be 
revealed. Below we will call sets with this property surely identified sets. We can 
imagine an RPS-like mechanism that not only pays for choices in the actual deci-
sion problems, but also might pay for the inferred choice from this surely identi-
fied set E. For instance, consider the distribution � over subsets of {x, y, z} given 
by �(D1) = �(D2) = �(D3) = 0.3 and �(E) = 0.1 . And suppose the subject has pref-
erences x ≻ y ≻ z . If she announces truthfully in each Di then their message vec-
tor will be (x,  y,  x), and the experimenter can use that to infer that x is also her 
most-preferred element in E. The mechanism will therefore pay x with probability 
�(D1) + �(D3) + �(E) = 0.7 and y with probability �(D2) = 0.3 . If the subject mis-
represents and instead announces (y, y, x), then y would be inferred to be the most-
preferred in E, so the subject would instead receive x with probability 0.3 and y with 
probability 0.7. This is strictly dominated by the truth-telling lottery, so any sub-
ject who respects dominance will not choose it. Indeed, any non-truthful message 
will result in a dominated lottery, so the mechanism is incentive compatible under 
monotonicity.7

Still, we can generalize even further by allowing � to put negative weight on some 
of the sets. For instance, set �(D1) = �(D2) = �(D3) = 0.4 and �(E) = − 0.2 . For our 
subject with x ≻ y ≻ z reporting truthfully in this mechanism pays x with probability 
0.6 and y with probability 0.4. Misrepresenting by announcing (y, y, z) would again 
switch those probabilities, leading to a dominated lottery. However, if we choose 
the weights to be �(D1) = �(D2) = �(D3) = 0.6 and �(E) = − 0.8 , then the resulting 
mechanism will not be incentive compatible, since the revealed second-best alterna-
tive (y) is now paid with a higher probability than the revealed first-best alternative 
(x). Thus, some restrictions must be placed on � in order for incentive compatibility 
to hold in the resulting mechanism. Theorem 2 shows that, in any experiment, any 

7  For simplicity we assume here that the subject’s choices are consistent with some strict ordering of the 
elements. In our formal treatment we also deal with the issue of ‘non-rationalizable’ message vectors, 
such as (x, y, z).
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IC mechanism can be represented by a particular � as above, and precisely describes 
the restrictions on � that guarantee incentive compatibility.

It is illuminating to compare this characterization to the one obtained in our pre-
vious paper (Azrieli et  al. 2018). In that work we characterize incentive compat-
ibility of experiments under monotonicity, but when mechanisms map choices to 
acts instead of objective lotteries.8 Monotonicity in that framework means that if 
f is preferred to g in every possible state of the world, then f is preferred to g; oth-
erwise their ranking is not restricted. The acts framework allows for more general 
extensions of preferences: Subjects may have their own subjective beliefs about the 
likelihood of different outcomes of the randomization device, or they may even have 
preferences which are not probabilistically sophisticated (Machina and Schmei-
dler 1992); e.g., they may be uncertainty averse. This might apply when subjects 
view the experimenter’s randomization as ambiguous. The assumption of the cur-
rent paper that subjects view payments as lotteries can be thought of as an addi-
tional restriction on the set of admissible extensions in the acts framework. Since 
the experimenter can use this additional knowledge about extensions to construct IC 
mechanisms, one would expect that the class of IC mechanisms will be larger in the 
case of lotteries. In Sect. 5 we show that this is indeed the case: If a mechanism is IC 
in the acts framework, and one puts some (full-support) distribution over the state 
space of the randomization device, then the resulting lottery mechanism is IC. How-
ever, there are IC mechanisms in the lotteries environment that cannot be generated 
by any IC acts mechanism; in fact, these are exactly the mechanisms whose distribu-
tion � uses negative weights.

Although the set of IC mechanisms grows when we restrict attention to objective 
lotteries, the new mechanisms all require the existence of surely identified sets, such 
as E = {x, y, z} in the example above. But most experiments do not have surely iden-
tified sets, because most experiments have no overlap between decision problems. 
In that case the only incentive compatible mechanism (assuming all preferences that 
respect stochastic dominance) is the RPS mechanism.9 Thus, we view our result as 
confirming the conclusion of Azrieli et al. (2018): under our stochastic dominance 
assumption, in practice, the RPS mechanism is the only incentive compatible mech-
anism. Nothing is gained by assuming objective probabilities.

Behaviorally, we speculate that mechanisms that pay based on surely-identified 
sets or that use negative weights are excessively complicated and may lead to more 
confusion and mistakes by subjects.10 Thus, even if an experiment does have surely 
identified sets, we see no particular reason to use anything other than the simple 
RPS mechanism. Indeed, we believe the practical implication of our characterization 
is that the RPS mechanism is the only IC mechanism any experimenter would want 

8  Acts map states into outcomes but do not specify objective probabilities for the states.
9  The RPS mechanism can be modified to allow for fixed payments without damaging incentive compat-
ibility; see Corollary 1.
10  Our theory assumes a deterministic preference relation and does not allow for mistakes or stochastic 
choice. Though this would be an important direction to study, even the definition of incentive compatibil-
ity becomes unclear when random behavior is permitted.
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to use, assuming monotonicity. Any other mechanism is either not incentive compat-
ible or adds unnecessary complications.

In Sect.  6 we consider the particular case of experiments in which the choice 
objects are themselves lotteries over money. In this set-up an RPS mechanism gen-
erates a compound lottery, where in the first ‘upper’ stage a decision problem is 
randomly chosen for payment, and in the second ‘lower’ stage a dollar amount is 
randomly chosen according to the lottery that the subject chose in the realized deci-
sion problem of the first stage. Examples in the literature (Holt 1986, e.g.) show 
that if the subject reduces compound lotteries according to the laws of probability 
and has Rank-Dependent Utility (RDU) preferences over lotteries over money, then 
the RPS may not be IC. Our framework and results make it easy to see the source 
of the failure: Reduction of compound lotteries together with monotonicity imply 
the independence axiom. Since RDU preferences typically violate independence, if 
one assumes reduction then it must be the case that monotonicity does not hold. Our 
Theorem 1 cannot be applied then, and the RPS may not be IC. In fact, we show 
that if subjects reduce compound lotteries and if all RDU preferences are admissible 
then no IC mechanism exists. Fortunately, empirical evidence suggests that it is rare 
for subjects to satisfy reduction but violate expected utility (Halevy 2007), so such 
violations of monotonicity may not be a large concern.

The issue of complementarities (paying both the left shoe and the right shoe) was 
addressed in Azrieli et  al. (2018). There we showed that an incentive compatible 
mechanism can never pay in ‘bundles’ unless the researcher is willing to assume 
that subjects’ preferences exhibit no complementarities. But that conclusion holds 
whether we allow for subjective beliefs or objective probabilities, so the result is 
exactly the same in the current framework of objective lotteries. If the experimenter 
is going to pay for multiple decision problems (thus forming a bundle) then com-
plementarities must be assumed away. We therefore restrict attention to non-bundle 
payments in this paper.11

We do find that experimenters have lacked a convention for which payment mech-
anism to use. In our survey of papers published in 2011, we found that only 25% use 
the RPS mechanism, while 56% pay for every decision. Almost all of the remainder 
pay for some number of randomly-selected decisions (13%) or use a mechanism that 
is not incentive compatible under any standard assumptions (6%). Our goal is to pro-
vide a theoretical framework in which experimenters can understand exactly what 
assumptions justify one payment mechanism over another, and to understand exactly 
those conditions under which the RPS mechanism is incentive compatible.

We review empirical tests of monotonicity and the RPS mechanism in the con-
cluding section. Monotonicity violations appear to occur most frequently when 
multiple decisions are shown on one screen, or when a single decision problem is 
repeated multiple times. In other settings monotonicity appears to be satisfied.12

12  In Azrieli et  al. (2018) we discuss many other aspects of incentives in experiments, including the 
strength of the monotonicity assumption, how this theory extends to experiments where the subject 
makes choices sequentially with feedback, the use of the strategy method, plausible violations of mono-

11  See Azrieli et al. (2018) for exactly what assumptions on complementarities are needed for incentive 
compatibility in that case.
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From a theoretical perspective, our work is probably closest to the classic work 
of Gibbard (1977), who characterizes strategy-proof random mechanisms (using 
objective lotteries) when only ordinal preferences can be elicited. He characterizes 
these mechanisms as a kind of random-dictatorship, whereby a ‘dictator’ is an agent 
that solely determines the outcome. Our paper is comparable to the special case in 
which there is only one agent present. Gibbard does not, however, uncover the spe-
cial structure of these dictatorial mechanisms in the form that we uncover, presum-
ably because his interest was in understanding the implications of strategy-proofness 
across agents. Another important difference between the papers is that in Gibbard’s 
framework agents report their entire ranking over alternatives, while we consider the 
more general case in which the favorite alternatives in several subsets are reported. 
Finally, Gibbard requires only weak incentive compatibility, while we require that 
truth-telling be the unique optimum.

2 � The framework

There is a finite set X of choice objects. The decision maker (also called the sub-
ject) has a strict preference relation ≻ over X which is asymmetric and negatively 
transitive.13 The relation ≻ is not complete because it is not reflexive (it is not true 
that x ≻ x ), so we use x ⪰ y to mean that either x ≻ y or x = y . For any x ∈ X , let 
L(x,≻) = {y ∈ X ∶ x ⪰ y} and U(x,≻) = {y ∈ X ∶ y ⪰ x} be the (weak) lower- and 
upper-contour sets of x according to ≻ , respectively. The ≻-dominant element of any 
set E ⊆ X is denoted by dom≻(E) . That is, dom≻(E) is the unique element of E satis-
fying dom≻(E) ⪰ y for all y ∈ E.

The researcher has an exogenously-given list of k decision problems, denoted 
D = (D1,… ,Dk) , where Di ⊆ X for each i ∈ {1,… , k} . Let � = {D1,… ,Dk} rep-
resent the set of decision problems. We assume throughout that each Di ∈ � is non-
trivial, meaning |Di| > 1 , and that the same decision problem does not appear more 
than once, meaning Di ≠ Dj whenever i ≠ j . These assumptions are made only to 
simplify notation and can easily be relaxed.

The subject is asked to choose an element from each Di . The announced choice 
vector (or, the subject’s message) is denoted by m = (m1,… ,mk) . The space of all 
possible messages is M = ×iDi . For each i ∈ {1,… , k} , let 𝜇i(≻) = dom≻(Di) be the 
≻-dominant element of Di , and denote 𝜇(≻) = (𝜇1(≻),… ,𝜇k(≻)) . We refer to 𝜇(≻) 
as the truthful message for ≻.

13  We conjecture that the set of IC mechanism with weak preferences would still be larger than just the 
RPS mechanism, but we have not achieved a characterization. Regardless, we know three things: (1) 
With strict preferences the RPS mechanism is the only IC mechanism with broad applicability. (2) If we 
allow weak preferences then the set of IC mechanisms must shrink. (3) The RPS mechanism remains IC 
with weak preferences. From these, we can conclude that, even with weak preferences, the RPS mecha-
nism is the only IC mechanism with broad applicability.

tonicity (including hedging with ambiguity aversion), and the application of these results to game-theo-
retic (multi-player) experiments.

Footnote 12 (continued)
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We assume that an objective randomization device can be used to determine pay-
offs, so that payments are given by lotteries. Denote by Δ(X) the set of all probabil-
ity distributions over X. If f ∈ Δ(X) then f(x) is the probability with which x ∈ X is 
selected according to f. A (payment) mechanism � ∶ M → Δ(X) takes the announced 
choice m ∈ M and awards the subject with the lottery �(m) ∈ Δ(X) . Thus, �(m)(x) 
denotes the probability with which x is awarded when the decision maker announces 
m.

We refer to the pair (D,�) as an experiment; D completely specifies the choices 
the subject must face, and � describes how they are paid for those choices. Since D 
determines the domain of a mechanism, there is little distinction between an experi-
ment (D,�) and its associated mechanism � ; when it causes no confusion, we refer 
to experiments and mechanisms interchangeably.

We assume that the subject’s preferences ≻ extend to the space of lotteries Δ(X) . 
An extension of ≻ to Δ(X) is denoted by ⪰∗ , and we assume that any admissible 
extension is complete and transitive. Although ≻ is strict, ⪰∗ may not be. The asym-
metric part of ⪰∗ is denoted by ≻∗ . An extension ⪰∗ is assumed to agree with ≻ on 
the space of degenerate lotteries. We let ℰ(≻) denote the set of admissible exten-
sions of ≻ . Think of ℰ as capturing the assumptions the experimenter is willing to 
make about the subject’s preferences over lotteries. For example, if the experimenter 
assumes that the subject is a risk-averse expected utility maximizer, then ℰ(≻) is 
the set of extensions ⪰∗ that have an expected utility representation with a concave 
cardinal utility index u ∶ X → ℝ that ordinally agrees with ≻ (meaning, u(x) > u(y) 
if and only if x ≻ y).14

Definition 1  (Incentive compatibility) A mechanism � is incentive compatible 
with respect to ℰ if, for every preference ≻ , every extension ⪰∗∈ ℰ(≻) , and every 
m ≠ 𝜇(≻) , we have that 𝜑(𝜇(≻)) ≻∗ 𝜑(m).

In other words, incentive compatible experiments induce the subject to announce 
truthfully, treating each decision problem as though it were in isolation. Note that 
whether or not a mechanism (or experiment) is incentive compatible depends cru-
cially on ℰ . When there is no confusion, we drop the reference to ℰ and simply refer 
to � as incentive compatible.

In some experiments subjects are paid for all of their decisions, or for some ran-
domly-selected subset of decisions. In those cases, payment objects are ‘bundles’ 
of choice objects. Technically, they are subsets of 

⋃
i Di . Our framework already 

accommodates bundles; simply expand X to include all non-empty subsets of 
⋃

i Di 
and allow � to select lotteries that put positive probability on these subsets. How-
ever, we will show that paying anything outside of 

⋃
i Di cannot be incentive com-

patible without making assumptions about how ≻ behaves outside of 
⋃

i Di . For the 

14  We assume implicitly that the experimenter has a set of admissible preferences over X in mind; when 
we say ‘for all ≻ ,’ we really mean ‘for all admissible ≻ .’ Our results hold for any set of admissible strict 
preferences, including the set of all strict preferences on X.
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case of bundles, one would need to assume no complementarities in ≻ . We explore 
this in our previous work.

3 � Incentive compatibility of the RPS mechanism

Without making further assumptions on the correspondence ℰ , there do not exist 
incentive compatible mechanisms when the number of decision problems is k ≥ 2 ; 
see Proposition 0 in Azrieli et al. (2018) for the proof. Unless otherwise specified, 
we assume that extensions ⪰∗ respect first-order stochastic dominance with respect 
to the underlying preference ≻.

Definition 2  (First-order stochastic dominance) Fix ≻ . The lottery f dominates the 
lottery g with respect to ≻ (denoted f ⊒ g ) if, for every x ∈ X,

If there is strict inequality for at least one x then we say f strictly dominates g with 
respect to ≻ ( f ⊐ g).15

Definition 3  (Monotonic extension) An extension ⪰∗ of ≻ is monotonic if f ⊒ g 
implies f ⪰∗ g and f ⊐ g implies f ≻∗ g . The collection of all monotonic extensions 
of ≻ is denoted by ℰmon(≻).

Monotonicity is satisfied by nearly every model in decision theory; indeed, many 
authors view it as normative.16

The following simple lemmas will be useful for some of the following results. 
The proofs are omitted.

Lemma 1  Assume ℰ(≻) ⊆ ℰmon(≻) for every ≻ . If for every ≻ and every m ≠ 𝜇(≻) 
we have that 𝜑(𝜇(≻)) ⊐ 𝜑(m) , then � is incentive compatible with respect to ℰ.

Lemma 2  A mechanism � is incentive compatible with respect to ℰmon if and only if, 
for every preference ≻ and every m ≠ 𝜇(≻),𝜑(𝜇(≻)) ⊐ 𝜑(m).

Remark  The conclusion of Lemma 2 continues to hold even if the set of admissible 
extensions ℰ(≻) does not contain all monotonic extensions, as long as this set is 
‘sufficiently rich’. For example, if any expected utility extension is admissible then 
the lemma is still true.

∑

{x�∈X∶x�⪰x}

f (x�) ≥
∑

{x�∈X∶x�⪰x}

g(x�).

15  Because it will always be obvious, we use a notation which suppresses the dependence of ⊒ and ⊐  
on ≻.
16  For example, Tversky and Kahneman (1992) (following Quiggin 1982 and others) developed cumula-
tive prospect theory precisely because their original prospect theory model violated monotonicity.
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A common payment mechanism is one in which a single decision problem is ran-
domly selected, and the subject is paid with her choice at that problem. We call such 
a mechanism a Random Problem-Selection (RPS) Mechanism. Formally,

Definition 4  (Random problem-selection mechanism) A mechanism � is a random 
problem-selection mechanism (RPS) if there exists a full-support probability distri-
bution � over � such that for every alternative x ∈ X,

Theorem 1  If ℰ(≻) ⊆ ℰmon(≻) for every ≻ and � is an RPS mechanism, then � is 
incentive compatible with respect to ℰ.

Proof  Follows immediately from Lemma 1, and from the obvious fact that lying 
in an RPS mechanism induces a lottery that is strictly dominated by the lottery 
obtained by truth-telling. 	�  □

4 � Characterization of incentive compatible mechanisms

In this section we provide a complete characterization of incentive compatible mech-
anisms when all monotonic extensions are admissible (or when the set of admissi-
ble extensions is sufficiently rich, see the Remark after Lemma 2). Recall that, by 
Lemma 2, incentive compatibility in this set-up is equivalent to the property that the 
lottery obtained by truth-telling strictly dominates any lottery that can be obtained 
by lying.

The example in the introduction illustrates how incentive compatibility can 
extend beyond the RPS mechanism. We now introduce notations and definitions 
required to formally state and prove the characterization result.

4.1 � Surely identified sets

Let MR = {m ∈ M ∶ (∃ ≻) m = 𝜇(≻)} be the set of rationalizable messages. 
MNR = M ⧵MR is then defined as the set of non-rationalizable messages.

Definition 5  Fix any rationalizable message m = (m1,… ,mk) ∈ MR . For every 
x, y ∈ X , say that x is directly revealed preferred to y under m if there is 1 ≤ i ≤ k 
such that mi = x and y ∈ Di , or if x = y . Denote the transitive closure of this relation 
by R(m), and say that x is revealed preferred to y under choices m if xR(m)y.

The relation R(m) is reflexive, transitive and antisymmetric, but it need not be 
complete. Denote by L(x,m) = {y ∈ X ∶ xR(m)y} and U(x,m) = {y ∈ X ∶ yR(m)x} 
the sets of elements that are revealed to be worse than x and better than x under 
choices m, respectively. Clearly, L(x,m) ⊆ L(x,≻) and U(x,m) ⊆ U(x,≻) when 
m = 𝜇(≻) , with strict inclusions for some x when R(m) is not a complete relation.

(1)�(m)(x) =
∑

{i∶mi=x}

�(Di).
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Let domm(E) be the R(m)-dominant element of E, if one exists. Notice that if 
m = 𝜇(≻) , then either domm(E) does not exist or else domm(E) = dom≻(E).

Definition 6  (Surely identified sets) A non-empty set E ⊆ X is surely identi-
fied (SI) if, for every m ∈ MR , domm(E) exists. In other words, E is SI if, for any 
order ≻ , the message m = 𝜇(≻) identifies the most-preferred element of E, so that 
domm(E) = dom≻(E).

For example, if D1 = {x, y} , D2 = {y, z} , and D3 = {x, z} , then E = {x, y, z} is 
surely identified, since any rationalizable message identifies the entire (strict) rela-
tion ≻ over E, and therefore identifies the most-preferred element of E.

Let SI(�) be the collection of surely identified sets for the given set of decision 
problems �.17 Obviously, any Di is in SI(�) . All singleton sets (of the form {x} ) are 
also surely identified. But there can be other sets in SI(�) , such as E above. A char-
acterization of surely identified is given by the following lemma, whose proof can 
be found in the “Appendix”.

Lemma 3  E ∈ SI(�) if and only if E is either a singleton, or for every pair 
{x, y} ⊆ E , there exists D ∈ � for which {x, y} ⊆ D ⊆ E.

4.2 � Weighted set‑selection mechanisms

We can now define a generalization of RPS mechanisms called weighted set-selec-
tion (WSS) mechanisms. These mechanisms randomly select from the surely identi-
fied sets and pay the revealed-most-preferred element from that set (assuming m is 
rationalizable). Thus, the probability that x is paid under message m is simply the 
probability that an SI set E is drawn such that domm(E) = {x}.

Definition 7  (Weighted set-selection mechanisms) A mechanism � ∶ M → Δ(X) is a 
weighted set-selection mechanism (WSS) if there exists some � ∶ SI(�) → ℝ such 
that for every rationalizable m ∈ MR and every alternative x ∈ X,

The requirement that �(m) be a well-defined lottery places some restrictions on 
the weighting function � . For example, it cannot put negative weight on any single-
ton set: If 𝜆({x}) < 0 and there is no other E ∈ SI(�) for which domm(E) = {x} , 
then 𝜑(m)(x) = 𝜆({x}) < 0 , which is forbidden. Furthermore, we have that

�(m)(x) =
∑

{E∶ domm(E)={x}}

�(E).

17  Recall that � = {D1,… ,Dk} is the collection of decision problems, while D = (D1,… ,Dk) is the 
ordered list of decision problems.
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so it must be that 
∑

E∈SI(�) �(E) = 1 . These observations prove the following lemma.

Lemma 4  A weighted set-selection mechanism must be associated with a weighting 
function � that satisfies

(1)	
∑

E∈SI(�) �(E) = 1 , and
(2)	 �({x}) ≥ 0 for every x ∈ X.

Remark  A weighted set-selection mechanism uniquely determines the vector � that 
represents it. That is, if � and �′ are two different weighting vectors then the cor-
responding mechanisms � and �′ differ on MR . This can be seen by considering a 
minimal (with respect to inclusion) SI set E for which �(E) ≠ �(E�) , and an order 
≻ which ranks all elements of E below every other element of X. The top element 
of E according to ≻ is chosen with different probabilities under � and �′ when the 
choices are 𝜇(≻) . Thus, given the collection � , there is a one-to-one correspondence 
between WSS mechanisms and the vectors � that define them.

4.3 � Switch positivity

We now formalize a condition on � called switch positivity that is precisely what’s 
needed to guarantee incentive compatibility of a WSS mechanism. To gain under-
standing for switch positivity, consider the example given in Table 1. The four deci-
sion problems are shown on the left, along with the set E1 , which is surely identified, 
and the set E2 , which is not. The � functions for four different WSS mechanisms 
are given, labeled �1 through �4 , with �2 being an RPS mechanism. Since E2 is not 

∑

x

�(m)(x) =
∑

x

[
∑

{E∈SI(�)∶ domm(E)={x}}

�(E)

]

=
∑

E∈SI(�)

�(E),

Table 1   Examples to demonstrate the switch positivity condition

The left panel shows the � functions corresponding to four example mechanisms. The right panel shows 
four example preferences, with options listed from best (top) to worst (bottom)

�1(⋅) �2(⋅) �3(⋅) �4(⋅) ≻x ≻y ≻a
≻b

D1 = {x, y} 0 1/4 0 1/2 x y a b
D2 = {x, a} 1/3 1/4 1/4 1/4 y x b a
D3 = {y, a} 1/3 1/4 1/4 1/4 a a c c
D4 = {b, c} 1/3 1/4 1/4 1/4 b b x x
E1 = {x, y, a} 0 0 1/4 − 1/4 c c y y
E2 = {a, b} – – – – �(⋅) = (x, x, y, b) (y, x, y, b) (x, a, a, b) (x, a, a, b)
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surely identified, no WSS mechanism can put weight on E2 . On the right are four 
example preferences. The truthful announcement vector for each preference is listed 
at the bottom.

Comparing 𝜇(≻x) and 𝜇(≻y) , we see that these preferences are only distinguished 
in this experiment by their choice from D1 . Thus, to distinguish these two prefer-
ences, an incentive compatible WSS mechanism must provide incentives to answer 
D1 truthfully. The mechanism given by �1 (which has �1(D1) = 0 ) does not provide 
such incentives. This is because announcing 𝜇(≻x) and 𝜇(≻y) would both give the 
same lottery (which pays x, y, and b each with 1 / 3 chance). Thus, neither prefer-
ence has a strict incentive to tell the truth; deviating to the other preference’s truth-
ful announcement has no cost.

An easy way to restore incentive compatibility is to put strictly positive weight on 
D1 , which is exactly what the RPS mechanism �2 does.

But there is an alternative way to restore incentive compatibility in this 
example: put weight on E1 instead of D1 . This is done in �3 . Now announcing 
𝜇(≻x) = (x, x, y, b) gives a 1 / 2 chance of receiving x (1 / 4 from D2 and 1 / 4 from 
E1 ), while announcing 𝜇(≻y) = (y, x, y, b) gives a 1 / 2 chance of receiving y (1 / 4 
from D3 and 1 / 4 from E1 ). Thus, each type has a strict incentive to tell the truth in 
D1 , even though �3(D1) = 0.

From this we see that both D1 and E1 could be used to distinguish between ≻x 
and ≻y . Since ≻x and ≻y differ only in that they switch the ordering of x and y, 
we refer to both D1 and E1 as switch test sets for x and y. And a natural condition 
for incentive compatibility is that at least one of these switch test sets must have 
positive weight.

In fact, we can derive a slightly weaker condition. Consider �4 , which has 
𝜆4(D1) > 0 but 𝜆4(E1) < 0 . Because 𝜆(E1) + 𝜆(D1) > 0 the mechanism will also 
distinguish between ≻x and ≻y , since announcing x ∈ D1 will, on net, increase 
the probability that x is paid by 1∕2 − 1∕4 = 1∕4 , while announcing y ∈ D1 will, 
on net, increase the probability of y by 1∕2 − 1∕4 = 1∕4 . Putting these cases 
together, we can say that incentive compatibility requires that 𝜆(D1) + 𝜆(E1) > 0 . 
In other words, the sum of weights on all switch test sets for x and y must be posi-
tive. We call this the switch positivity condition.

We do not need switch positivity to apply to all x and y because we do not 
need to distinguish all possible x and y pairs. Consider the preferences ≻a and ≻b . 
There are no decision problems containing both a and b. Thus, 𝜇(≻a) = 𝜇(≻b) . 
Furthermore, there are no surely identified sets containing both a and b (recall E2 
is not surely identified), so this particular experiment is simply not designed to 
distinguish between ≻a and ≻b . There is no need to put positive weight on switch 
test sets for a and b. Therefore, we can refine our switch positivity condition to 
apply only to those pairs x and y that have surely-identified switch test sets.

In the above example the switch in ordering between x and y occurred at the 
top of the preference ranking. But a similar example could be constructed where 
the switch between x and y happens in the middle of the ordering. As long as the 
decision problems contain none of the elements ranked above x and y, the result-
ing condition on � is the same, though we must specify that the switch test set 
does not contain any of those higher-ranked elements. Formally, if A is the set 
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of elements ranked below x and y, then the switch test set must be a subset of 
A ∪ {x, y} . In this case we call it a switch test set for x and y against A, and require 
that switch positivity hold for all A. For example, if A = � (meaning x and y are at 
the bottom) then the only surely identified switch test set for x and y against A = � 
is D1 = {x, y} , and so switch positivity would require that 𝜆(D1) > 0.

We now have our complete notion of switch test sets and the needed switch 
positivity condition.

Definition 8  (Switch test set) Let x, y ∈ X and A ⊆ X ⧵ {x, y} . A set E ⊂ X is a switch 
test set for x and y against A if E ∈ SI(�) and {x, y} ⊆ E ⊆ A ∪ {x, y} . Let T(x, y, A) 
denote the collection of switch test sets for x and y against A.

Definition 9  (Switch positivity) A weighted set-selection mechanism � (with asso-
ciated weighting vector � ) satisfies switch positivity if, for every x, y ∈ X and 
A ⊆ X ⧵ {x, y} such that T(x, y,A) ≠ � , it holds that

Remark  If the collection T(x,  y,  A) is not empty, then it contains at least one of 
the decision problems in � . In the example above, D1 ∈ T(x, y, {x, y, a}) . Indeed, 
E ∈ T(x, y,A) means that {x, y} ⊆ E ⊆ A ∪ {x, y} . Since E is surely identified, 
Lemma 3 implies that there is D ∈ � such that {x, y} ⊆ D ⊆ E . It follows that 
D ∈ T(x, y,A) as well.

4.4 � Dealing with non‑rationalizable messages

Switch positivity is clearly necessary for incentive compatibility because it guar-
antees that a subject with preference ≻ will not “imitate” the preference ≻xy by 
announcing 𝜇(≻xy) (the optimal choices for ≻xy ) instead of 𝜇(≻) . But we also need 
to ensure that the subject has no incentive to announce any non-rationalizable mes-
sages. Because we allow for all monotonic extensions, the only way to accomplish 
this is to ensure that, for every ≻ and m� ∈ MNR , �(m�) is dominated by 𝜑(𝜇(≻)).

To visualize this requirement, return to the example of D1 = {x, y} , D2 = {y, z} , 
and D3 = {x, z} , and consider Fig.  1. Let � be any incentive compatible mecha-
nism. Start with the preference x ≻ y ≻ z for which truth-telling generates the lot-
tery 𝜑(𝜇(≻)) . This point is denoted as xyz in the figure. If a lottery �(m�) is to be 
dominated by 𝜑(𝜇(≻)) (for preference ≻ ) then it must put less weight on x and more 
weight on z. In the figure, �(m�) must be in the cone emanating to the northeast from 
the point xyz, as indicated by two dashed lines. Thus, every m� ∈ MNR needs to map 
into some �(m�) in this cone.

But for preference y ≻′ x ≻′ z , we must have that every �(m�) maps into the cone 
emanating to the northwest from the truth-telling lottery yxz. In general, for any 
preference ≻ , we must have that every �(m�) be in the cone of dominated lotteries 
for that preference. There are six such cones (one for each ≻ ), and the intersection of 
those cones is the dark gray area labeled ΦNR . Incentive compatibility requires that 

∑

{E∈T(x,y,A)}

𝜆(E) > 0.
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�(m�) ∈ ΦNR for each m� ∈ MNR . Note that the six vertices must be excluded from 
ΦNR because incentive compatibility requires that all non-rationalizable messages 
be strictly dominated; if one non-rationalizable maps into the same lottery as some 
truthful message, then an a subject with that preference will be indifferent between 
the truthful message and the equivalent non-rationalizable message. Strict incentive 
compatibility rules this out.

Formally, let �(MR) be the set of lotteries that can be obtained by announcing 
any rationalizable message and co(�(MR)) be the convex hull of that set. We denote 
ΦNR = co(�(MR)) ⧵ �(MR) . Incentive compatibility requires that if m� ∈ MNR then 
�(m�) ∈ ΦNR.18

4.5 � The characterization theorem

Theorem  2  A mechanism � ∶ M → Δ(X) is incentive compatible with respect to 
ℰmon if and only if it is a weighted set-selection mechanism such that

(1)	 � satisfies switch positivity; and
(2)	 if m ∈ MNR then �(m) ∈ ΦNR.

The proof of this theorem—provided in the appendix—proceeds in three steps: 
First, we characterize a set of restrictions on the lotteries �(m) that are equivalent to 

Fig. 1   In Δ(X) , the lotteries 
stochastically dominated by the 
point 𝜑(𝜇(≻)) when x ≻ y ≻ z 
(labeled xyz) are shown in light 
gray. The lotteries that are domi-
nated by the truthful announce-
ment for every ≻ are shown in 
dark gray ( ΦNR)

18  In the figure there are six preferences and six vertices for ΦNR . In general, the number of vertices 
is equal to the cardinality of the range of �(MR) . This is less than the number of preferences if there is 
some pair ≻ and ≻′ such that 𝜑(≻) = 𝜑(≻�) . For example, if D = ({x, y}, {y, z}) then �(yxz) = �(yzx) and 
�(xzy) = �(zxy) , so �(MR) has only four vertices. In that case, ΦNR is a rectangle.
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incentive compatibility. Second, we show how an incentive compatible � can be rep-
resented via a supermodular capacity, and how the restrictions on lotteries imposed 
by incentive compatibility translate into certain restrictions on that capacity. Third, 
we show that the capacity can be translated into a weighting vector �—so that � is in 
fact a weighted set-selection mechanism—and how the restrictions on the capacity 
imply that � must satisfy switch positivity. Finally, we ‘close the loop’ by proving 
that any weighted set-selection mechanism satisfying these two conditions is in fact 
incentive compatible.

In most experiments there are no surely identified sets beyond the original deci-
sion problems (except for the singletons sets {x}x∈X , which are always surely identi-
fied). Assuming there are no other surely identified sets and that no Di can be surely 
identified from the other decision problems, switch positivity implies that every 
decision problem must have positive weight, that singleton sets may have positive or 
zero weight, and that every other set must have zero weight. In other words, the only 
incentive compatible mechanisms are RPS mechanisms, but with the added possibil-
ity that some alternatives are paid with fixed probabilities that do not depend on the 
subject’s messages.

Corollary 1  If no sets outside of (D1,… ,Dk) are surely identified, and if no Di is 
surely identified from the other decision problems, then � ∶ M → Δ(X) is incentive 
compatible if and only if it is an ‘extended’ RPS mechanism that may also put posi-
tive weight on singleton sets. Formally, � is incentive compatible if and only if it is 
associated with a probability distribution � over � ∪ {x}x∈X such that 𝜆(Di) > 0 for 
each Di ∈ � and �({x}) ≥ 0 for each x ∈ X.

Recall that our framework can handle the case of bundle payments (for exam-
ple, paying the subject all of their choices) by expanding X to include subsets of ⋃

i Di . But incentive compatibility requires that one use a WSS mechanism, and 
WSS mechanisms can only put positive probability on items in SI(�) . And SI(�) 
cannot contain these bundles. Without explicit assumptions on complementarities, 
sets containing bundles will not be surely identified and therefore cannot be paid 
in any incentive compatible mechanism. See Azrieli et  al. (2018) for an assump-
tion on complementarities that does make paying for multiple decisions incentive 
compatible.

5 � Lotteries versus acts: a comparison of characterizations

In this section we compare IC mechanisms in the objective lotteries framework of 
the current paper to IC mechanisms in the more general acts set-up of our previous 
paper (Azrieli et al. 2018). As explained in the introduction, we would like to show 
that there are more IC mechanisms when the subject views the randomization device 
as generating objective lotteries.

To formalize this idea, we must be able to compare directly a mechanism � in the 
acts framework to a mechanism � in the lotteries framework. In the acts framework 
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(ignoring bundle payments), a mechanism is a function � ∶ M → XΩ , where Ω is a 
finite state space and XΩ is the set of all acts, i.e. mappings from Ω to X. To convert 
acts into lotteries, let � be a probability measure over Ω.19 We say that (Ω, �,�) gen-
erates � if, for each m ∈ M and x ∈ X,

If the above equality holds for every rationalizable message m ∈ MR then we say 
that (Ω, �,�) generates � on rationalizable messages.

Proposition 1  If � is an incentive compatible act-mechanism (defined on some state 
space Ω), and � is a full-support probability distribution over Ω , then the lotteries-
mechanism � generated by (Ω, �,�) is incentive compatible.

The proof of this proposition follows from the discussion in the introduction and 
is therefore omitted.

We now consider the opposite direction, taking an IC lotteries-mechanism and 
studying the equivalent act-mechanism that generates it. But the following example 
shows that (1) there can be many act-mechanisms that generate a given IC lotteries-
mechanism, and (2) some of those act-mechanisms may not be IC. In other words, 
the converse of Proposition 1 does not hold generally.

Example 1  Let X = {x, y, z} . Suppose k = 3 with D1 = {x, y} , D2 = {y, z} , and 
D3 = {z, x}.20

In the lotteries framework, consider an RPS mechanism � with �(Di) = 1∕3 for 
each i. The subject receives their revealed-most-preferred element of X with prob-
ability 2 / 3 and their revealed-second-most-preferred element with probability 1 / 3. 
A non-rationalizable message results in the uniform lottery over X.

This mechanism can be generated by an RPS mechanism � in the acts framework, 
where Ω = {�1,�2,�3}—each corresponding to a decision problem—and a distri-
bution � with �(�i) = 1∕3 for each i. Here, both mechanisms are incentive compat-
ible in their respective frameworks.

But � can also be generated by the following non-incentive-compatible act-mech-
anism � and distribution � : Let Ω = {�1,�2,�3} and �(�i) = 1∕3 for each i. For 
rationalizable message m, set �(m)(�1) = �(m)(�2) = domm(X) and �(m)(�3) equal 
to the revealed-second-most-preferred element of X. For non-rationalizable message 
m set �(m)(�1) = x,�(m)(�2) = y, and �(m)(�3) = z . This mechanism is not incen-
tive compatible in the acts framework because beliefs are subjective: A subject who 
believes �3 will occur with high enough probability will prefer to reveal their true 
favorite element as if it were their second-most-preferred.

�(m)(x) = �({� ∈ Ω ∶ �(m)(�) = x}).

19  The �-algebra for � is the power set of Ω.
20  Thus, the experimenter is eliciting the entire preference ordering over X. This also can be done by 
asking the subject to rank the three options in X and use that ranking to infer what m1 , m2 , and m3 would 
be. The RPS mechanism (or any IC mechanism) would then be used. The only difference is that a rank-
ing experiment prohibits the announcement of non-rationalizable messages. See Bateman et al. (2007) or 
Crockett and Oprea (2012) for examples of ranking experiments.
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The next example further demonstrates that there are incentive compatible lotter-
ies-mechanisms that cannot be generated by any incentive compatible acts-mecha-
nism (even when restricted to rationalizable messages). Thus, in this sense, the set of 
IC mechanisms is strictly larger in the lotteries framework.

Example 2  Let X = {x, y, z} . Suppose k = 4 with D1 = {x, y} , D2 = {y, z} , 
D3 = {z, x} , and D4 = {x, y, z}.

In the lotteries framework, consider a mechanism with �(Di) = 0.4 for each 
i ∈ {1, 2, 3} and �(D4) = −0.2 . This mechanism pays the revealed-most-preferred 
element of X with probability 0.6 and the revealed-second-most-preferred element 
with probability 0.4. Also, set �(m) to be the uniform distribution over X whenever 
m is non-rationalizable. By Theorem 2 this mechanism is incentive compatible.

However, this mechanism cannot be generated by any incentive compatible 
mechanism in the acts framework. To prove this, suppose that (Ω, �,�) generates � , 
where � is incentive compatible. By Theorem 1 in Azrieli et al. (2018), each � ∈ Ω 
corresponds to some decision problem (or to a singleton) and pays the selected item 
from that problem. Consider first ≻ with z ≻ x ≻ y . Since 𝜑(𝜇(≻))(x) = 0.4 , the set 
of � ’s corresponding to D1 or to the singleton {x} must have �-probability of 0.4. 
But, by a symmetric argument, the same is true for D2 and {y} and to D3 and {z} . But 
then 

∑
� �(�) ≥ 1.2 , a contradiction.

The difficulty in generating � from an incentive compatible � in Example 2 
comes from � assigning negative weights to certain SI sets. In fact, this exactly char-
acterizes the cases where � cannot be generated by an incentive compatible �.

Proposition 2  Assume that � is an incentive compatible lotteries-mechanism.

(1)	 If the associated weighting vector � of � is non-negative, then there exists an 
incentive compatible acts-mechanism � (on some Ω ) and a probability � on Ω 
such that (Ω, �,�) generates � on rationalizable messages.

(2)	 If the associated weighting vector � of � contains negative elements, then � 
cannot be generated by any incentive compatible acts-mechanism � (even when 
restricted to rationalizable messages).

For (1), the construction of the first mechanism in Example 1 can be generalized to 
any lotteries mechanism with non-negative � to get a generating incentive compatible 
acts-mechanism. The proof of (2) is similar to the proof that � cannot be generated by 
an incentive compatible acts-mechanism in Example 2. The details are omitted.

6 � Choice from lotteries, reduction, and RDU preferences

Many experimental tests of decision-theoretic models ask the subject to make 
choices from menus of lotteries whose outcomes are dollar payments. In this case, 
payments in the RPS mechanism represent two-stage lotteries, where the ‘upper’ 
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stage refers to the random draw of a decision problem, and the ‘lower’ stage refers to 
the draw of a dollar amount according to the chosen lottery from that problem.

It is possible that the subject ‘reduces’ compound lotteries into one-stage lotteries 
according to the laws of probability, and thus that her preferences over the space of 
single stage lotteries (over money) completely determine her preferences over com-
pound lotteries. The following example—adapted from Holt (1986)—shows that 
incentive compatibility of the RPS mechanism can fail when non-expected utility 
models (in the lower stage) are combined with the reduction of compound lotteries.

Definition 10  (Rank-dependent utility) A subject has rank-dependent utility 
(RDU) preferences if a simple lottery f = (x1, p1;x2, p2;… ;xn, pn) ∈ Δ(ℝ) (with 
x1 < x2 < ⋯ < xn ) is evaluated according to the functional

where u ∶ ℝ → ℝ is increasing, q ∶ [0, 1] → [0, 1] is increasing, strictly concave 
over (0, 0.5) and strictly convex over (0.5, 1), q(0) = 0 , and q(1) = 1.

Example 3  Let l = ($0, 1∕2;$3, 1∕2) be an equiprobable lottery between $0 and 
$3 , and consider D1 = {l, $1} and D2 = {l, $2} . If a subject has rank-dependent 
utility with u(x) = x3∕4 , q(1∕4) = 1∕3 , q(1∕2) = 1∕2 , and q(3∕4) = 2∕3 , then 
$2 ≻∗ l ≻∗ $1 . Thus, the truthful announcement is m∗ = (l, $2) . Now consider an 
RPS mechanism for lotteries that puts equal probability on each Di being chosen. 
Announcing m∗ gives the lottery �(m∗) = ($0, 1∕4;$2, 1∕2;$3, 1∕4) , assuming com-
pound lotteries are reduced to single-stage lotteries. Announcing m� = (1, 2) gives 
the lottery �(m�) = ($1, 1∕2;$2, 1∕2) . Plugging in the values of u and q, we find that 
U(𝜑(m�)) > U(𝜑(m∗)) , so incentive compatibility is violated.

The reason the RPS mechanism fails in this example stems from the well-known 
fact that reduction of compound lotteries, when combined with our monotonicity 
assumption, implies the Von Neumann-Morgenstern independence axiom on the 
space of single stage lotteries.21 Consequently, if a model of preferences violates 
independence (as the RDU model does), but the reduction of compound lotteries is 
assumed, then that model must violate monotonicity. Without monotonicity, Theo-
rem 1 cannot be applied and there is no guarantee that the RPS mechanism is incen-
tive compatible.

In fact, we now show that for the decision problems in Example 3 there is no 
incentive compatible payment mechanism if any RDU preference is admissible. We 
need to slightly modify our framework in order to accommodate this example. Let 

Uq(f ) =

n∑

s=1

u(xs)

[
q(

s∑

r=1

pr) − q(

s−1∑

r=1

pr)

]
,

21  For a detailed discussion of this result and other related issues see Segal (1990). Segal’s axiom of 
‘compound independence’ is essentially the same as our monotonicity assumption. See also the discus-
sion in Section III of Azrieli et al. (2018).
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Δ(ℝ) be the set of all simple (finite support) lotteries on ℝ . A degenerate lottery that 
pays $x with probability 1 is denoted by �x . The subject faces the two decision prob-
lems from Example 3, D1 = {l, �1} and D2 = {l, �2} , where l is the lottery that pays 
0 or 3 with equal probabilities.

We assume that the subject has RDU preferences over Δ(ℝ) , represented by a 
functional Uq (for some u and q) as in Definition 10. Notice that this allows the sub-
ject to be indifferent between some of the lotteries. We therefore need to modify 
the definition of incentive compatibility to allow for weak preferences. We do that 
by requiring that, whenever a message is truthful, the output of the mechanism is 
(weakly) preferred to any other possible outcome, with strict preference whenever 
the other message is not truthful.

Since we assume that the subject reduces compound lotteries, her preferences 
over the compound lotteries induced by the mechanism are already captured by her 
functional Uq . Thus, a mechanism can be described by a function � ∶ M → Δ(ℝ) . 
Notice that we allow the mechanism to pay with arbitrary (simple) lotteries, not nec-
essarily lotteries over {0, 1, 2, 3}.

Proposition 3  In the set-up described above, there exists no incentive compatible 
mechanism for the decision problems D1 = {l, �1} and D2 = {l, �2}.

The proof of this proposition appears in the “Appendix”. While the proposition 
is stated for a particular pair of decision problems, we believe that this impossibility 
result is typical, and that for most experiments there will be no incentive compatible 
mechanism. Thus, either reduction of compound lotteries or the domain of admis-
sible preferences must be relaxed in order to get positive results.

7 � Empirical tests of the RPS mechanism

Consider the following simple test of the RPS mechanism. In treatment A, subjects 
face (D1,… ,Dk) and are paid via the RPS mechanism. In treatment B subjects see 
only one Di (for some i ∈ {1,… , k} ) and are paid for that one choice. If there are 
differences in the choice frequencies in Di between treatments then one might infer 
that the RPS mechanism (and, thus, monotonicity) failed. There are several papers 
that have taken this approach, including Beattie and Loomes (1997), Cubitt et  al. 
(1998, Experiment 2), Cox et al. (2014, 2015), Harrison and Swarthout (2014) and 
Freeman et al. (2016). Results among them are mixed.

There is a potential confound in the above design, however: subjects in treatment 
A see more choice objects than those in treatment B, and seeing these other options 
might alter their preferences over Di . For example, the decoy effect or compromise 
effect might alter preferences. If this is the case then differences in Di across treat-
ments may not necessarily indicate a monotonicity failure.

One possible way to fix the confound is to have the subjects in treatment B make 
choices from all k decision problems (just as in treatment A), but knowing that only 
their choice from Di will be paid. To our knowledge, there are four papers that take this 
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approach: Starmer and Sugden (1991), Cubitt et al. (1998, Experiment 3), Cox et al. 
(2015) and Brown and Healy (2018). Results here are also mixed. Starmer and Sug-
den (1991) find that the RPS mechanism is incentive compatible in one test, but not 
the other.22 Cubitt et al. (1998) and Cox et al. (2015) find no significant violation of 
incentive compatibility.23 Finally, Brown and Healy (2018) find significant a difference 
when all decisions are shown as one list on a single computer screen, but no significant 
difference when decisions are shown on sperate screens and in a random order. Indeed, 
this organizes the past results: the Starmer and Sugden (1991) rejection occurs when 
choices are presented in a list, but the other two studies—which find no rejection—pre-
sent choices in a separated format. Thus, we conjecture that the list presentation causes 
monotonicity violations and recommend separating decisions wherever possible.

Camerer (1989) uses the RPS mechanism in his experiment, and then, once the 
payment state is realized, surprises subjects by asking if they’d like to change their 
decision in the paid decision problem. Less than three percent of subjects opt to 
change, suggesting that the RPS mechanism is incentive compatible.24 Hey and Lee 
(2005b) ask whether their data fit better a model where subjects treat each question 
in isolation, or treat all as one large lottery. They assume several functional forms of 
preferences over lotteries, but find the data fit better the hypothesis that each deci-
sion is treated in isolation.25

Loomes (1998) and Rubinstein (2002) document a violation of monotonicity 
caused by irrational diversification. Imagine a die with four red faces and two blue 
faces. If subjects are asked to bet six times on six different rolls of the die, many will 
bet on red four times and bet on blue two times. Assuming they truly prefer the bet 
on red, the two bets on blue give a lottery that is stochastically dominated.26

Similarly, consider a dictator who must give $1 to either Ann or Bob. Suppose 
he prefers to give to Ann, but if given the choice twice might choose to give to Ann 
in one problem and Bob in another. The random choice of which problem gets paid 
provides an ex-ante fair division between Ann and Bob. This was first suggested by 
Diamond (1967), and evidence of this kind of preference has been documented by 
Bolton and Ockenfels (2010) and Cappelen et al. (2013), for example. Both fairness 
concerns and a preference for mixing suggest that monotonicity is more likely to be 
violated when the same question is asked repeatedly.

22  They report p values of 0.223 and 0.052, though their tests pool together two groups that saw different 
decision problems. Breaking these apart, we find the p values are 0.356 and 0.043, respectively.
23  Cox et  al. (2015) avoid the framing confound when comparing their “ImpureOT” to “POR” treat-
ments (we thank the authors for sharing their data), but not when comparing “OT” to “POR.” They do 
find significant differences across various mechanisms, but we focus here only on the ImpureOT versus 
POR comparison of interest.
24  This procedure cannot be used regularly, since forward-looking subjects would realize that their initial 
choices are inconsequential.
25  Hey and Lee (2005a) find a similar conclusion when subjects are given problems sequentially and 
future problems are not known.
26  Matching the frequency of the underlying events is known as ‘probability matching.’ Rubinstein 
(2002) pays for all decisions, but even then the bets on blue generate a stochastically dominated lottery 
and thus a violation of monotonicity.



22	 Y. Azrieli et al.

1 3

In developing prospect theory (Kahneman and Tversky 1979), it was found that 
subjects remove common components of compound lotteries. This ‘isolation effect’ 
has often been used as a justification for incentive compatibility of the RPS mech-
anism (Cubitt et  al. 1998; Wakker et  al. 1994). Indeed, isolation is equivalent to 
monotonicity (assuming transitivity), so isolation can be an appropriate justification 
for using the RPS mechanism.

Recall that monotonicity and reduction together imply expected utility, so mono-
tonicity may be questionable if reduction holds. Reduction has found little empirical 
support, however (see Camerer 1995,  p. 656 for a survey). For example, Loomes 
et  al. (1991), Starmer and Sugden (1991), Cubitt et  al. (1998, Experiment 1) and 
Beattie and Loomes (1997) all run experiments using the RPS mechanism in which 
two different messages m and m′ lead to the same simple lottery if reduction is 
assumed. In their data, subjects choose one message significantly more often than 
the other, clearly indicating that m and m′ are evaluated differently in many subjects’ 
preferences. Snowball and Brown (1979), Schoemaker (1989) and Bernasconi and 
Loomes (1992) also observe violations of reduction. Halevy (2007) finds that sub-
jects who respect reduction seem to be rare, and seem to be exactly those for whom 
independence (and, therefore, monotonicity) is a reasonable assumption.

Acknowledgements  The authors thank audiences at several seminars and conferences for helpful com-
ments. Healy gratefully acknowledges financial support from NSF Grant #SES-0847406.

Appendix 1: Proof of Lemma 3

For all of the appendices, recall that x ⪰ y indicates that either x ≻ y or x = y.
Suppose that E ∈ SI(�) , and that E is not a singleton. Let {x, y} ⊆ E be arbitrary. 

Consider the following two linear orders, ⪰ and ⪰� , which are identical except in 
their ranking of x and y (which are adjacent): They rank all elements of X∖E above 
all elements of E, and they rank x and y above all elements of E�{x, y} . However, 
x ≻ y and y ≻′ x . It is clear that if there is no D ∈ � such that {x, y} ⊆ D ⊆ E , then 
for all D ∈ � , we have dom⪰D = dom⪰�D , yet dom⪰E = x ≠ y = dom⪰�E , contra-
dicting sure identification.

Conversely, suppose that for every pair {x, y} ⊆ E , there exists D ∈ � for which 
{x, y} ⊆ D ⊆ E . Suppose by means of contradiction that there exist ⪰ and ⪰� for 
which for all D ∈ � , dom⪰D = dom⪰�D , but dom⪰E ≠ dom⪰�E . Let w = dom⪰E 
and z = dom⪰�E . There exists D� ∈ � for which {w, z} ⊆ D� ⊆ E . As a consequence, 
w = dom⪰D

� and z = dom⪰�D� , contradicting the fact that dom⪰D = dom⪰�D for all 
D ∈ �.
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Appendix 2: Proof of Theorem 2

Step 1: Restrictions on '

Recall that L(x,⪰) and U(x,⪰) are the lower- and upper-contour sets of x according 
to ⪰ , respectively. Let r(x,⪰) = |U(x,⪰)| be the rank of x in ⪰ . Two elements x, y are 
adjacent in ⪰ if |r(x,⪰) − r(y,⪰)| = 1. A switch of x, y in an order ⪰ is the replace-
ment of the order of x, y, where x, y are adjacent in ⪰ . Denote the obtained order by 
⪰xy.27

Lemma 5  � is incentive compatible with respect to ℰmon if and only if it has the fol-
lowing two properties:

(1)	 For every ⪰ and every x, y with r(x,⪰) = r(y,⪰) − 1,

(a)	 �(�(⪰))(z) = �(�(⪰xy))(z) for every z ≠ x, y.
(b)	 𝜑(𝜇(⪰))(x) > 𝜑(𝜇(⪰xy))(x) and  𝜑(𝜇(⪰))(y) < 𝜑(𝜇(⪰xy))(y) whenever 

�(⪰) ≠ �(⪰xy).

(2)	 �(m) ∈ ΦNR whenever m ∈ MNR.

Proof  Assume � is incentive compatible and fix some ⪰ and some x,  y with 
r(x,⪰) = r(y,⪰) − 1 . If �(⪰) = �(⪰xy) then the conditions are trivially true. 
Now assume that they differ. Let z ≠ x, y be some other element of X. Assume 
first that r(z,⪰) < r(x,⪰) , so z is ranked above x (and y) according to ⪰ . Incen-
tive compatibility implies that �(�(⪰))(U(z,⪰)) ≥ �(�(⪰xy))(U(z,⪰)) and that 
�(�(⪰xy))(U(z,⪰xy)) ≥ �(�(⪰))(U(z,⪰xy)) . But since U(z,⪰) = U(z,⪰xy) we get 
that they are equal, that is �(�(⪰))(U(z,⪰)) = �(�(⪰xy))(U(z,⪰)) . The same 
argument applies to any z ranked above x (according to ⪰ ), which proves that 
�(�(⪰))(z) = �(�(⪰xy))(z) for any such z. A similar argument proves the assertion for 
elements z ranked below y. It follows that we must have 𝜑(𝜇(⪰))(x) > 𝜑(𝜇(⪰xy))(x) 
(and therefore 𝜑(𝜇(⪰))(y) < 𝜑(𝜇(⪰xy))(y) ) in order for 𝜑(𝜇(⪰)) ⊐ 𝜑(𝜇(⪰xy)) to hold. 
This concludes the proof of property 1.

As for property 2, whenever m ∈ MNR incentive compatibility implies that 
𝜑(𝜇(⪰)) ⊐ 𝜑(m) for every ⪰ . First, this implies that �(m) ≠ �(�(⪰)) for every ⪰ . 
Second, assume that �(m) is not in ΦNR . Then by the separation theorem there is a 
vector u ∈ ℝ

X such that 
∑

x u(x)𝜑(m)(x) >
∑

x u(x)𝜑(𝜇(⪰))(x) for every ⪰ . By bound-
edness of the set ΦNR , we can choose u such that u(x) ≠ u(y) whenever x ≠ y . Let 
⪰u be the order over X defined by u (formally, u(x) > u(y) implies x ≻ y ). Then an 
expected utility maximizer with utilities u(⋅) prefers to report the non-rationalizable 

27  Formally, x ⪰ y ⟺ y ⪰xy x and, for all other w, z ∈ X , w ⪰ z ⟺ w ⪰xy z . Note that ⪰xy is only 
well-defined if x and y are adjacent in ⪰.
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choices m over her true choices �(⪰u) . But this means �(⪰u) does not first-order sto-
chastically dominate �(m) according to ⪰u , a contradiction.

Conversely, assume that properties 1 and 2 are satisfied. Fix some ⪰ and consider 
some rationalizable deviation m ∈ MR , m ≠ �(⪰) . Let ⪰�∈ �−1(m) . Consider a mini-
mal sequence of switches that starts at ⪰ and ends at ⪰� . This means that x and y are 
switched somewhere a long the path if and only if x ≻ y but y ≻′ x . Then property 1 
implies that after any switch along the way we get a lottery that is dominated (rela-
tive to ⪰ ) by the previous one. This shows that �(�(⪰)) dominates �(�(⪰�)) = �(m) . 
Finally, if m ∈ MNR then by property 2 and the above argument �(m) is a convex 
combination of lotteries that are dominated (relative to ⪰ ) by �(�(⪰)) , so it is domi-
nated as well. This proves the lemma. 	�  □

Step 2: Capacity representation

A capacity is a set function v ∶ 2X → ℝ such that v(�) = 0 . A capacity v is normal-
ized if v(X) = 1 and monotone if A ⊆ B implies v(A) ≤ v(B).

Definition 11  A capacity v satisfies switch positivity if for every 
x, y ∈ X and A ⊆ X ⧵ {x, y} the following holds: If T(x, y,A) ≠ � then 
v(A ∪ {x, y}) + v(A) > v(A ∪ {x}) + v(A ∪ {y}) ; otherwise, v(A ∪ {x, y}) + v(A) =

v(A ∪ {x}) + v(A ∪ {y}).

If v satisfies switch positivity then it is supermodular, meaning 
v(A ∪ B) + v(A ∩ B) ≥ v(A) + v(B) for every A,B ⊆ X.

Lemma 6  If a mechanism � is incentive compatible with respect to ℰmon then there 
exists a normalized and monotone capacity v that satisfies switch positivity such that 
�(m)(x) = v(L(x,m)) − v(L(x,m) ⧵ {x}) for every m ∈ MR and every x ∈ X.

Proof  Given A ⊆ X , consider some order ⪰ which ranks A at the bottom. Define 
v(A) = �(�(⪰))(A) ∶=

∑
x∈A �(�(⪰))(x) . Notice first that, under incentive compat-

ibility, v is well-defined in the sense that it does not depend on the particular order 
⪰ used. Indeed, this follows from property (1a) in Lemma 5. It is also clear that v is 
normalized and monotone.

We now claim that v satisfies switch positivity. To see this, take any 
x,  y and A ⊆ X ⧵ {x, y} . Consider some order ⪰ with L(x,⪰) = A ∪ {x} 
and L(y,⪰) = A ∪ {x, y} . We have v(A ∪ {x}) = �(�(⪰))(A ∪ {x}) and 
v(A ∪ {y}) = �(�(⪰xy))(A ∪ {y}) , so

Now, if T(x, y,A) ≠ � then �(⪰) ≠ �(⪰xy) (see Remark 4.3), so by property (1b) of 
Lemma 5 we have 𝜑(𝜇(⪰xy))(y) < 𝜑(𝜇(⪰))(y) . Thus,

v(A ∪ {x}) + v(A ∪ {y}) = �(�(⪰))(A ∪ {x}) + �(�(⪰xy))(A ∪ {y})

= v(A) + �(�(⪰))(A) + �(�(⪰))(x) + �(�(⪰xy))(y).
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as required. On the other hand, if T(x, y,A) = � then �(⪰) = �(⪰xy) , so we get

Finally, we need to show that �(m)(x) = v(L(x,m)) − v(L(x,m) ⧵ {x}) whenever 
m ∈ MR . Fix m ∈ MR and some x ∈ X . We claim that there is ⪰∈ �−1(m) such that 
L(x,m) = L(x,⪰) . Since L(x,m) ⊆ L(x,⪰) for all ⪰∈ �−1(m) , it is sufficient to show 
that the reverse inclusion holds for some ⪰∈ �−1(m) . To see this, start with an arbi-
trary ⪰∈ �−1(m) and consider the set L(x,⪰) ⧵ L(x,m) . If this set is empty we are 
done. Otherwise, take the highest ranked element (according to ⪰ ) in this set, say 
y. Then for any z ranked between y and x (including z = x ) it cannot be that zR(m)y, 
so by a sequence of switches we can put y above x without changing the resulting 
choices. By repeating this procedure for every element in L(x,⪰) ⧵ L(x,m) we get 
the desired order, say ⪰� . For this order we have

as needed. 	�  □

Step 3: Weighting vector representation

Lemma 7  Given � , if there exists a normalized and monotone capacity v that sat-
isfies switch positivity such that �(m)(x) = v(L(x,m)) − v(L(x,m) ⧵ {x}) for every 
m ∈ MR and every x ∈ X , then � is a weighted set-selection mechanism that satisfies 
switch positivity.

Proof  Let v be a normalized and monotone capacity that satisfies switch positivity 
and represents � as in the assertion of the lemma. As is well known (see Gilboa and 
Schmeidler 1995, e.g.), any capacity can be uniquely represented as a linear combi-
nation of the ‘unanimity capacities’. That is, there is a unique vector {𝜆(E)}E⊆X,E≠� 
such that v(A) =

∑
E⊆A 𝜆(E) for every A ⊆ X.

We first show that if B is not SI then �(B) = 0 . If B is not SI then by Lemma 3 
there are x, y ∈ B such that for no 1 ≤ i ≤ k it holds that {x, y} ⊆ Di ⊆ B . This in turn 
implies that T(x, y,B ⧵ {x, y}) is empty (see Remark 4.3). Since v satisfies switch 
positivity we get that

v(A ∪ {x}) + v(A ∪ {y}) < v(A) + 𝜑(𝜇(⪰))(A) + 𝜑(𝜇(⪰))(x) + 𝜑(𝜇(⪰))(y)

= v(A) + v(A ∪ {x, y}),

v(A ∪ {x}) + v(A ∪ {y}) = v(A) + �(�(⪰))(A) + �(�(⪰))(x) + �(�(⪰))(y)

= v(A) + v(A ∪ {x, y}).

v(L(x,m)) − v(L(x,m) ⧵ {x}) = v(L(x,⪰�)) − v(L(x,⪰�) ⧵ {x})

= �(m)(L(x,⪰�)) − �(m)(L(x,⪰�) ⧵ {x})

= �(m)(x),
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But if {x, y} ⊆ Di ⊆ B for no i then for every set E in the sum on the left it is also 
true that {x, y} ⊆ Di ⊆ E for no i, which implies that every such E is not SI. By 
induction on the size of B we can therefore prove that �(B) = 0.

We next check that the vector � satisfies switch positivity. Take any x, y ∈ X and 
A ⊆ X ⧵ {x, y} . By the last paragraph,

If T(x, y,A) ≠ � then since v satisfies switch positivity we have that 
v(A ∪ {x, y}) − v(A ∪ {x}) − v(A ∪ {y}) + v(A) > 0 . Thus, � satisfies switch 
positivity.

The last thing to check is that � in fact represents the weighted set-selection 
mechanism � as in Definition 7. This follows from (for m ∈ MR)

	�  □

Step 4: Weighted set‑selection mechanisms are incentive compatible

Lemma 8  If � is a weighted set-selection mechanism that satisfies switch positivity 
and satisfies �(m) ∈ ΦNR whenever m ∈ MNR then � is incentive compatible with 
respect to ℰmon.

Proof  To check that � is incentive compatible we use Lemma 5. It follows imme-
diately from the definition of a weighted set-selection mechanism that in a switch 
of adjacent two elements x, y the probability of any other element z being selected 
is not affected. Further, we have just showed above that the probability of x goes 
strictly up after a switch that increases the rank of x and changes the truthful mes-
sage. This proves property 1 of Lemma 5. Property 2 of Lemma 5 is satisfied by 
assumption. 	�  □

Appendix 3: Proof of Proposition 3

It will be convenient to think of any lottery f as a function f ∶ ℝ → ℝ , with f(x) 
being the probability assigned to x by f. For instance, the lottery l in the proposition 
is identified with the function l(0) = l(3) = 1∕2 and l(x) = 0 otherwise. Addition of 
lotteries and multiplication of lotteries by scalars are performed pointwise (yielding 

∑

{E∶ {x,y}⊆E⊆B}

𝜆(E) = v(B) − v(B ⧵ {x}) − v(B ⧵ {y}) + v(B ⧵ {x, y}) = 0.

∑

{E∈T(x,y,A)}

�(E) = v(A ∪ {x, y}) − v(A ∪ {x}) − v(A ∪ {y}) + v(A).

𝜑(m)(x) = v(L(x,m)) − v(L(x,m) ⧵ {x}) =
∑

{E∶ x∈E⊆L(x,m)}

𝜆(E) =
∑

{E∶ domm(E)=x}

𝜆(E).
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functions which are not necessarily lotteries). The expected utility of a lottery f for a 
subject with utility function u (defined on dollar amounts) is denoted by u ⋅ f .

The proof is broken into two claims:

Claim 1  If � is incentive compatible then there is a ∈ (0, 1∕2] such that 
�(�1, �2) − �(l, �2) = −a�0 + 2a�1 − a�3.

Proof  Consider some strictly increasing utility function u such that 
1∕2u(0) + 1∕2u(3) = u(1) . Then an expected utility maximizer (a special case of 
RDU preferences) with utility function u is indifferent between l and �1 , so both 
announcements (�1, �2) and (l, �2) are truthful. By incentive compatibility this 
decision maker must also be indifferent between �(�1, �2) and �(l, �2) , that is 
u ⋅ �(�1, �2) = u ⋅ �(l, �2).

First, it cannot be true that there is x ∈ ℝ ⧵ {0, 1, 3} such that 
�(�1, �2)(x) ≠ �(l, �2)(x) . Indeed, let u be as above, and change the values of u in 
a small neighborhood of x (small enough that it does not affect any other point in 
the support of the two lotteries) to get a new increasing function ũ that still sat-
isfies 1∕2ũ(0) + 1∕2ũ(3) = ũ(1) . Then it cannot be true that both equalities 
u ⋅ �(�1, �2) = u ⋅ �(l, �2) and ũ ⋅ 𝜑(𝛿1, 𝛿2) = ũ ⋅ 𝜑(l, 𝛿2) hold simultaneously, a 
contradiction.

Thus, there are a, b, c ∈ ℝ such that �(�1, �2) − �(l, �2) = a�0 + b�1 + c�3 . Con-
sider a utility function u with u(0) = 1, u(1) = 2 and u(3) = 3 . By the same argu-
ment as above we get that u ⋅ �(�1, �2) = u ⋅ �(l, �2) , which implies a + 2b + 3c = 0 . 
By considering another function u with u(0) = 1, u(1) = 3 and u(3) = 5 gives 
a + 3b + 5c = 0 . Solving these two equations gives b = −2a and c = a.

To conclude, we showed that �(�1, �2) − �(l, �2) = −a�0 + 2a�1 − a�3 for some 
a ∈ ℝ . The fact that a > 0 follows by looking at an expected utility maximizer with 
the utility function u(x) = x (who strictly prefers the lottery l over �1 ). The fact that 
a ≤ 1∕2 is obvious. 	�  □

The proof of the above claim only considered EU preferences. The following 
claim makes use of RDU preferences which do not satisfy independence.

Claim 2  If � is incentive compatible then �(�1, �2) = �1 and �(l, �2) = l.

Proof  Let u be the function u(x) = 0 for x < 1 , u(1) = 1 , and u(x) = 3 for x > 1 . 
Consider an RDU decision maker with utility function u and a probability weight-
ing function q satisfying q(0) = 0, q(1∕2) = 1∕2, q(1) = 1 . Any such decision 
maker prefers the lottery l over �1 and prefers �2 over l. Thus, for incentive com-
patibility, any such decision maker must prefer �(l, �2) over �(�1, �2) , that is 
Uq(𝜑(l, 𝛿2)) > Uq(𝜑(𝛿1, 𝛿2)).

By the definition of u we have that

Uq(h) = 1[q(H(1)) − q(H(1−))] + 3[1 − q(H(1))]
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for every lottery h with cdf H. Denote by F the cdf of the lottery �(l, �2) and by G 
the cdf of �(�1, �2) . Then incentive compatibility requires that

for every q as above.
By the previous claim, there is 0 < a ≤ 1∕2 such that 

G(1) − F(1) = F(1−) − G(1−) = a . We claim now that incentive compatibility 
can only hold if a = 1∕2 ., i.e. if G(1) = 1,F(1) = F(1−) = 1∕2 and G(1−) = 0 . 
Indeed, in any other case it is possible to choose q (strictly increasing, q(0) = 0 , 
q(1) = 1 , q(1∕2) = 1∕2 ) such that q(G(1)) − q(F(1)) is much smaller than 
q(F(1−)) − q(G(1−)) , which violates (2). The precise construction of such q 
depends on which of the intervals [0,  1  /  2] or [1  /  2,  1] each one of these four 
numbers belongs to, but it is straightforward in all cases. For instance, assume that 
G(1−) ∈ [0, 1∕2] and F(1−),F(1),G(1) are all in (1 / 2, 1]. Then we can find q such 
that q(F(1−)), q(F(1)) and q(G(1)) are all close to 1, while q(G(1−)) is at most 1/2. 
Other cases are treated similarly. 	�  □

To conclude the proof, notice that the same arguments can be applied to the 
choices in the second decision problem. That is, incentive compatibility requires that 
�(l, l) = l and �(l, �2) = �2 . Since we cannot have �(l, �2) = l and �(l, �2) = �2 at the 
same time, we conclude that an incentive compatible mechanism does not exist.
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