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Abstract
The analysis of data from experiments in economics routinely involves testing mul-
tiple null hypotheses simultaneously. These different null hypotheses arise naturally 
in this setting for at least three different reasons: when there are multiple outcomes 
of interest and it is desired to determine on which of these outcomes a treatment 
has an effect; when the effect of a treatment may be heterogeneous in that it varies 
across subgroups defined by observed characteristics and it is desired to determine 
for which of these subgroups a treatment has an effect; and finally when there are 
multiple treatments of interest and it is desired to determine which treatments have 
an effect relative to either the control or relative to each of the other treatments. In 
this paper, we provide a bootstrap-based procedure for testing these null hypotheses 
simultaneously using experimental data in which simple random sampling is used to 
assign treatment status to units. Using the general results in Romano and Wolf (Ann 
Stat 38:598–633, 2010), we show under weak assumptions that our procedure (1) 
asymptotically controls the familywise error rate—the probability of one or more 
false rejections—and (2) is asymptotically balanced in that the marginal probability 
of rejecting any true null hypothesis is approximately equal in large samples. Impor-
tantly, by incorporating information about dependence ignored in classical multiple 
testing procedures, such as the Bonferroni and Holm corrections, our procedure has 
much greater ability to detect truly false null hypotheses. In the presence of multi-
ple treatments, we additionally show how to exploit logical restrictions across null 
hypotheses to further improve power. We illustrate our methodology by revisiting 
the study by Karlan and List (Am Econ Rev 97(5):1774–1793, 2007) of why people 
give to charitable causes.
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1 Introduction

Multiple hypothesis testing simply refers to any instance in which more than one 
null hypothesis is tested simultaneously. While this problem is pervasive throughout 
all empirical work in economics, we focus on the analysis of data from experiments 
in economics. In this setting, different null hypotheses arise naturally for at least 
three different reasons: when there are multiple outcomes of interest and it is desired 
to determine on which of these outcomes a treatment has an effect; when the effect 
of a treatment may be heterogeneous in that it varies across subgroups defined by 
observed characteristics (e.g., gender or age) and it is desired to determine for which 
of these subgroups a treatment has an effect; and finally when there are multiple 
treatments of interest and it is desired to determine which treatments have an effect 
relative to either the control or relative to each of the other treatments.

Testing multiple null hypotheses for each of these three reasons is ubiquitous 
in the analysis of experimental data. Anderson (2008), for example, reports that 
84% of experiments published from 2004 to 2006 in a set of social sciences field 
journals examine five or more outcomes simultaneously and 61% examine ten or 
more outcomes simultaneously. Specific examples include many studies of early 
childhood interventions, such as the Abecedarian and Perry pre-school programs, 
which collected data on a large variety of outcomes pertaining to educational 
attainment, employment, and criminal behavior, among others. Similarly, Fink 
et al. (2014) report that 76% of field experiments published in leading economics 
journals examine multiple subgroups and 29% examine ten or more subgroups. 
Specific examples include analyses of how the effects of competition may vary by 
gender (Gneezy et al. 2003; Niederle and Vesterlund 2007; Flory et al. 2015b) or 
age (Sutter and Glätzle-Rützler 2014; Flory et al. 2015a). Multiple treatments are 
also commonplace in experiments. For instance, the recent economics literature 
has studied how different incentive schemes affect a variety of outcomes includ-
ing worker productivity (Hossain and List 2012), child food choice and consump-
tion (List and Samek 2015), and educational performance (Levitt et al. 2012).

With a few exceptions, some of which we note below, it is uncommon for the 
analyses of these data to account for the multiple hypothesis testing. As a result, the 
probability of a false rejection may be much higher than desired. To illustrate this 
point, consider testing N null hypotheses simultaneously. Suppose that for each null 
hypothesis a p value is available whose distribution is uniform on the unit interval 
when the corresponding null hypothesis is true. Suppose further that all null hypoth-
eses are true and that the p values are independent. In this case, if we were to test 
each null hypothesis in the usual way at level � ∈ (0, 1) , then the probability of one 
or more false rejections equals 1 − (1 − �)N , which may be much greater than � and 
in fact tends rapidly to one as N increases. For instance, with � = 0.05 , it equals 
0.226 when N = 5 , equals 0.401 when N = 10 and 0.994 when N = 100 . In order to 
control the probability of a false rejection, it is therefore important to account appro-
priately for multiplicity of null hypotheses being tested.

In this paper, we provide a bootstrap-based procedure for testing these null 
hypotheses simultaneously using experimental data in which simple random 



775

1 3

Multiple hypothesis testing in experimental economics  

sampling is used to assign treatment status to units. Formally, we establish our 
results by applying the general results in Romano and Wolf (2010). In particular, 
we show under weak assumptions that our procedure (1) asymptotically controls 
the familywise error rate—the probability of one or more false rejections—and 
(2) is asymptotically balanced in that the the marginal probability of rejecting 
any true null hypothesis is approximately equal in large samples. Importantly, by 
incorporating information about dependence ignored in classical multiple testing 
procedures, such as the Bonferroni (1935) and Holm (1979) corrections, our pro-
cedure has much greater ability to detect truly false null hypotheses. In the pres-
ence of multiple treatments, we additionally show how to exploit logical restric-
tions across null hypotheses to further improve power. See Remark 3.7 for further 
discussion of this point.

As mentioned previously, it is uncommon in the experimental economics literature 
for authors to account for the multiplicity of null hypotheses being tested. Some notable 
exceptions include Kling et  al. (2007), who use a more restrictive resampling-based 
multiple testing procedure due to Westfall and Young (1993) and Anderson (2008), 
Heckman et al. (2010), Heckman et al. (2011), and Lee and Shaikh (2014), who com-
bine randomization methods with results in Romano and Wolf (2005) to construct mul-
tiple testing procedures with finite-sample validity for testing a more restrictive fam-
ily of null hypotheses. Perhaps most importantly, none of these papers consider null 
hypotheses emerging due to multiple treatments, which, as noted above, is a very com-
mon occurrence in experiments in economics.

The remainder of our paper is organized as follows. In Sect. 2, we introduce our 
setup and notation as well as the assumptions under which we will establish the validity 
of our multiple testing procedure. Section 3 describes our multiple testing procedure 
and establishes its validity. In Sect. 4, we apply our methodology to data originally pre-
sented in Karlan and List (2007), who study the economics of charity by measuring, 
among other things, the effectiveness of a matching grant on charitable giving. Sec-
tion 5 concludes. Proofs of all results can be found in “Appendix”.

2  Setup and notation

For k ∈  , let Yi,k denote the (observed) kth outcome of interest for the ith unit, Di 
denote treatment status for the ith unit, and Zi denote observed, baseline covariates for 
the ith unit. Further denote by  and  the supports of Di and Zi , respectively. For 
d ∈  , let Yi,k(d) be the kth potential outcome for the ith unit if treatment status were 
(possibly counterfactually) set equal to d. As usual, the kth observed outcome and kth 
potential outcome are related to treatment status by the relationship

It is useful to introduce the shorthand notation Yi = (Yi,k ∶ k ∈ ) and 
Yi(d) = (Yi,k(d) ∶ k ∈ ) . We assume that ((Yi(d) ∶ d ∈ ),Di, Zi), i = 1,… , n are 
i.i.d. with distribution Q ∈ � , where our requirements on � are specified below. 

Yi,k =
∑
d∈

Yi,k(d)I{Di = d}.
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It follows that the observed data (Yi,Di, Zi), i = 1,… , n are i.i.d. with distribution 
P = P(Q) . Denote by P̂n the empirical distribution of the observed data.

The family of null hypotheses of interest is indexed by

For each s ∈  , define

Using this notation, the family of null hypotheses of interest is given by

In other words, the sth null hypothesis specifies that the average effect of treatment 
d on the kth outcome of interest for the subpopulation where Zi = z equals the aver-
age effect of treatment d′ on the kth outcome of interest for the subpopulation where 
Zi = z . For later use, denote by 0(Q) the subset of  corresponding to true null 
hypotheses, i.e.,

Our goal is to construct a procedure for testing these null hypotheses in a way that 
ensures asymptotic control of the familywise error rate for each Q ∈ � . More pre-
cisely, we require for each Q ∈ � that

for a pre-specified value of � ∈ (0, 1) , where

The notation FWERQ is intended to reflect the fact that the quantity on the right-
hand-side of (3) is the familywise error rate computed under Q. We additionally 
require that the testing procedure is “balanced” in that for each Q ∈ �,

We impose the requirement of “balance” to avoid situations where some (true) null 
hypotheses may be more likely to be rejected than other (true) null hypotheses for 
reasons that are viewed as undesirable, such as some outcomes taking on much 
larger values than other outcomes.

We now describe our main requirements on � . The assumptions make use of the 
notation

Assumption 2.1 For each Q ∈ �,

under Q.

s ∈  ⊆ {(d, d�, z, k) ∶ d ∈ , d� ∈ , z ∈ , k ∈ }.

�s = {Q ∈ � ∶ EQ

[
Yi,k(d) − Yi,k(d

�)|Zi = z
]
= 0}.

(1)Hs ∶ Q ∈ �s for s ∈  .

0(Q) = {s ∈  ∶ Q ∈ �s}.

(2)lim sup
n→∞

FWERQ ≤ �

(3)FWERQ = Q{reject any Hs with s ∈ 0(Q)}.

(4)lim
n→∞

Q{reject Hs} = lim
n→∞

Q{reject Hs� } for any s and s� in 0(Q).

�k|d,z(Q) =EQ[Yi,k(d)|Di = d, Zi = z]

�2
k|d,z(Q) =VarQ[Yi,k(d)|Di = d, Zi = z].

(Yi(d) ∶ d ∈ ) ⟂⟂ Di|Zi
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Assumption 2.2 For each Q ∈ � , k ∈  , d ∈  and z ∈ ,

Assumption 2.3 For each Q ∈ � , there is 𝜖 > 0 such that

for all d ∈  and z ∈ .

Assumption  2.1 simply requires that treatment status was randomly assigned. 
Assumption  2.2 is a mild non-degeneracy requirement. Assumption  2.3 simply 
requires that both Di and Zi are discrete random variables (with finite supports).

Remark 2.1 Note that we have assumed in particular that treatment status 
Di, i = 1,… , n is i.i.d. While this assumption accommodates situations in which 
treatment status is assigned according to simple random sampling, it does not 
accommodate more complicated treatment assignment rules, such as those in which 
treatment status is assigned in order to “balance” baseline covariates among the sub-
sets of individuals with different treatment status. For a discussion of such treatment 
assignment rules and the implications for inference about the average treatment 
effect, see Bugni et al. (2015). □

Remark 2.2 When  is very large, requiring control of the familywise error rate may 
significantly limit the ability to detect genuinely false null hypotheses. For this reason, 
it may be desirable in such situations to relax control of the familywise error rate in 
favor of generalized error rates that penalize false rejections less severely. Examples of 
such error rates include: the m-familywise error rate, defined to be the probability of m 
or more false rejections; the tail probability of the false discovery proportion, defined 
to be the fraction of false rejections (understood to be zero if there are no rejections at 
all); and the false discovery rate, defined to be the expected value of false discovery 
proportion. Control of the m-familywise error rate and the tail probability of the false 
discovery proportion using resampling are discussed in Romano et  al. (2008b) and 
Romano and Wolf (2010). For procedures based only on (multiplicity-unadjusted) p 
values, see Lehmann and Romano (2005), Romano and Shaikh (2006a, b). For resam-
pling-based control of the false discovery rate, see Romano et al. (2008a). □

3  A stepwise multiple testing procedure

In this section, we describe a stepwise multiple testing procedure for testing (1) in a 
way that satisfies (2) and (4) for any Q ∈ � . In order to do so, we first require some 
additional notation. To this end, first define the “unbalanced” test statistic for Hs,

0 < 𝜎2
k|d,z(Q) = VarQ[Yi,k(d)|Di = d, Zi = z] < ∞.

(5)Q{Di = d, Zi = z} > 𝜖

(6)Ts,n =
√
n

������
1

nd,z

�
1≤i≤n∶Di=d,Zi=z

Yi,k −
1

nd�,z

�
1≤i≤n∶Di=d

�,Zi=z

Yi,k

������
,
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and its re-centered version

where

Next, for s ∈  , define

Note that Jn(x, s,P) is simply the distribution of (6) when Hs is true. In order to 
achieve “balance,” rather than reject Hs for large values of Ts,n , we reject Hs for large 
values of

Note that (8) is simply one minus a (multiplicity-unadjusted) bootstrap p value for 
testing Hs based on Ts,n . Finally, for  ′ ⊆  , let

Note that Ln(x, �,P) is the distribution the maximum of (8) over s ∈  � when Hs is 
true for all s ∈  � . Using this notation, we may describe our proposed stepwise mul-
tiple testing procedure as follows:

Algorithm 3.1 

Step 0. Set 1 = .
              ⋮
Step j. If Sj = � or

then stop. Otherwise, reject any Hs with Jn(Ts,n, s, P̂n) > L−1
n
(1 − 𝛼,j, P̂n) , set

and continue to the next step.
        ⋮

The following theorem describes the asymptotic behavior of our proposed 
multiple testing procedure.

Theorem  3.1 Consider the procedure for testing (1) it given by Algorithm  3.1. 
Under Assumptions 2.1–2.3, Algorithm 3.1 satisfies (2) and (4) for any Q ∈ �.

(7)

T̃s,n(P) =
√
n

������
1

nd,z

�
1≤i≤n∶Di=d,Zi=z

(Yi,k − �̃�k�d,z(P)) −
1

nd�,z

�
1≤i≤n∶Di=d

�,Zi=z

(Yi,k − �̃�k�d�,z(P))
������
,

�̃�k|d,z(P) = EP[Yi,k|Di = d, Zi = z].

Jn(x, s,P) = P
{
T̃s,n(P) ≤ x

}
.

(8)Jn(Ts,n, s, P̂n).

Ln(x,
�,P) = P

{
max
s∈ �

Jn(T̃s,n(P), s,P) ≤ x
}
.

max
s∈j

Jn(Ts,n, s, P̂n) ≤ L−1
n
(1 − 𝛼,j, P̂n),

j+1 = {s ∈ j ∶ Jn(Ts,n, s, P̂n) ≤ L−1
n
(1 − 𝛼,j, P̂n)},
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Remark 3.1 If  = {s} , i.e.,  is a singleton, then the familywise error rate is sim-
ply the usual probability of a Type I error. Hence, Algorithm 3.1 provides asymp-
totic control of the probability of a Type I error. In this case, Algorithm  3.1 is 
equivalent to the usual bootstrap test of Hs , i.e., the test that rejects Hs whenever 
Ts,n > J−1

n
(1 − 𝛼, s, P̂n). □

Remark 3.2 As noted above, p̂s,n = 1 − Jn(Ts,n, s, P̂n) may be interpreted as a boot-
strap p value for testing Hs . Indeed, for any Q ∈ �s , it is possible to show that

for any 0 < u < 1 . A crude solution to the multiplicity problem would therefore be 
to apply a Bonferroni or Holm correction to these p values. By replacing 
L−1
n
(1 − 𝛼,j, P̂n) with a suitable choice of critical value, it is possible to describe 

both the Bonferroni and Holm corrections in terms of Algorithm 3.1. The Bonfer-
roni correction may be obtained by applying Algorithm 3.1 with 1 − �

|| in place of 
L−1
n
(1 − 𝛼,j, P̂n) , whereas the Holm correction, first described in Holm (1979), 

may be obtained by applying Algorithm  3.1 with 1 −
�

|j| in place of 
L−1
n
(1 − 𝛼,j, P̂n) . Such approaches would indeed satisfy (2), as desired, but implic-

itly rely upon a “least favorable” dependence structure among the p values. To the 
extent that the true dependence structure differs from this “least favorable” one, 
improvements may be possible. Algorithm  3.1 uses the bootstrap to incorporate 
implicitly information about the dependence structure when deciding which null 
hypotheses to reject. In fact, Algorithm 3.1 will always reject at least as many null 
hypotheses as these procedures. □

Remark 3.3 Implementation of Algorithm 3.1 typically requires approximating the 
quantities Jn(x, s, P̂n) and Ln(x, �, P̂n) using simulation. As noted by Romano and 
Wolf (2010), doing so does not require nested bootstrap simulations. To explain fur-
ther, for b = 1,… ,B , draw a sample of size n from P̂n and denote by T̃∗,b

s,n
(P̂n) the 

quantity T̃s,n(P) using the bth resample and P̂n as an estimate of P. Then, Jn(x, s, P̂n) 
may be approximated as

and Ln(x, �, P̂n) may be approximated as

In particular, the same set of bootstrap resamples may be used in the two approxima-
tions. □

lim sup
n→∞

Q{p̂s,n ≤ u} ≤ u

Ĵn(x, s, P̂n) =
1

B

∑
1≤b≤B

I{T̃∗,b
s,n

(P̂n) ≤ x}

L̂n(x,
�, P̂n) =

1

B

∑
1≤b≤B

I
{
max
s∈ �

Ĵn(T
∗,b
s,n

(P̂n), s, P̂n) ≤ x
}
.
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Remark 3.4 In terms of higher-order asymptotic properties, it is often desirable to 
studentize, i.e., to replace Ts,n and T̃s,n(P) , respectively, with

where

Theorem 3.1 continues to hold with these changes. □

Remark 3.5 In some cases, it may be of interest to consider one-sided null hypoth-
eses, e.g., H−

s
∶ P ∈ �−

s
 , where

In this case, it suffices simply to replace Tsn and T̃sn(P) , respectively, with T−
s,n

 and 
T̃−
s,n
(P) , which are, respectively, defined as in (6) and (7), but without the absolute 

values. An analogous modification can be made for null hypotheses H+
s
∶ P ∈ �+

s
 , 

where �+
s
 is defined as in (9), but with the inequality reversed. □

Remark 3.6 Note that a multiplicity-adjusted p value for Hs , p̂
adj
s,n , may be computed 

simply as the smallest value of � for which Hs is rejected in Algorithm 3.1. □

Remark 3.7 It is possible to improve Algorithm 3.1 by exploiting transitivity (i.e., 
�k|d,z(Q) = �k|d�,z(Q) and �k|d�,z(Q) = �k|d��,z(Q) implies that �k|d,z(Q) = �k|d��,z(Q) ). 
To this end, for  ′ ⊆  , define

and replace L−1
n
(1 − 𝛼,j, P̂n) in Algorithm 3.1 with

With this modification to Algorithm 3.1, Theorem 3.1 remains valid. Note that this 
modification is only non-trivial when there are more than two treatments and may be 
computationally prohibitive when there are more than a few treatments. □

Tstud
s,n

=
Ts,n√

n ⋅

(
�̃�2
k|d,z(P̂n)

nd,z
+

�̃�2

k|d� ,z(P̂n)

nd� ,z

)

T̃stud
s,n

(P) =
T̃s,n(P)√

n ⋅

(
�̃�2
k|d,z(P̂n)

nd,z
+

�̃�2

k|d� ,z(P̂n)

nd� ,z

) ,

�̃�2
k|d,z(P) = VarP[Yi,k|Di = d, Zi = z].

(9)�−
s
= {Q ∈ � ∶ EQ[Yi,k(d) − Yi,k(d

�)|Zi = z] ≤ 0}

�( �) = { �� ⊆ 
� ∶ ∃ Q ∈ 𝛺 s.t.  �� = 0(Q)}

max
̃∈�(j)

L−1
n
(1 − 𝛼, ̃ , P̂n).
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Remark 3.8 Note that we only require that the familywise error rate is asymptoti-
cally no greater than � for each Q ∈ � . By appropriately strengthening the assump-
tions of Theorem 3.1, it is possible to show that Algorithm 3.1 satisfies

In particular, it suffices to replace Assumption 2.2 with a mild uniform integrability 
requirement and require in Assumption 2.3 that there exists 𝜖 > 0 for which (5) holds 
for all Q ∈ � , d ∈  and z ∈  . Relevant results for establishing this claim can be 
found in Romano and Shaikh (2012), Bhattacharya et al. (2012), and Machado et al. 
(2013).  □

4  Empirical applications

In this section, we apply our methodology to data originally presented in Karlan and 
List (2007), who use direct mail solicitations targeted to previous donors of a non-
profit organization to study the effectiveness of a matching grant on charitable giv-
ing. The sample includes all 50,083 individuals who had given to the organization at 
least once since 1991. Each individual was independently assigned with probability 
two-thirds to a treatment group (resulting in 33,396, or 67 percent of the sample, 
being treated) and with probability one-third to a control group (resulting in 16,687 
subjects, or 33 percent of the sample, being untreated). Individuals in the treatment 
group were offered independently and with equal probability one of 36 possible 
matching grants whose terms varied along three dimensions: three possible values 
for the price ratio of the match, four possible values for the maximum size of the 
matching gift across all donations, and three possible values for the suggested dona-
tion amount. The possible values for the price ratio of the match were $1:$1, $2:$1, 
and $3:$1. Here, an $X:$1 ratio means that for every dollar the individual donates, 
the matching donor also contributes $X. Hence, the charity receives $X+1 for every 
$1 the individual donates (subject to the maximum size of the matching gift across 
all donations). The possible values for the maximum matching grant amount were 
$25,000, $50,000, $100,000, and “unstated.” The possible values for the (individual-
specific) suggested donation amounts were the individual’s highest previous con-
tribution, 1.25 times the highest previous contribution, and 1.50 times the highest 
previous contribution.

In the following three subsections, we first consider testing families of null 
hypotheses that emerge in this application due to multiple outcomes alone, multi-
ple subgroups alone and multiple treatments alone. In the final subsection, we then 
consider testing the family of null hypotheses that emerges by combining all three 
considerations at the same time. In each case, we consider inference based on Theo-
rem 3.1 using the studentized test statistics described in Remark 3.4. We also com-
pare our results with those obtained using the classical Bonferroni and Holm mul-
tiple testing procedures. Stata and Matlab code used to produce these results can be 
found at the following address: https ://githu b.com/seide lj/mht.

lim sup
n→∞

sup
Q∈�

FWERQ ≤ �.

https://github.com/seidelj/mht
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4.1  Multiple outcomes

Four outcomes of interest in Karlan and List (2007) are the response rate, dollars 
given not including the matching amount, dollars given including the matching 
amount, and the change in the amount given (not including the matching amount). A 
more detailed description of these variables can be found in Karlan and List (2007). 
Table 1 displays for each of these four outcomes of interest, the following five quan-
tities: difference in means between treated and untreated groups, a (multiplicity-
unadjusted) p value computed using Remark 3.1, a (multiplicity-adjusted) p value 
computed using Theorem 3.1, a (multiplicity-adjusted) p value obtained by apply-
ing Bonferroni to the (multiplicity-unadjusted) p values, a (multiplicity-adjusted) p 
value obtained by applying Holm to the (multiplicity-unadjusted) p values. Follow-
ing Remark 3.2, the (multiplicity-adjusted) p values obtained by applying Bonfer-
roni can be calculated simply by multiplying the (multiplicity-unadjusted) p values 
by the total number of hypotheses in Table 1. Similarly, the (multiplicity-adjusted) p 
values obtained by applying Holm can be calculated by the multiplying the smallest 
(multiplicity-unadjusted) p value (corresponding in this case to response rate) by the 
total number of hypotheses in Table 1, multiplying the second smallest (multiplicity-
unadjusted) p value (corresponding in this case to dollars given including match) by 
one less than the total number of hypotheses in Table 1, and continuing in this fash-
ion until multiplying the largest (multiplicity-unadjusted) p value (corresponding in 
this case to amount change) by one.

Before adjusting for the multiplicity of null hypotheses being tested, we find 
that the treatment has an effect on the response rate, dollars given not including the 
matching amount, and dollars given including the matching amount at the 5% signif-
icance level. Here, by treatment, we mean receiving any of the 36 possible matching 
grants. After adjusting for the multiplicity of null hypotheses being tested, however, 
we find that the effect of the treatment on dollars given not including the matching 
is no longer significant at the 5% significance level—instead, it is only significant at 
the 10% significance level. By comparing the last three columns in Table 1, we addi-
tionally see that the p values obtained by applying Theorem 3.1 are an improvement 
upon those obtained by applying Bonferroni or Holm.

Table 1  Multiple outcomes

DI refers to difference in means. * and *** indicates that the corresponding p values less than 10% and 
1%, respectively

Outcome DI p values

Unadj. Multiplicity adj.

Remark 3.1 Theorem 3.1 Bonf. Holm

Response rate 0.0042 0.0003*** 0.0003*** 0.0013*** 0.0013***
Dollars given not including match 0.1536 0.0500* 0.0967* 0.2000 0.1000
Dollars given including match 2.0876 0.0003*** 0.0003*** 0.0013*** 0.0010***
Amount change 6.3306 0.7200 0.7200 1.0000 0.7200
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4.2  Multiple subgroups

Four subgroups of interest in Karlan and List (2007) are red county in a red state, 
blue county in a red state, red county in a blue state, and blue county in a blue state. 
Red states are defined as states that voted for George W. Bush in the 2004 Presi-
dential election and blue states are defined as states that voted for John Kerry in the 
same election. Red and blue counties are defined analogously. In this subsection, 
we examine how the effect of the treatment on the response rate varies across these 
subgroups. Table 2 displays for each of the four subgroups of interest, the same five 
quantities found in Table 1. Note that 105 out of the 50,083 individuals in our data-
set do not have complete subgroup information. We treat these 105 individuals as a 
subgroup of no interest for our analysis.

Before adjusting for the multiplicity of null hypotheses being tested, we find 
that the treatment has an effect on two of the four subgroups at the 10% signifi-
cance level. As before, here, by treatment, we mean receiving any of the 36 possible 
matching grants. After adjusting for the multiplicity of null hypotheses being tested, 
however, we find that the treatment only has an effect on one subgroup at the same 
significance level. By comparing the last three columns in Table  1, we again see 
that the p values obtained by applying Theorem 3.1 are an improvement upon those 
obtained by applying Bonferroni or Holm.

4.3  Multiple treatments

We now consider null hypotheses that emerge due to multiple treatments. We define 
three treatments corresponding to different values for the price ratio of the match: 
$1:$1, $2:$1, and $3:$1. Each treatment is understood to mean any of the 12 pos-
sible treatments with the same value for the price ratio of the match. We focus on 
dollars given not including the matching amount as the outcome of interest.

We first consider testing three null hypotheses corresponding to comparing 
each treatment with the control group. Table  3 displays for each of these three 
null hypotheses the same five quantities found in Table  1. Before adjusting for 
the multiplicity of null hypotheses being tested, we find that the treatment $2:$1 

Table 2  Multiple subgroups

DI refers to difference in means. * and *** indicates that the corresponding p values less than 10% and 
1%, respectively

Subgroup DI p values

Unadj. Multiplicity adj.

Remark 3.1 Theorem 3.1 Bonf. Holm

Red county in a red state 0.0095 0.0003*** 0.0003*** 0.0013*** 0.0013***
Blue county in a red state 0.0070 0.0503* 0.1427 0.2013 0.1510
Red county in a blue state 0.0016 0.4560 0.7017 1.0000 0.9120
Blue county in a blue state 0.0000 0.9920 0.9920 1.0000 0.9920
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has an effect at the 5% significance level on the outcome of interest. After adjust-
ing for the multiplicity of null hypotheses being tested, however, we find that this 
effect is no longer significant even at the 10% significance level. By comparing 
the last three columns in Table  3, we again see that the p values obtained by 
applying Theorem 3.1 are an improvement upon those obtained by applying Bon-
ferroni or Holm.

Next, we consider testing the six null hypotheses corresponding to all pairwise 
comparisons across the three treatments and the control group. Table 4 displays 
for each of these three null hypotheses the same five quantities found in Table 1. 
The results are qualitatively similar to those described above. Table  4 also dis-
plays a sixth quantity corresponding to the improvement in p values described in 
Remark 3.7 obtained by exploiting the logical restrictions among null hypotheses 
when there are multiple treatments. While in this case the improvement does not 
lead to any additional rejections of null hypotheses, we see that the difference in p 
values can in some cases be large. Note that this column is omitted from the pre-
vious table because Remark 3.7 results in no further improvements when solely 
comparing each treatment with the control group.

Table 3  Multiple treatments (Comparing multiple treatments with a control)

DI refers to difference in means. ** indicates that the corresponding p value less than 5%

Treatment/control groups DI p values

Unadj. Multiplicity adj.

Remark 3.1 Theorem 3.1 Bonf. Holm

Control versus 1:1 0.1234 0.2627 0.2627 0.7880 0.2627
Control versus 2:1 0.2129 0.0477** 0.1297 0.1430 0.1430
Control versus 3:1 0.1245 0.2060 0.3537 0.6180 0.4120

Table 4  Multiple treatments (All pairwise comparisons across multiple treatments and a control)

DI refers to difference in means. ** indicates that the corresponding p value less than 5%

Treatment/control groups DI p values

Unadj. Multiplicity adj.

Remark 3.1 Theorem 3.1 Remark 3.7 Bonf. Holm

Control versus 1:1 0.1234 0.2627 0.5810 0.4973 1.0000 1.0000
Control versus 2:1 0.2129 0.0477** 0.1930 0.1930 0.2860 0.2860
Control versus 3:1 0.1245 0.2060 0.5533 0.4167 1.0000 1.0000
1:1 versus 2:1 0.0895 0.4627 0.7467 0.7467 1.0000 1.0000
1:1 versus 3:1 0.0011 0.9920 0.9920 0.9920 1.0000 0.9920
2:1 versus 3:1 0.0883 0.4633 0.6963 0.4633 1.0000 0.9267
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4.4  Multiple outcomes, subgroups, and treatments

More often than not, it is desired to test null hypotheses stemming from all three 
considerations above: multiple outcomes, multiple subgroups, and multiple treat-
ments simultaneously. In this subsection, we consider the four outcome variables 
described in Sect. 4.1, the four subgroups described in Sect. 4.2, and the three treat-
ments described in Sect. 4.3. Here, we only consider comparing each treatment with 
the control group. As a result there are 48 null hypotheses of interest.

For each of the 48 null hypotheses, Table  5 displays the same five quantities 
found in Table  1. Before adjusting for the multiplicity of null hypotheses being 
tested, we reject 21 null hypotheses at the 10% significance level. After adjusting 
for the multiplicity of null hypotheses being tested, however, we find that only 9 
null hypotheses are rejected at the same significance level. It is worth noting that 7 
of these 9 null hypotheses are related to the same outcome—dollars given including 
the matching amount. By comparing the last three columns in Table 5, we again see 
that the p values obtained by applying Theorem 3.1 are an improvement upon those 
obtained by applying Bonferroni or Holm.

5  Conclusion

In this paper, we have developed a procedure for testing simultaneously null hypoth-
eses that emerge naturally when analyzing data from experiments because of some 
combination of the presences of multiple outcomes of interest, multiple subgroups 
of interest or multiple treatments. Using the general results in Romano and Wolf 
(2010), we have shown that our approach applies under weak assumptions to experi-
ments in which individuals are assigned to treatments and control using simple ran-
dom sampling. Notably, we show not only that our procedure has greater power than 
classical multiple testing procedures like Bonferroni and Holm, but have also shown 
how further improvements can be obtained in the presence of multiple treatments 
by exploiting the logical restrictions among null hypotheses. We have applied our 
methodology to data originally presented in Karlan and List (2007), who studied the 
effectiveness of a matching grant on charitable giving.

As we have argued in the introduction, it is commonplace to consider multiple null 
hypotheses when analyzing experimental data for one or more of the reasons men-
tioned above. It is, however, uncommon to account correctly for the multiplicity of null 
hypotheses under consideration, and, as a result, the probability of a false rejection may 
be much higher than desired. This failure to adjust inference procedures is almost cer-
tainly related to the “credibility” and “reproducibility” crises that plague not just the 
social sciences, but the sciences more generally. See, for example, Jennions and Moller 
(2002), Ioannidis (2005), Nosek et  al. (2012), Bettis (2012), Maniadis et  al. (2014) 
and Camerer et al. (2016). We believe the adoption of testing procedures like the one 
described in this paper will help address these concerns and, with this in mind, advo-
cate that researchers at the very least report multiplicity-adjusted results alongside con-
ventional multiplicity-unadjusted results. In some cases, such as when evaluating exist-
ing studies, it may be more convenient to compute a Bonferroni or Holm correction, 
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which only requires knowledge of conventional multiplicity-unadjusted p values, rather 
than apply the methodology in this paper.
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Appendix

Proof of Theorem 3.1

First note that under Assumption 2.1, Q ∈ �s if and only if P ∈ �̃�s , where

The proof of this result now follows by verifying the conditions of Corollary 5.1 in 
Romano and Wolf (2010). In particular, we verify Assumptions B.1–B.4 in Romano 
and Wolf (2010).

In order to verify Assumption B.1 in Romano and Wolf (2010), let

and note that

where

with An,i(P) equal to the 2||-dimensional vector formed by stacking vertically for 
s ∈  the terms

and Bn is the 2||-dimensional vector formed by stacking vertically for s ∈  the 
terms

and f ∶ �
2|| × �

2||
→ �

2|| is the function of An(P) and Bn whose sth argument 
for s ∈  is given by the inner product of the sth pair of terms in An(P) and the sth 

�̃�s = {P(Q) ∶ Q ∈ 𝛺,EP[Yi,k|Di = d, Zi = z] = EP[Yi,k|Di = d�, Zi = z]}.

T∗
s,n
(P) =

√
n

�
1

nd,z

�
1≤i≤n∶Di=d,Zi=z

(Yi,k − �̃�k�d,z(P)) −
1

nd�,z

�
1≤i≤n∶Di=d

�,Zi=z

(Yi,k − �̃�k�d�,z(P))

�
,

T∗
n
(P) = (T∗

s,n
(P) ∶ s ∈ ) = f (An(P),Bn),

An(P) =
1√
n

�
1≤i≤n

An,i(P),

(10)
(

(Yi,k − �̃�k|d,z(P))I{Di = d, Zi = z}

(Yi,k − �̃�k|d�,z(P))I{Di = d�, Zi = z}

)
,

(11)
⎛⎜⎜⎝

1
1

n

∑
1≤i≤n I{Di=d,Zi=z}

−
1

1

n

∑
1≤i≤n I{Di=d

�,Zi=z}

⎞⎟⎟⎠
.
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pair of terms in Bn , i.e., the inner product of (10) and (11). The weak law of large 
numbers and central limit theorem imply that

where B(P) is the 2||-dimensional vector formed by stacking vertically for s ∈  
the terms

Next, note that EP[An,i(P)] = 0 . Assumption 2.3 and the central limit theorem there-
fore imply that

for an appropriate choice of VA(P) . In particular, the diagonal elements of VA(P) are 
of the form

The continuous mapping theorem thus implies that

for an appropriate variance matrix V(P). In particular, the sth diagonal element of 
V(P) is given by

In order to verify Assumptions B.2–B.3 in Romano and Wolf (2010), it suffices to 
note that (12) is strictly greater than zero under our assumptions. Note that it is not 
required that V(P) be non-singular for these assumptions to be satisfied.

In order to verify Assumption B.4 in Romano and Wolf (2010), we first argue that

under Pn for an appropriate sequence of distributions Pn for (Yi,Di, Zi) . To this end, 
assume that

(a) Pn

d
−→P.

(b) �̃�k|d,z(Pn) → �̃�k|d,z(P).
(c) Bn

Pn

−−→B(P).
(d) VarPn

[An,i(Pn)] → VarP[An,i(P)].

Bn

P
−→B(P),

(
1

P{Di=d,Zi=z}

−
1

P{Di=d
�,Zi=z}

)
.

An(P)
d
−→N(0,VA(P))

�̃�2
k|d,z(P)P{Di = d, Zi = z}.

T∗
n
(P)

d
−→N(0,V(P))

(12)
�̃�2
k|d,z(P)

P{Di = d,Zi = z}
+

�̃�2
k|d�,z(P)

P{Di = d�,Zi = z}
.

(13)T∗
n
(Pn)

d
−→N(0,V(P))
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Under (a) and (b), it follows that An,i(Pn)
d
−→An,i(P) under Pn . By arguing as in Theo-

rem 15.4.3 in Lehmann and Romano (2006) and using (d), it follows from the Linde-
berg–Feller central limit theorem that

under Pn . It thus follows from (c) and the continuous mapping theorem that (13) 
holds under Pn . Assumption B.4 in Romano and Wolf (2010) now follows simply by 
nothing that the Glivenko-Cantelli theorem, strong law of large numbers and contin-
uous mapping theorem ensure that P̂n satisfies (a)–(d) with probability one under P.
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