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Abstract Bidding one’s value in a second-price, private-value auction is a weakly

dominant solution (Vickrey in J Finance 16(1):8–37, 1961), but repeated experi-

mental studies find more overbidding than underbidding. We propose a model of

optimistically irrational bidders who understand that there are possible gains and

losses associated with higher bids but who may overestimate the additional prob-

ability of winning and/or underestimate the potential losses when bidding above

value. These bidders may fail to discover the dominant strategy—despite the fact

that the dominant strategy only requires rationality from bidders—but respond in a

common sense way to out-of-equilibrium outcomes. By varying the monetary

consequences of losing money in experimental auctions we observe more over-

bidding when the cost to losing money is low, and less overbidding when the cost is

high. Our findings lend themselves to models in which less than fully rational

bidders respond systematically to out-of-equilibrium incentives, and we find that our

model better fits the effects of our manipulations than most of the existing models

we consider.
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1 Introduction

In a sealed-bid second-price auction (SPA) with private valuations, where the

highest bidder wins and pays the second highest bid, bidding one’s value is a weakly

dominant strategy (WDS, Vickrey 1961). This strategy requires only that each

bidder behave rationally and it is unaffected by the number of rivals or their

valuations, a bidder’s risk preferences, or beliefs regarding rationality of rivals.

Repeated experimental studies have found that subjects deviate from the WDS by

overbidding much more than underbidding, resulting in overbidding on average

(e.g., Kagel et al. 1987; Kagel and Levin 1993). By contrast, experimental evidence

from the strategically equivalent ascending English auction demonstrates almost

immediate convergence to the dominant strategy (e.g. Kagel et al. 1987; Kagel and

Levin 1993; Kagel 1995).1 While overbidding relative to the risk-neutral, Nash

equilibrium (RNNE) has also been frequently found in first-price auctions (FPA,

e.g., Kagel 1995; Kagel and Levin 1993), the ‘‘usual suspects,’’—risk aversion,

beliefs about others’ play, biases in perceptions of probabilities—that may explain

overbidding in FPAs are of no avail in SPAs.

The contrast between SPAs and English auctions suggests that subjects discover

the WDS in the English auction but not in the SPA; why is this the case? The

cognitive process that leads to the discovery of the WDS in an SPA is far from

trivial and an experimental subject may be unable to recognize it without experience

or training. In an English auction, on the other hand, a subject needs to answer a

simple question for herself: ‘‘Am I ‘in’ or ‘out’?’’ Answering this question leads a

bidder to drop out at his value.

Subjects who do not bid their value in SPAs are nevertheless still motivated by

common sense economic incentives, such as expected payoffs, though imperfectly.

Kagel et al. (1987) conjectured that subjects are aware that higher bidding increases

the probability of winning the auctions but underestimate the additional cost

associated with it. Instead of looking for dominant strategies, we suggest that

optimistically irrational bidders are guided by a desire to maximize their profits

combined with an inability to fully grasp the intricacies of the auction environment

that allows them to view the consequences of their actions more favorably. We do

this by modeling reasonable bidders who recognize (i) a higher bid increases the

probability of winning, and (ii) the bidder may understate negative payoffs to higher

bids. These behaviorally plausible assumptions about bidders are the building

blocks of our simple model of how out-of-equilibrium incentives might affect

behavior in SPAs.

We test our model in SPAs in which we introduce a parameter that changes the

expected payoff as a function of one’s bid but does not affect the WDS. The

parameter multiplies realized losses by some amount b, where b ¼ 1 is the standard

1 Given the differences in the strategy spaces, it is not strictly accurate to say that the two auction formats

have the same dominant strategy because bidders in an SPA are choosing a bid, where in an English

auction they are deciding whether to continue or not at the current price. In the former, the dominant

strategy is to bid one’s value, while in the later the dominant strategy is to remain in the auction until the

price surpasses one’s value.
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case. Consistent with previous results we find that when 0\b� 1, overbidding is

pervasive. In contrast, when we change b to 20, overbidding is significantly reduced

and underbidding is more prevalent. Overbidding when 0\b� 1 results in very few

and fairly small losses (5.8% of auctions; median loss of $0.10). This is a product of

our design: the domain of bidders’ private values is quite large relative to the

number of bidders, so the second highest bid is almost always below the highest

value, even with overbidding. This allows us to rule out a ‘‘hot stove’’ type of

learning whereby losses reduce overbidding in subsequent auctions.2 Instead, it

appears that the dramatic reduction in overbidding occurs when b is exogenously

and publicly increased and can be attributed to changes in expected out-of-

equilibrium payoffs.

While explanations for overbidding in various auction formats abound, and we

compare the fit of our model to several of them in Sect. 5, the contribution of our

model lies in its focus on the dominant strategy, adding to the recent theoretical

interest in how dominant strategies influence decision calculus in games (e.g.,

obvious strategy-proofness, Li 2016). Our strong findings suggest that incentives

outside equilibrium affect behavior in predictable ways in the laboratory, and

probably in the field as well, even when equilibrium analysis predicts otherwise.

Goeree et al. (2002) show a similar result in a FPAs, but in FPAs, as in many other

games where Nash equilibrium is the solution concept, best responding requires

‘‘cardinal’’ computations. Since such computations often involve a high degree of

complexity and a heavy mental cost, we do not expect that the outcome in FPAs will

exactly reflect the point prediction of Nash equilibrium. It is much less surprising to

find that the subjects’ calculations, possibly involving heuristics, approximations

and simplification rules, will be affected by a change in the incentives, even if these

ought to have no effect on Nash equilibrium. This complexity motivates many

models that predict overbidding by allowing bidders to make, and learn from,

mistakes (e.g., QRE). In an SPA with private values, however, the dominant

strategy can be reached with just ‘‘ordinal logic’’ of dominance, without even a need

for common knowledge of rationality.3 Thus, one would expect the solution norm—

bid your value—to have its best chance for success in this environment. Our study

2 The change in behavior we observe is immediate, once the b parameter changes, and more extreme than

could be plausibly predicted by learning models, as they would usually be applied (note that little is

known about learning transfer between different but very similar games, such as the ones that result from

the manipulation of b). In particular, reinforcement learning (Roth and Erev 1998) would predict no

change in behavior before subjects have a chance to experience the new payoffs, unlike what we observe

in the data. Fictitious play (Fudenberg and Levine 1998) is also unlikely to fit the data, since the

overbidding we observe can not be justified by any beliefs. Other models, such as learning direction

theory (Selten and Stoecker 1986) and EWA (Camerer and Ho 1999), consider foregone payoffs. These

might predict a faster response in auctions than other models, but its still hard to conceive how they could

predict such an immediate change in bidding, when b changes, after the subjects have already been

learning for 20 or 40 periods. Steady state concepts such as QRE (McKelvey and Palfrey 1995) are better

suited to the task, e.g. predicting the immediate tendency towards value bidding when b rises without a

need for subjects to actually experience losses. We calculate and fit such models in Sect. 5.
3 Levin et al. (2016) is devoted to separating failures of ‘‘ordinal logic’’ (or ‘‘insight’’) from the failures

of and/or biases in Bayesian updating. They use tasks involving colored cards to measure these failures

and biases, and use the measures to analyze deviations from predicted bidding behavior in a common-

value Dutch auction.
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shows that behavior is still guided by some degree of conscious profit maximization,

but subjects’ decision processes fail to recognize a characteristic that is very seldom

present outside the lab: the dominant strategy. Errors in recognizing a dominant

strategy require a new perspective on the cognitive processes underlying bidding

behavior of the sort provided by optimistic irrationality to try to explain ‘‘errors’’

made by bidders that are as much a function of the simplicity of a dominant strategy

as the complexity of the environment.

2 Optimistically irrational bidders

The overlooked availability of a WDS must be the starting point of any explanation

to overbidding in SPA. We formalize the intuition behind the conjecture laid out in

Kagel et al. (1987) by modeling an ‘‘optimistically irrational’’ bidder who

understands that there are possible gains and losses associated with higher bids

but who may overstate the additional probability of winning due to higher bidding

and/or understate the losses associated with it.4

Let there be n risk-neutral bidders, each of whom privately observes her value xi;
i ¼ 1; . . .; n. It is common knowledge that the xi’s are i.i.d draws from a distribution

with a cumulative density function F(t), where F0ðtÞ ¼ f ðtÞ[ 0 on [0, 1], Fð0Þ ¼ 0;
and Fð1Þ ¼ 1. For our purposes, we assume that the xi’s are drawn from a

generalized uniform distribution, FðtÞ ¼ tba and ba� 1, where ba ¼ 1 corresponds to

the uniform distribution used in almost all laboratory SPAs and FPAs. We first make

four assumptions:

Assumption 1 Symmetry

Assumption 2 Upon winning, a bidder’s gross payoff is x.

Assumption 3 Bidders believe values are i.i.d from a c.d.f. FðtÞ ¼ ta with a� ba.

Assumption 4 A bidder with a value x who bids b[ x and wins at a price

p 2 ðx; bÞ believes that the expected payment is cðxÞ bþx
2
; with 0\cðxÞ� 1, i.e.,

expected losses are x� cðxÞ bþx
2

.

The first two assumptions simply mean that each bidder believes that all other

bidders use the same, strictly monotonic bidding function, and that they receive

their full value if they win the auction. Assumption 3 implies that a bidder

potentially overstates the impact of bidding past his value because he believes

values are closer together than they actually are. That is, he believes the increase in

the probability of winning corresponding to an increase in his bid is greater than it

actually is. This assumption finds support in other studies of auctions. For example,

Cooper and Fang (2008) found that subjects who perceive their rivals to have values

similar to their own are more likely to overbid in experimental SPAs, while

4 The conjecture is as follows, ‘‘Bidding in excess of x in the second-price auctions would have to be

labeled as a clear mistake, since bidding x is a dominant strategy irrespective of risk attitudes. Bidding in

excess of x is likely based on the illusion that it improves the probability of winning with no real cost to

the bidder as the second-high-bid price is paid.’’ (Kagel et al., p. 1299, 1–5)
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Breitmoser (2015) uses ‘‘projection,’’ the tendency to believe that rivals have value

or beliefs similar to one’s own, to explain the winner’s curse.5 Finally, Assumption

4 captures the notion that a bidder in an SPA may understate possible losses when

he bids above his value and wins.

These assumptions allow us to make two important observations about an

optimistically irrational bidder’s maximization problem.

Proposition 1 Sincere bidding, i.e., bðxÞ ¼ x for all x, occurs if and only if for all

x, cðxÞ ¼ 1.

Proof See ‘‘Appendix’’. h

Proposition 1 means that an optimistically irrational bidder may still bid his value

when a ¼ ba and cðxÞ ¼ 1. This does not require that the bidder recognizes the

availability of the WDS. In fact, sincere bidding only requires cðxÞ ¼ 1 but allows

a[ ba.6

Remark There is a linear solution to the maximization problem with

bðx; a; c; nÞ ¼ dða; c; nÞx.7

Put more simply, the bid will be a multiple of the value. The exact multiple will

be a function of the number of competitors, how ‘‘close’’ a bidder believes those

competitors’ values are to his value, and the extent to which he understates the

losses from overbidding. In the next section we make use of the fact that there is a

linear solution to the maximization problem to inform our experimental design.

2.1 Experimental test of the model

Optimistically irrational bidders need not recognize the WDS but can be influenced

by ‘‘out-of-equilibrium’’ payoffs. Several authors have argued that, in English or

first-price auctions with private values, the exact shape of the expected payoff

functions matters (e.g., Harrison 1989; Goeree et al. 2002; Georganas 2011;

Georganas and Nagel 2011).8 Similarly, Noussair et al. (2004) compare value

revelation using the Becker–DeGroot–Marschak (BDM) method and SPAs and find

that the shape of the expected payoff function may influence behavior. They find

that the shape of the expected payoff function in the SPAs means that the

probability of winning increases faster in overbids than it decreases in underbidding,

which drives bidders who start out below the WDS towards the WDS, while

overbidding is also more costly in the SPA than in the BDM with three or more

bidders. Taken together, these observations about the shape of the expected payoff

function seem to reflect the assumptions we make in our model. As a simple test of

5 Perception of similarity in Cooper and Fang is induced by information provided to subjects about their

rivals’ values.
6 When bðxÞ[ x, the value of a will, however, affect the extent one bids above his value.
7 The formal derivation can be found in the ‘‘Appendix’’.
8 Our model of optimistically irrational bidders also predicts bidding above the risk-neutral Nash

equilibrium in FPAs that is affected by the shape of the expected payoff function, which we return to in

Sect. 5. Details can be found in the ‘‘Appendix’’.
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optimistically irrational bidders, we implement standard second-price, sealed-bid

auctions for one unit of an indivisible good in the laboratory. The WDS predicts that

players bid their values in equilibrium. We introduce a factor b by which we

multiply eventual negative profits of the bidders. b does not affect the equilibrium if

bidders are bidding sincerely because no bidder earns negative profits in

equilibrium. However, the bidders’ expected payoff functions do change, given

that their opponents follow the equilibrium strategies; in Fig. 1 we plot, for different

values of b, the expected payoff function for a bidder whose rivals bid their values.

Given the remark in the previous section, we can determine how our

experimental treatments will affect the bidding of optimistically irrational bidders.

Applying the theory to our experimental treatments, when a bidder wins with b[ x

and loses, his expected payment is b½x� cb
bþx

2
�. A standard SPA corresponds to the

situation where b ¼ 1, such that the expected losses are 1 � ½x� c1
bþx

2
�: This allows

us to define cb as a function of c in a standard auction, i.e., c1, which we do by

setting ½x� c1
bþx

2
� ¼ b½x� cb

bþx
2
�, and solving for cb: Doing this, we get

cb ¼ b� 1

b
2x

bþ x
þ c1

b
ð1Þ

We can substitute bðxÞ ¼ dx into Eq. (1) to obtain

cb ¼ 1

b
2ðb� 1Þ
dþ 1

þ c1

� �

ð2Þ

Plugging Eq. (2) into the linear solution, we solve the problem numerically.9 The

results can be found in Table 1. Assuming a ¼ 1:1 and c1 ¼ 0:95, i.e., a bidder

slightly overstates the increase in his probability of winning associated with a higher

bid and slightly understates his expected loss, the model predicts that d� increases

monotonically in b and bidding above value that ranges from 9.7% above value for

a b ¼ 0:1 to 0.5% above value for a b ¼ 20. These numerical estimates yield three

testable hypotheses:

Hypothesis 1 Subjects will overbid on average.

Hypothesis 2 Subjects will overbid by more on average when b\1 than when

b ¼ 1.

Hypothesis 3 Subjects will overbid by less on average when b[ 1 than when

b ¼ 1.

3 Experimental details

The data come from nine experimental sessions conducted at Ohio State University.

Students were recruited via e-mail and sessions took place in the Experimental

Economics Lab. The experiment was programmed and conducted with the software

9 The linear solution can be found in the ‘‘Appendix’’.
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z-Tree (Fishbacher 2007). In every session, subjects participated in 62 second-price,

sealed-bid auctions—2 trial auctions followed by 60 paying auctions—with either

three or six bidders per auction. Subjects were randomly and anonymously re-

matched between auction periods.10 At the beginning of each auction, subjects

privately observed their own independent private values denominated in an

experimental currency unit (ECU), but they did not observe the values of others. All

values were drawn from a uniform distribution on the interval [0, 100], which was

common knowledge. At the end of each period the bidder who obtained the item

was informed of the price and his profit, while bidders who did not obtain the item

received no information about the price or the bids of others. The instructions can be

found in the ‘‘Appendix’’.

We multiplied negative profits by a parameter, b, which took on three values in

every session: 1, 0.1, and 20. Beta took on one of these values for periods 1–19,

another for periods 20–39, and the final value for periods 40–60. Subjects knew the

value of b, that it is the same for all bidders, and that they would be made aware

when it changed; subjects did not know when b would change, how many times it

would change, or what its magnitude would be. All subjects were given starting

Fig. 1 Expected payoff functions in a second price auction with 3 bidders, for the three different values
of b: There are 5 curves in every panel which represent expected utility, depending on one’s bid for a
private value v ¼ 0, 25, 50, 75 and 100

Table 1 Numerical estimates of parameters for optimistically irrational bidders in auctions with 3

bidders

b

0.10 0.20 0.50 1 2 10 20

d 1.0965 1.0889 1.0715 1.053 1.0352 1.0093 1.0048

cb 0.9141 0.9202 0.9345 0.9500 0.9664 0.9909 0.9952

The numerical solution was found using fzero in Matlab, assuming a ¼ 1:1 and c1 ¼ 0:95. The high-

lighted values of b correspond to the values used in the experiment

10 Sessions had between 12 and 24 subjects each.
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balances of 150 ECUs to cover the possibility of losses. Profits and losses were

added to this balance and the balance was paid at the end of each session. We ran

two sessions with 3 bidder auctions and a b order of 1, 0.1, 20 (b3
1=0:1=20), two

sessions with 6 bidder auctions and a b order of 1, 0.1, 20 (b6
1=0:1=20), two sessions

with 3 bidder auctions and a b order of 1, 20, 0.1 (b3
1=20=0:1), and three sessions with

3 bidder auctions and a b order of 20, 1, 0.1 (b3
20=1=0:1). In sessions with three bidder

auctions, the exchange rate was $1 = 20 ECU, while the exchange rate in sessions

with six bidder auctions was $1 = 14 ECU. The exchange rates were different in

order to equalize the expected payoff between sessions with different group sizes. In

the event that a player went bankrupt, they were no longer permitted to bid and were

paid a participation fee of $8. Due to the uneven numbers after a bankruptcy, at the

beginning of every period after a bankruptcy two subjects were randomly assigned

to sit out that period in 3 bidder auctions, while five subjects were chosen to sit out

in 6 bidder auctions. In the six sessions that started with b ¼ 1, there were two

bankruptcies; in the three sessions that started with b ¼ 20 there were 10

bankruptcies, with all but one occurring in the first 10 periods. Complete session

details can be found in Table 2.

4 Results

Average differences between values and bids can be found in Table 3, and Figs. 2,

3, 4, 5 and Figure 6 of Supplementary material compare subjects’ bids and their

values. Consistent previous research, we see overbidding on average in every

treatment for every value of b. To test whether or not this overbidding is

significantly different from 0, we calculated the mean difference between bid and

private value for each session within a b regime, i.e., the block of periods during

which b remained the same. Using these means as our measure of overbidding,

average overbidding is significantly greater than 0 at the 5% level in every case

except for b ¼ 20 for b3
1=0:1=20 (t test p ¼ 0:174) and b6

1=0:1=20 (t test p ¼ 0:129).

Observation 1 Consistent with Hypothesis 1, subjects overbid on average for all

values of b.

Table 2 Summary of sessions

Treatment Sessions Bidders Ex. Rate Subjects b order Subject-auctions

b3
1=0:1=20

2 3 14 24 1, 0.1, 20 1398

b6
1=0:1=20

2 6 20 42 1, 0.1, 20 2519

b3
1=20=0:1

2 3 14 33 1, 20, 0.1 1898

b3
20=1=0:1

3 3 14 51 20, 1, 0.1 1685
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The effects of changes in b are visible and drastic, in contrast to the standard

theoretical prediction of no change at all. For example, when we reduce the

punishment for negative outcomes from b ¼ 1 to b ¼ 0:1 in period 20 of b3
1=0:1=20,

there is an immediate effect as the average difference between bid and value more

than doubles from approximately 2.8 to 7.5—an increase equal to approximately 5%

of the support of values. When b rises to 20 in period 40 and punishment for

negative outcomes is severe, the overbidding largely disappears, with average

overbids falling from 7.5 to 1.1. Similar patterns emerge in all treatments, and the

differences in overbidding across b regimes are significant.11;12

Fig. 2 Mean difference between bids and private values over time in all treatments

Table 3 Mean difference

between bid and value by

treatment

Standard deviations in

parentheses

b ¼ 1 b ¼ 0:1 b ¼ 20 Bidders b order

2.79 7.46 1.07 3 1, 0.1, 20

(6.75) (13.67) (5.61)

4.07 7.54 0.43 6 1, 0.1, 20

(10.26) (12.96) (4.60)

4.04 4.62 2.32 3 1, 20, 0.1

(10.64) (9.94) (5.72)

2.37 5.64 1.13 3 20, 1, 0.1

(7.04) (10.61) (9.08)

11 To compare overbidding, we conducted Wilcoxon signed rank tests on the session means we

calculated for the various b regimes. In pairwise tests of each value of b for all treatments, all differences

were significant at the 5% level or better except for b ¼ 1 versus b ¼ 0:1 for b3
1=20=0:1 (p ¼ 0:454).

12 Merlob et al. (2012) compare auction designs used for Medicare and Medicaid procurement auctions.

In auction designs that allow for costless reneging, which is similar to bidding in an auction with b\1,

they also find overbidding.
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Observation 2 Consistent with Hypotheses 2 and 3, overbidding varies signif-

icantly across different values of b, with higher levels of b leading to less

overbidding.

Our specific design allows for an additional important and interesting observation

about learning. There is significant overbidding in the first 40 periods with b ¼ 1

and b ¼ 0:1 in b3
1=0:1=20 and b6

1=0:1=20, and we do not observe learning in the direction

Fig. 3 Scatter plot of values versus bids in all treatments when b ¼ 1

Fig. 4 Scatter plot of values versus bids in all treatments when b ¼ 0:1
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of value bidding in these periods.13 Nonetheless, there is a drastic reduction of

overbidding in period 40. One possible explanation for the decline in overbidding in

period 40 is that subjects who have overbid in earlier periods are chastened by

losing money, a sort of ‘‘hot stove’’ learning. The evidence in Table 4 does not

support this explanation. Before b increases to 20, few auctions result in realized

losses. They range from a minimum of 4.3% of auctions for the case with six

bidders when b ¼ 1, to 9.3% with three bidders and b ¼ 0:1. The average loss is

also quite small, ranging from 1.1 ECUs with six bidders and b ¼ 0:1, to 10.8 ECUs

with six bidders and b ¼ 1. Moreover, this small and infrequent negative feedback

for the first two levels of b appears to have no effect on those who experience it. Of

the 31 bidders who lose money when b ¼ 1, 29 also lose money when b ¼ 0:1. Of

the six bidders who lost money when b ¼ 20, 5 lost money at all three levels of b
and the sixth lost money when b ¼ 0:1.

Observation 3 Reductions in overbidding when b is increased are not caused by

learning due to previous losses.

In order to move beyond unconditional means and investigate the effects of b
while allowing for individual heterogeneity, we estimate a random effects Tobit

model, regressing the difference between subject i’s bid and his value in auction j on

dummies for each b regime.14

Fig. 5 Scatter plot of values versus bids in all treatments when b ¼ 20

13 We divide those periods for which b ¼ 0:1 in these treatments, i.e., periods 20–39, into 4 blocks of 5

periods each. We then calculated session specific mean overbidding for each block. The means of these

means for the blocks are 2.18, 2.40, 2.83, and 4.60, respectively. Although the means are increasing,

pairwise Wilcoxon signed rank tests of these means reveal no significant differences between any of the

first three blocks, while the last block is significantly different from all the others but further from the

WDS.
14 In the experiment, subjects could not bid more than 100, which can be seen in the groups of bids

clustered at 100 in Figs. 3 and 4. We use a Tobit model to account for the censoring of bids.
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The results in columns 1–4 of Table 5 are similar to the means in Table 3. In

every treatment bids are significantly higher when b ¼ 0:1 than when b ¼ 1;

similarly, bidding is significantly lower in every treatment when b ¼ 20 than when

b ¼ 1. We do, however, see some differences across treatments, and we reject the

null hypothesis that the marginal effects of Db¼0:1 and Db¼20 are jointly equal across

all treatments (Wald test, p ¼ 0:000 for both).

Although learning due to negative reinforcement is unlikely in b3
1=0:1=20 and

b6
1=0:1=20, one possible explanation for the differences across treatments we observe

may be some other sort of learning or experience. To address this possibility, we

augment the model in columns 5–8 with a linear time trend and its interaction with

the b regime. We observe small, but statistically significant increases in bids over

time in the first 20 periods in treatments b6
1=0:1=20, b3

1=20=0:1, and b3
20=1=0:1, where bids

increase by roughly 0.12–0.18 ECUs per period; we see no significant changes over

time in subsequent periods. With the inclusion of the time trend, the same pattern

emerges: greater overbidding when b ¼ 0:1 and less overbidding when b ¼ 20,

though the treatment effects are no longer significant in b3
1=20=0:1. Allowing for

changes to bidding behavior over time, we cannot reject the null hypothesis that the

marginal effects of Db¼0:1 and Db¼20 are the same across all treatments (Wald tests,

p ¼ 0:551 and p ¼ 0:318, respectively); we find no significant differences at

conventional levels across treatments in pair-wise comparisons of Db¼0:1 and

Db¼20.15;16

Table 4 Subjects experiencing losses with b order 1, 0.1, 20

b ¼ 1 b ¼ 0:1 b ¼ 20

Three bidders

Fraction of auctions resulting in losses 5.4% 9.3% 0.6%

Mean loss (in ECUs) 9.9 1.5 206.7

Median loss (in ECUs) 6.0 1.0 140.0

Maximum loss (in ECUs) 43.0 8.0 400.0

Number of subjects who experience a loss 11 14 2

Six bidders

Fraction of auctions resulting in losses 4.3% 7.1% 0.4%

Mean loss (in ECUs) 10.8 1.6 65.0

Median loss (in ECUs) 6.5 1.1 30.0

Maximum loss (in ECUs) 88.0 8.8 180.0

Number of subjects who experience a loss 20 27 4

15 The only pairwise comparisons with p values less than 0.2 are comparisons of Db¼20 in b3
1=20=0:1 with

all other treatments.
16 One possible motivation for overbidding not found in Table 4 is spite. Cooper and Fang (2008) find

that overbidding can be attributed to both a heightened sense of competition for those with high values,

and spiteful behavior by those with low values. We see little evidence of spite. In results available from

the authors, we ran the same models as in columns 5–8 but restricted observations to only those with

values in the top 75% or the bottom 25% of the support of values. The results for either sample are similar
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Observation 4 The effects of changes in b are robust to controls for individual

differences and learning over time.

The linear trend presupposes that the effect of all periods is the same within a b
regime, however Fig. 2 suggests that the first few periods in a session might be

slightly different.17 In columns 9–12 we estimate the same model as in columns 5–8

but exclude the first 3 periods in each session. After excluding the first three periods,

there is no significant learning over time for any value of b in any treatment.

Observation 5 Bidding behavior evolves substantially in the first few periods of a

session, but little thereafter.

5 Alternative models

One important test of our model of optimistically irrational bidders is how well it

fits the data relative to existing models. Among our candidate models, we begin by

considering a symmetric Nash equilibrium (SNE) with normally distributed errors,

given that without errors the SNE fails completely to predict the change in bidding

when we shift b. Models that take all payoffs into account, even if they are not on

the equilibrium path, are good candidates to explain our results. Perhaps the

simplest way to consider all payoffs is to use the Nash model but assume that

subjects’ errors depend on the expected utility of each action in a systematic way.

We do this by considering an SNE with a logistic error structure, as in Crawford and

Iriberri (2007). Finally, we consider is quantal response equilibrium (QRE), which

also makes explicit use of the payoff function shapes, by positing that players

choose an action with a probability proportional to its expected payoff.18 In

preliminary comparisons, we find that the SNE?normal model outperforms the

other two models in all but one b-number of bidder combinations.19 The reason is

that, under a logit error structure, a high frequency of underbidding is predicted for

intermediate private values, since the expected payoffs are quite flat to the left of the

maximum (as seen in Fig. 1); yet we see far more overbidding than underbidding in

Footnote 16 continued

to those in Table 5. Moreover, among bids between 95 and 100, only 12 of 867 bids come from bidders

with values in the bottom quarter of the support.
17 All sessions began with either b ¼ 1 or b ¼ 20, so the relevant data are the first few data points in the

first and third panels of Fig. 2. Similar to Noussair et al. (2004), we observe bidding below the WDS at

first before bids rapidly increase.
18 Another possible model that we do not consider is a level-k model of the sort used to explain auction

results in Crawford and Iriberri (2007). This model predicts neither overbidding nor reaction to different

values of b, even allowing symmetric errors. In such a model, players of level one or higher are

characterized by different beliefs, but they all best respond to these beliefs. Since bidding one’s value is a

weakly dominant strategy in a SPA and does not depend on a player’s beliefs (or risk attitudes), players of

all levels are predicted to bid their values, as in any Nash equilibrium.
19 Table 9 in the ‘‘Appendix’’ provides the details of the comparison of fits among all alternative models

we consider.

784 S. Georganas et al.

123



T
a
b
le

5
E

st
im

at
ed

co
ef

fi
ci

en
ts

fr
o
m

a
ra

n
d

o
m

ef
fe

ct
s

T
o

b
it

m
o
d

el
o

f
th

e
ef

fe
ct

o
f
b

o
n

b
id

s

T
re

at
m

en
t

D
ep

en
d
en

t
v
ar

ia
b
le

:
b
id

-v
al

u
e

b3 1
=
0
:1
=
2

0
b

6 1
=
0
:1
=
2

0
b

3 1
=
2

0
=
0
:1

b3 2
0
=
1
=
0
:1

b3 1
=
0
:1
=
2

0
b

6 1
=
0
:1
=
2

0
b3 1

=
2

0
=
0
:1

b3 2
0
=
1
=
0
:1

b
3 1
=
0
:1
=
2

0
b6 1

=
0
:1
=
2

0
b3 1

=
2

0
=
0
:1

b
3 2

0
=
1
=
0
:1

(1
)

(2
)

(3
)

(4
)

(5
)

(6
)

(7
)

(8
)

(9
)

(1
0

)
(1

1
)

(1
2

)

D
b¼

0
:1

4
.6

7
5

*
*

*
3

.4
6
9

*
*

*
0

.8
2
1

*
3

.1
7

3
*

*
*

7
.0

6
2

*
*

*
6

.3
1
7

*
*

*
2

.4
1
9

6
.9

2
1

*
*

5
.1

5
7

*
*

5
.4

1
0

*
*

*
�

0
.6

3
8

7
.0

0
2

*
*

(0
.5

0
2
)

(0
.4

2
2
)

(0
.4

3
4
)

(0
.4

8
4

)
(1

.9
7

2
)

(1
.6

6
0
)

(2
.6

0
7

)
(3

.3
1

4
)

(2
.1

2
8
)

(1
.7

6
7

)
(2

.5
6

9
)

(3
.2

3
1
)

D
b¼

2
0

-
1

.6
1
3

*
*

*
-

3
.6

3
4

*
*

*
-

1
.6

3
8

*
*

*
-

2
.4

2
7

*
*

*
-

6
.0

9
8

*
*

-
5

.0
0

8
*

*
-

0
.8

0
9

-
4

.4
4
1

*
*

-
7

.9
8

5
*

*
-

5
.9

1
6

*
*

-
3

.9
7
2

*
*

-
3

.5
3

2
*

*

(0
.5

0
8
)

(0
.4

1
7
)

(0
.4

3
0
)

(0
.4

7
4

)
(3

.0
2

2
)

(2
.4

6
9
)

(1
.6

9
7

)
(1

.8
9

1
)

(3
.1

4
4
)

(2
.5

3
8

)
(1

.7
3

4
)

(1
.9

6
0
)

P
er

io
d

0
.0

4
3

0
.1

1
6

*
*

0
.1

7
5

*
*

*
�

0
.0

1
7

�
0

.0
9
6

0
.0

4
9

�
0

.0
5

3
�

0
.0

1
8

(0
.0

6
6
)

(0
.0

5
5
)

(0
.0

5
6

)
(0

.0
6

0
)

(0
.0

8
6
)

(0
.0

7
1

)
(0

.0
6

9
)

(0
.0

5
8
)

P
er

io
d

�
D

b¼
0
:1

-
0

.1
1
0

-
0

.1
7

3
*

*
-

0
.1

7
2

*
*

-
0

.0
6
8

0
.0

3
0

-
0

.1
0
6

0
.0

5
6

-
0

.0
6

9

(0
.0

8
9
)

(0
.0

7
5
)

(0
.0

7
5

)
(0

.0
8

1
)

(0
.1

0
5
)

(0
.0

8
7

)
(0

.0
8

4
)

(0
.0

7
9
)

P
er

io
d

�
D

b¼
2

0

0
.0

5
6

-
0

.0
6

6
-

0
.1

4
4

*
0

.1
8

0
*

*
0

.1
9
4

*
0

.0
0
2

0
.0

8
7

0
.1

0
5

(0
.0

8
8
)

(0
.0

7
2
)

(0
.0

7
7

)
(0

.0
8

2
)

(0
.1

0
4
)

(0
.0

8
5

)
(0

.0
8

6
)

(0
.0

9
4
)

C
o
n

st
an

t
4

.2
4

6
*

*
3

.4
9
4

*
*

*
4

.5
9
3

*
*

*
3

.1
3

1
*

3
.8

0
0

*
*

2
.3

3
1

*
*

2
.8

3
9

*
*

3
.7

2
8

5
.7

9
4

*
*

*
3

.1
6
9

*
*

6
.0

6
0

*
*

*
3

.5
2
8

(1
.5

9
0
)

(1
.0

3
9
)

(1
.1

0
3
)

(1
.6

0
4

)
(1

.7
2

2
)

(1
.1

7
6
)

(1
.2

3
6

)
(2

.4
1

6
)

(1
.9

0
7
)

(1
.3

3
2

)
(1

.3
8

3
)

(2
.4

4
0
)

O
b

se
rv

at
io

n
s

1
3

9
8

2
5

1
9

1
8

9
8

1
6

8
5

1
3

9
8

2
5

1
9

1
8

9
8

1
6

8
5

1
3

2
6

2
3

9
3

1
7

9
9

1
5

3
9

S
ta

n
d

ar
d

er
ro

rs
ar

e
re

p
o

rt
ed

in
p

ar
en

th
es

es
.
S

ta
n

d
ar

d
er

ro
rs

ar
e

cl
u

st
er

ed
at

th
e

in
d

iv
id

u
al

le
v

el
.
A

ll
m

o
d

el
s

in
cl

u
d

e
se

ss
io

n
fi

x
ed

ef
fe

ct
s,

w
h

ic
h

h
av

e
b

ee
n

o
m

it
te

d
fr

o
m

th
e

ta
b

le
fo

r
b

re
v

it
y

.
N

o
n

e
o

f
se

ss
io

n
fi

x
ed

ef
fe

ct
s

ar
e

si
g

n
ifi

ca
n

t.
T

h
e

m
o
d

el
s

in
co

lu
m

n
s

9
–

1
2

ex
cl

u
d

e
th

e
fi

rs
t

th
re

e
p

er
io

d
s

o
f

d
at

a
in

ea
ch

se
ss

io
n

.
B

id
s

ar
e

ce
n

so
re

d
at

1
0

0

*
p
\

0
:1

0
;

*
*
p
\

0
:0

5
;

*
*

*
p\

0
.0

1

Optimistic irrationality and overbidding in private value… 785

123



all cases.20 QRE improves on the Nash model with logistic errors, but still performs

worse than the Nash model with normal errors.

One way to account for the fact that we observe much more overbidding than

underbidding is to allow bidders to experience joy-of-winning (JOW). JOW can be

incorporated by adding an extra fixed utility, Ui; to the payoff of subject i,

conditional on winning the auction.21 It is easy to show that with such modification

a new dominant solution emerges, with biðxiÞ ¼ Ui

b þ xi.
22 This implication helps as

it predicts that players who enjoy winning will overbid with respect to the Nash

equilibrium and the amount of overbidding will depend inversely on b: The JOW

parameter j is found to be positive and yields a significantly higher likelihood in

every case. Nonetheless, SNE with normal errors still provides the best fit among

JOW models.

To evaluate its broad applicability, in Table 6 we examine how well the SNE

models with normal errors, both with and without JOW, fare against our model of

optimistically irrational (MI) bidders in SPAs, English auctions, and FPAs, by

comparing estimated log-likelihoods.23;24 We find that our model fares better than

the SNE with just normal errors (but no JOW) in all auctions. On the other hand, the

SNE with normal errors and JOW outperforms our model in every auction. The SNE

with normal errors and JOW may have slight advantages by the measure of Table 6,

but these advantages do not reveal the full story. In Table 7 we break out the fit by

the number of bidders and values of b. In this case, the SNE fares better than MI in

six of the nine b-number of bidder combinations. In Table 8, we compare the the

predicted mean overbidding by optimistically irrational bidders and the SNE with

JOW to the observed mean overbidding. In 4 out of the 7 cases, the magnitude of

overbids by MI bidders is closer to the predicted overbidding than SNE bidders who

experience JOW. While on a strictly econometric basis, SNE?JOW seems to be

20 For example, for a value of 50 and b ¼ 0:1 we should see approximately the same amount of

underbidding as overbidding, which is clearly not the case.
21 Note that JOW looks superficially similar to spiteful behavior (e.g., Andreoni et al. 2007; Cooper and

Fang 2008). The difference is that a subject experiences JOW only in the case where she wins, while a

subject exhibits spite even if she does not win but in cases where she raises the price for other bidders. In

Cooper and Fang’s experiment, for example, subjects can sometimes acquire information about their

rival’s value. They find that, when subjects know that their value is close to their rival’s, overbidding is

more likely to result in a costly loss and subjects overbid by less. Conversely, when subjects know that

their value is well below their rival’s, hence overbidding is unlikely to result in winning the auction but

can raise the price for their rival, overbids are larger. This is not dissimilar to our manipulation of b, and

Cooper and Fang suggest that this behavior is consistent with a modified JOW/spite model. Even the

modified model cannot help explain the difference between SPAs and English auctions, and Figs. 3, 4,

and 5 reveal that the constant overbidding predicted by JOW is more plausible than spite in our data, so

we consider only JOW.
22 Details are provided in the ‘‘Appendix’’.
23 The English auction data come from Georganas (2011), and the FPA data come from Dyer et al.

(1989).
24 The derivation of optimistic irrationality for FPAs can be found in the ‘‘Appendix’’. The implications

of optimistic irrationality for bidding in English auctions are much more straightforward. Assumption 4 of

the model lays out the bidder’s beliefs about expected payments and losses if he wins at a price greater

than his value, but there is no uncertainty over payments or losses in the English auction, so beliefs should

be perfectly accurate, leading even an optimistically irrational bidder to bid his value.
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performing slightly better than MI, MI outperforms SNE?JOW in several

instances.25 Moreover, there are good qualitative reasons not to be satisfied with

JOW, chief among them its failure to explain why JOW occurs in SPAs but not in

the strategically analogous English auction. Ultimately, further work and additional

data will be needed to completely analyze the relative strengths of the two models.

6 Conclusions

Experiments consistently find that in second-price, sealed-bid auctions with private

values—a mechanism with incomplete information where bidding one’s value is a

WDS—subjects deviate significantly from the WDS. The availability of a

‘‘dominant’’ action that is best irrespective of the other features of the decision is

rare in games with incomplete information and in strategic situations outside the lab.

The behavior of a bidder in a second-price auction who fails to recognize or

discover such an available strategy is still likely to be guided by rules that are useful

in a wide range of situations, such as cost-benefit analysis. Subjects in our SPAs

provide support for this characterization of bidders: their bidding is reasonable if not

optimal. Subjects overbid on average but their overbidding is influenced by

manipulations which affect expected payoffs out of equilibrium but not the

dominant strategy. In accordance with lessons learned in more familiar settings, as

we vary the magnitude of the penalty for losses, a natural reaction is to hedge and

bid lower when the penalty is relatively larger and to be more aggressive when the

penalty is relatively lower. The behavioral changes may not be optimal in a second-

price auction, yet they are sensible when viewed through the lens of their

applicability in richer environments.

We propose a model of optimistically irrational bidders who fail to recognize the

availability of a dominant strategy. Bidders in this model understand that raising

Table 6 Comparing estimated log likelihoods across models and auction formats

SPA English FPA

optimistically irrational 13,415 26,212 37,574

a ¼ 1:82, r ¼ 10:18,

c ¼ 0:95

a ¼ 1:82, r ¼ 10:46,

c ¼ 0:95

a ¼ 1:78, r ¼ 8:54,

c ¼ 0:95

SNE with normal errors 13,687 26,480 38,036

r ¼ 10:99 r ¼ 10:87 r ¼ 10:87

SNE with normal errors

and JOW

13323 26107 37459

r ¼ 9:92, j ¼ 0:77 r ¼ 10:30, j ¼ 0:78 r ¼ 8:45, j ¼ 0:79

The SPA models are estimated including data from b order 1, 0.1, 20 for both the 3 and 6 bidder cases.

The English auction data come Georganas (2011) and the group size is 4. The FPA data come from Dyer

et al. (1989) with 3 and 6 bidder auctions

25 Although we do not include the SNE model with normal errors and JOW in Tables 7 and 8, MI

outperforms that model in every case.
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their bid increases the probability of winning but may either overstate the increase

in the likelihood of winning and/or fail to appreciate the costs associated with

increasing their bids. We fit several existing models designed to explain overbidding

using our data, but we find that most of these models perform poorly even when

they consider out-of-equilibrium payoffs that would be affected by our experimental

manipulation, and none of the models outperform ours consistently.

Our results build on the cautiously optimistic findings in Cooper and Fang

(2008). They find that bounded rationality—more than non-standard preferences

like spite and JOW—contributes to overbidding in SPAs. Subjects in their

experiment could purchase costly and noisy information about rivals’ values,

information which does not affect the WDS. Subjects who purchase the information

were significantly more likely to overbid, but the behavior of those subjects who did

not purchase information was consistent with theoretical predictions. They conclude

by noting that this heterogeneity may be of less significance outside the lab where

selection might weed out the irrational bidders, leaving only rational bidders. Our

finding of large and theoretically unpredicted responses to our treatments can inform

Table 7 Comparing estimated log likelihoods across models, auction formats, values of b, and number

of bidders

SPA SPA English FPA

N ¼ 3 N ¼ 3 N ¼ 3 N ¼ 6 N ¼ 6 N ¼ 6 N ¼ 4 N ¼ 3 N ¼ 6

b ¼ 1 b ¼ 0:1 b ¼ 20 b ¼ 1 b ¼ 0:1 b ¼ 20 b ¼ 1 b ¼ 1 b ¼ 1

Optimistically

irrational

bidders

1151 2169 1518 2263 3609 2831 13,002 5515 5517

SNE with normal

errors and JOW

1151 2093 1516 2295 3547 2825 12,995 5546 5491

The first three columns correspond to the 3 bidder auctions for the SPA, while the next three columns

correspond to the 6 bidder auctions. The English auction data come Georganas (2011) with 4 bidders per

auction. The FPA data come from Dyer et al. (1989). The first column of FPA results come from 3 bidder

auctions and the second column come from 6 bidder auctions

Table 8 Comparing predicted mean overbidding to observed mean overbidding

SPA SPA English

N ¼ 3 N ¼ 6 N ¼ 4

b ¼ 1 b ¼ 0:1 b ¼ 20 b ¼ 1 b ¼ 0:1 b ¼ 20 b ¼ 1

Optimistically irrational 2.89 5.12 0.26 3.13 5.40 0.27 0

SNE with normal errors and JOW 0.78 7.84 0.04 0.78 7.84 0.04 0.78

Observed 3.26 7.46 1.07 4.48 7.54 0.43 1.17

The first three columns correspond to the 3 bidder auctions for the SPA, while the next three columns

correspond to the 6 bidder auctions. The English auction data come Georganas (2011) with 4 bidders per

auction. The FPA data come from Dyer et al. (1989). The first column of FPA results come from 3 bidder

auctions and the second column come from 6 bidder auctions
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mechanism designers, theorists and practitioners who are concerned that such

selection may be insufficient or too slow: even in cases with a dominant strategy, the

nature of incentives outside equilibrium can influence behavior. In instances where

the common sense implications of manipulating out-of-equilibrium incentives can

steer behavior toward the desired norm, such as in SPAs, designers may be able to

use these incentives to design more stable and efficient mechanisms.26
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Appendix

Second price auctions

The maximization problem of an optimistically irrational bidder in an SPA in our

model is:

max
b� 0

½rðbÞ�aðn�1Þ
x� ½rðxÞ�aðn�1Þ

½rðbÞ�aðn�1Þ

" #

hnðxÞ
(

þ ½rðbÞ�aðn�1Þ � ½rðxÞ�aðn�1Þ

½rðbÞ�aðn�1Þ

" #

cðxÞ bþ x

2

#)

;

where hnðxÞ denotes the expected price if a bidder wins at a price below his value

and rðbÞ denotes the inverse bidding function.

The first-order condition (FOC) for the maximization problem is:

2xaðn� 1Þ½rðbÞ�aðn�1Þ�1r0ðbÞ � cðxÞaðn� 1Þ½rðbÞ�aðn�1Þ�1r0ðbÞðbþ xÞ
� cðxÞ½½rðbÞ�aðn�1Þ � ½rðxÞ�aðn�1Þ� ¼ 0

After simplifying we have:

2xaðn� 1Þ½rðbÞ�aðn�1Þ�1½1 � cðxÞ�r0ðbÞ � cðxÞaðn� 1Þ½rðbÞ�aðn�1Þ�1ðb� xÞr0ðbÞ
� cðxÞ½½rðbÞ�aðn�1Þ � ½rðxÞ�aðn�1Þ� ¼ 0

ð3Þ

Proof of Proposition 1

Proof Assume that 8x 2 ½0; 1�; bðxÞ ¼ x: In such a case Eq. (3) becomes

26 While our results are most applicable to situations with a dominant strategy, the fundamental intuition

behind optimistically irrational bidders may be useful in other domains, as well. For example, over

investment is common in experimental contests (Dechenaux et al. 2015) that test models of R&D

competitions. Optimistically irrational competitors may overestimate the increase in the likelihood of

winning an R&D contest and/or underestimate just how costly their effort may be.
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2xaðn� 1Þ½rðbÞ�aðn�1Þ�1ð1 � cðxÞÞ ¼ 0

implying cðxÞ ¼ 1; for all x[ 0; as r0ðbÞ ¼ 1 with bðxÞ :¼ x:
Assume that 8x 2 ½0; 1�, cðxÞ :¼ 1: In such a case Eq. (3) becomes

�f½aðn� 1ÞrðbÞ�aðn�1Þ�1ðb� xÞr0ðbÞ þ ½½rðbÞ�aðn�1Þ � ½rðxÞ�aðn�1Þ�gQ0 as bðxÞTx:

h

Derivation of remark 1

Consider the FOC in Eq. (3). Recognizing that at the solution rðbÞ ¼ x and

r0ðbÞ ¼ 1
b0ðxÞ, and simplifying, we can rewrite (3) as

2aðn� 1Þ½1 � cðxÞ� � cðxÞaðn� 1Þ b

x
� 1

� �

� cðxÞb0ðxÞ 1 � rðxÞ
x

� �aðn�1Þ" #

¼ 0:

ð4Þ

Assume that 8x 2 ½0; 1�; cðxÞ ¼ c\1 and bðxÞ ¼ dx; with d� 1. Equation (4) can be

written as:

2aðn� 1Þ½1 � c� � caðn� 1Þðd� 1Þ � cd 1 � 1

d

� �aðn�1Þ" #

¼ 0 ð5Þ

When d ¼ 1 then (5) becomes 2aðn� 1Þ½1 � c�[ 0 when c\1, which is the case

for overbidding.

By inspecting (5), it is clear that the LHS is strictly declining in d, so that there is

a unique d� that solves

2aðn� 1Þ½1 � c� � caðn� 1Þðd� � 1Þ � cd� 1 � 1

d�

� �aðn�1Þ" #

¼ 0 ð6Þ

Table 9 Model fit in all treatments with b order 1, 0.1, 20

SNE

(norm)

SNE?joy (norm) SNE

(logit)

SNE (logit?joy) QRE QRE?joy

3 bidders (1278 observations)

-LL 4861.4 4729.1 4984.7 4944.9 4959.8 4838

BIC 9723.9 9472.5 9976.6 9904.1 9926.8 9690.3

Parameters 10.86 r ¼ 9:66; j ¼ 0:77 k ¼ 0:52 k ¼ 0:68; j ¼ 2:4 k ¼ 0:54 k ¼ 0:71; j ¼ 5:8

6 bidders (2310 observations)

-LL 8825.1 8593.2 9212 9057.9 9084 8850.9

BIC 17658 17201 18432 18131 18176 17717

Parameters 11.06 r ¼ 10; j ¼ 0:78 k ¼ 0:81 k ¼ 1:6, j ¼ 2:2 k ¼ 0:83 k ¼ 1:08;
j ¼ 6:3

SNE symmetric Nash equilibrium. -LL negative log likelihood, BIC Bayesian Information Criterion.

Note a level k model is the same is the SNE
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First price auctions

The maximization problem of an optimistically irrational bidder in an FPA:

max
B� 0

½rðBÞ�aðn�1Þ½x� B� ð7Þ

Denote the solution to (7) by Bðx; aÞ and the risk-neutral Nash equilibrium by

Bðx; baÞ: It is well known that the solution to (5) is given by,

Bðx; aÞ ¼ x�
R x

0
taðn�1Þdt

xaðn�1Þ ¼ x� x

aðn� 1Þ þ 1
¼ aðn� 1Þ

aðn� 1Þ þ 1
x

Proposition 2 Bðx; aÞ�Bðx; baÞ as a� ba:

Proof The proof is immediate. h

Thus, optimistically irrational bidders will bid above the RNNE but below their

value.

Joy of winning

Lemma 3 In a second price auction where negative payoffs are multiplied times b
and bidders have a heterogeneous joy of winning Ui, the dominant strategy

equilibrium is biðxiÞ ¼ Ui

b þ xi.

Proof Expected profits in the auctions are Pi ¼ probfbi [ maxðb�iÞgðxi þ Ui

�E½maxðb�iÞjbi [ maxðb�iÞ�Þ, and subjects choose a biðxiÞ to maximize Pi.

Consider bidding b0\biðxiÞ ¼ Ui

b þ xi; when it matters i.e. you win with biðxiÞ but

lose with b0: It also means that the price the winner pays is p 2 ½b0; biðxiÞ�. If

p[ xi, winning earns Ui � bðp� xiÞ�Ui � bððUi

b þ xiÞ � xiÞ ¼ 0: When p� xi;

strict positive payoffs are assured. With a similar step we show that bidding biðxiÞ;
weakly dominates bidding b0 [ biðxiÞ: h
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