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Abstract This paper reports new data from both selling and buying versions of the
Becker-DeGroot-Marschak (BDM) procedure. First, when using the selling version of
BDM, the cross-sectional mean of CRRA risk preference parameter estimates shifts
from a value consistent with “as if” risk-seeking behavior in the early baseline to
a value closer to “as if” risk neutrality in the late baseline. Second, when using the
buying version of BDM, the cross-sectional mean of CRRA risk preference parameter
estimates does not appear to change over time in a statistically significant manner. The
cross-sectional mean from the late baseline of the buying version of BDM is closer
to “as if” risk neutrality and to the late baseline estimates from the selling version of
BDM than it is to either early baseline estimates from the selling version of BDM or
typical estimates from the first price auction. Use of dominated offers is correlated
with deviations from “as if” risk neutrality; this suggests the possibility that the early
deviations from “as if” risk neutrality reflect errors.
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1 Introduction

There is a growing body of empirical results that document risk preference parameter
inconsistency across institutions. Clear instances of the same subjects appearing “as
if” risk averse in one institution (e.g., first price sealed bid auction) and ““as if” risk
seeking in another institution (e.g., Becker-DeGroot-Marschak or the English oral
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auction) have been documented by Isaac and James (2000a) and Berg et al. (2005). This
presents a puzzle in the interpretation of experimental data that differ systematically
from risk neutral theoretical predictions. That is, if data from a particular institution
cluster on one side of the risk neutral prediction for that institution, does that tell us
about subjects’ risk preferences? What if the same subjects are found to cluster on
one side of the risk neutral prediction in a different institution—but that clustering is
on the other side of risk neutrality?

One way to attempt to shed further light on this issue is to gather more data, under
different circumstances, than were available when the puzzle was first noticed. A
possible approach to this is to concentrate on a particular institution, and to measure
possible influences on the data from that institution other than the subjects’ own “as
if”” risk preference parameters.'

For instance, might confusion on the part of the subjects lead to systematic errors
that fall asymmetrically relative to the appropriate risk neutral prediction, but that are
not necessarily indicative of the subjects’ risk preferences? Confusion in this sense
might be hard to define or to measure, but its obverse—learning—might perhaps be
documented without undue reliance on compound hypotheses about either the precise
type of confusion which existed initially or the precise process by which learning
occurs.

The approach employed by this paper is then to document the distribution and
stability of, and possible influences on, risk preference parameter estimates based on
relatively long time series of experimental data from the Becker-DeGroot-Marschak
procedure. A key benefit to employing long time series from a single institution is that
it allows for learning to take place, so that the effects of learning might be measured.
The effects of learning are in turn measured by a simple and minimal standard of
rationality: adherence to a dominant strategy.

The experiments in this paper have relevance for several different streams of re-
search. While this paper is primarily related to the literature on risk preference param-
eter estimation, there are also implications for research on learning to play dominant
strategies, and for research on the effect of payoff transformations on risky choice
behavior. The rest of this paper is as follows. Section 2 reviews the related litera-
ture. Section 3 outlines the research questions of interest. Section 4 discusses the
experimental design. Section 5 presents the results. Section 6 concludes.

2 Background

What can risk preference parameter estimates from experimental data tell us? Different
researchers would nominate different answers to that question, based on different
approaches to model building.

Some might suggest that such risk preference parameter estimates tell us about
individuals’ biologically innate risk preferences. As an example of this, Harlow and

! The phrase “as if” is used to acknowledge that this work deals with risk preferences as estimates of
parameters which are in turn modeling constructs, and that this work does not necessarily claim that, say,
a particular parameterization of expected utility is the only possible representation of risky choice. With
readers’ understanding, the phrase “as if”” will be omitted from the rest of the paper.
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Brown (1990) entertain the possibility of a correlation between results from economics
experiments and biomedical measurements. In contrast to this, there is a long-standing
tradition in economics that theoretical concepts such as risk preferences are regarded
as “as if” modeling constructs, to be judged by their predictive value only (Friedman,
1953).

Another point of contention in this area is the role of income versus wealth in
defining and measuring risk preferences. Rabin (2000) casts doubt upon inferences
made about utility functions defined over wealth when those inferences are based on
data from economics experiments using “low” monetary stakes. Specifically, Rabin
demonstrates that the estimates derived in experimental settings imply absurdly risk
averse behavior if applied to (higher stakes) field situations. In counterpoint to this,
Cox and Sadiraj (2006) examine the use of utility functions defined over income rather
than wealth as being not subject to Rabin’s critique.

However, findings of cross-institutional parameter inconsistency (such as those of
Isaac and James or Berg, Dickhaut, and McCabe) bring up a puzzle that is funda-
mental in nature. That is because one point upon which all parties to the various
discussions on risk preferences would agree is that risk preferences for an individual
are typically not thought to be a function of the institution in which the individual
operates. Thus whether one believes that risk preferences actually exist, or are an “as
if” modeling fiction, or whether one believes that deviations from risk neutral behavior
due to risk preferences can be accurately measured in a typical experimental setting,
or not, one still needs to make further inquiry with regard to the asymmetric clus-
tering of data (relative to risk neutrality) in each institution and the possible causes
thereof.

As one example of such asymmetry, take the experimental research program sur-
rounding the Constant Relative Risk Aversion Model of bidding in the first price
auction (hereafter, CRRAM). Cox, Smith, and Walker (1988) use the CRRAM model
to estimate values for subjects’ risk-preference parameter, r;, and find that r; is less
than one for over 90 percent of their subjects (statistically significantly less than one
for 70 percent of their subjects). An r; less than one implies risk aversion if the sub-
ject has CRRA preferences. Other sets of experiments by those researchers, and by
other researchers including Schorvitz (1998), Isaac and James (2000a), Dorsey and
Razzolini (2003), and Berg et al. (2005) have replicated the Cox, Smith, and Walker
results. While these results can be argued not to demonstrate risk aversion, even then
it remains an interesting question why the estimates take on the asymmetric pattern
replicated across these studies.

A contrasting example of asymmetry in estimates of r; involves the Becker-
DeGroot-Marschak procedure (hereafter, BDM). BDM places the subject in a second-
price auction where the other participant is not another person, but a draw from a
uniform distribution, and where the object being auctioned is a lottery. Because it
is a dominant strategy to reveal one’s true valuation in a second-price auction, the
subject should reveal what the lottery is truly worth to her. Given this observed
certainty equivalent and the experimenter-controlled design parameters, one could
solve for (estimate) the unobserved CRRA r; parameter of the subject. Using BDM,
risk preference parameter estimates greater than one—that is, consistent with risk
seeking—have been observed (Harrison, 1990; Isaac and James, 2000a; Berg et al.
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2005). 2 This in itself suggests the need to collect more BDM data, as this current
paper does, in order to determine if the finding of r; greater than one with the BDM is
as consistently replicable as the finding of r; less than one when using the first price
auction.

In light of the results discussed in this section of the paper, which already establish
cross-institutional inconsistencies in risk preference parameter estimates, this current
paper focuses on a particular institution (BDM) in an attempt to observe influences on
choice data that are clearly not attributable to subjects’ own risk preferences. Subjects’
learning, as reflected in adoption of the institution’s dominant strategy, and subjects’
responses to variations in exogenously imposed payoff transformation regimes are both
possible indicators that something other than risk preferences might be influencing
subjects’ behavior in BDM.

3 Research questions

The experiments in this paper are intended to address the following questions.

Question 1a: What estimates are obtained for r; using data from the selling version of
BDM?

Question 1b: What estimates are obtained for r; using data from the buying version of
BDM?

Question 2: Do the respective estimates from each version of BDM change over time?

Question 3: What level of revelation (equivalently, use of the dominant strategy) is
observed in the BDM?

Question 4: Does that level of revelation change over time?

Question 5: Is misrevelation associated with deviation from risk neutrality?

Question 6: Is misrevelation associated with parameter instability?

Question 7: What effect do exogenously imposed non-linear payoff transformations
have on choice in the BDM?

4 Experimental design

In addition to expanding the body of work on BDM in terms of quantity, this paper
also takes a qualitatively different approach through several key design features. These
design features may allow for the gathering of data which might suggest explanations
for asymmetry in estimates of r; that do not necessarily rely on risk attitudes.

First, in this design the time series of individual choices is broken into four distinct
regimes: an initial baseline, two treatments, and a final baseline. This provides for
distinct early and late baseline estimates of 7; made according to pre-determined break
points. This allows an assessment of the stability of each individual’s r; estimate
over time, which in turn may provide clues as to the nature of asymmetry in such
estimates.

2 Interestingly, Isaac and James (2000a) and Berg et al. (2005) in replicating the results of Cox et al. (1988)
using the first price auction do so using the same subjects who generated risk-seeking data within the BDM.
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Second, the experimental design provides a way to measure the subjects’ under-
standing of BDM, and their possible learning over time. This is accomplished by
means of including periods where the lottery is degenerate (the probability of a given
payoff is one). When the lottery is degenerate BDM becomes a second price auc-
tion for an induced value commodity object, and the experimenter is able to ob-
serve whether the subject acts as if she both understands the institution and truth-
fully reveals her induced value, or not. The data from these periods will be di-
rectly comparable to earlier work in this area, including Attiyeh et al. (2000), Cox
et al. (1996), and Isaac and James (2000b), all of which document subjects’ con-
vergence over time towards true revelation of object value in incentive compatible
institutions.

Third, the treatment regimes that comprise the middle part of the design implement
payoff transformations.® The most closely related work in this regard is that of Cox,
Smith, and Walker, who as part of their larger research program ran some experiments
wherein intra-experiment payoffs were translated into U.S. dollar payoffs by means
of one or the other of the following functions:

U.S. dollars = (Experimental dollars)!/?
U.S. dollars = (Experimental dollars)’

This current paper implements each of these payoff transformations during re-
spective treatment conditions for every subject in the pool. Doing so allows
the gathering of choice data generated under distinct payoff environments, but
which—given a maintained hypothesis of CRRA expected utility maximization—
should nonetheless be consistent with a stable estimate of r;for each subject.
The effects of such transforms in a BDM context can also be directly compared
to the results obtained by Cox, Smith, and Walker in the first price auction.*
Fourth, in addition to the new design features just outlined, this paper also im-
plements BDM in both selling and buying versions, as done by Kachelmeier and
Meheta (1992).

Taken together, these design features might provide for some clues as to the nature
of asymmetry in risk preference parameter estimates obtained from BDM data. For
instance, were the estimates from the early and late baseline to differ, it would raise
questions about the interpretation of an r; estimate as a behavioral constant. And if
time variation in subjects’ use of their dominant strategy of truthful revelation were
observed, this might call into question the extent to which choices from all periods
reflected the same behavior. Also, differences in the pattern of estimates across the
buying and selling versions of BDM might prove informative. Furthermore, one might
be able to combine such observations to suggest still other conclusions.

3 It should be noted that the procedures discussed in this regard are distinct from the lottery payoff procedure
developed by Roth and Malouf (1979) and tested by Berg et al. (1986).

4 Other previous work within this part of the literature might allow interesting comparisons with the work
in this paper. For example, James and Isaac (2000) examine the effect of convex (specifically “beat the
market”) incentive contracts for traders in an experimental asset market. While the transformations used
here match those used by Cox, Smith, and Walker rather than those used by James and Isaac, there might
still be some value in comparing the effect of non-linear payoff transformations in individual choice versus
market settings.
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The experiments engaged in here assume as a maintained hypothesis—for argu-
ment’s sake and for comparability with other work—that the subjects have CRRA
utility functions defined over U.S. dollar income (as opposed to wealth) expressed as:

u(y) = y"

If in addition to assuming u#(y) = y" as a maintained hypothesis, one implements
payoff transformations of the form:

U.S. dollars = (Experimental currency)®

during the experiment, then utility defined over experimental currency is u(c) = ¢*".
A subject’s valuation of a two-state lottery with a zero payoff in the low state can then
be written as:

u(CE) = CE""" = Phigh(Chigh)”" + (1 — Phign)(0)*"
Taking natural logs and dividing both sides by ar; yields:
In(CE) = In(phign)/ar;+In(chigh)

One can then append multiplicative dummies (to account for each of the payoff trans-
formation treatments and the second baseline) and a standard econometric error term
to derive the estimating equation:

InCE =a+ blln(phigh) + bZ(Dcunvex) + b3(Dc0ncave) + b4(Dsecund) + Ui (1)

where:

CE = the certainty equivalent for a given lottery, as written down by the subject

a = constant term, which is restricted to equal the natural log of the high payoff in
the lottery, i.e. In(cpign)

In(phign) = natural log of the probability of the high payoff in the lottery

D onvex = amultiplicative dummy taking on the value In( ppien) when the convex payoff
transformation is in effect (and O otherwise)

Deoncave = a multiplicative dummy taking on the value In(ppign) When the concave
payoff transformation is in effect (and O otherwise)

Dyecona = a multiplicative dummy taking on the value In(py;gn) during the second
baseline (and O otherwise)

uy, = error term satisfying the OLS assumptions.

Estimating (1) in time series, then solving for »; from b; = 1/r; gives an estimate of
the subject’s r; during the first baseline; similarly, r; = 1/(by + b4) gives an estimate
of the subject’s r;during the second baseline. Also it should be noted that b, = b3
= (1 — aw)/ar;. Since o = 2 during the convex payoff transformation treatment, b,
should be negative; and given o = 1/2 during the concave payoff transformation
treatment, b3 should be positive.
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Stability of risk preference parameter estimates within the Becker-DeGroot-Marschak procedure 129

The experiments were run so as to collect data suitable for estimating (1). This
involved implementing BDM in both buying and selling forms. The operation of each
version of BDM will now be outlined.

Selling version of BDM

In each round, the subject starts out owning the proceeds to a lottery with ppien of a
two dollar payoff, and (1 — ppien) of a zero payoff. The subject then writes down the
value she places on the rights to those lottery proceeds. The experimenter then draws
from a uniform distribution to determine whether the subject will keep the rights to the
proceeds of the lottery. If the number drawn is less than the subject’s offer, the subject
keeps the rights to the proceeds of the lottery. If the number drawn is greater than the
subject’s offer, the subject is held to have sold the rights to the lottery proceeds to the
experimenter for an amount equal to the draw from the uniform distribution. Next,
and finally, the lottery took place. ppign Was varied round by round.

Buying version of BDM

In each round, the subject has an opportunity to purchase the rights to the proceeds of
a lottery with py;gn of a two dollar payoff, and (1 — pnign) of a zero payoff. The subject
first writes down the value she places on the rights to those lottery proceeds. The
experimenter then draws from a uniform distribution. If the number drawn is less than
the subject’s offer, the subject is awarded the rights to the proceeds of the lottery and
pays to the experimenter an amount equal to the draw from the uniform distribution.
If the number drawn is greater than the subject’s offer, the subject does not purchase
the rights to the lottery proceeds from the experimenter. Next, and finally, the lottery
takes place. pnign Was varied round by round. 3

Each individual choice experiment used either the selling version of BDM or the
buying version of BDM, but not both. All experiments using either version of BDM
had 52 rounds. For all subjects, the first thirteen rounds were run with experimental
currency earnings translated into U.S. dollars one for one. For half of the subject pool,
the second thirteen periods used the payoff transformation, U.S. dollars = (Experi-
mental currency)!/?, while the third thirteen rounds used the payoff transformation,
U.S. = (Experimental currency)?. The other half of the subject pool had the order of
the payoff transformation treatments reversed. Finally, all subjects were returned to
the original one for one payoff conversion for the final thirteen periods.

Also, it should be noted that in each thirteen round segment (first baseline, first
treatment, second treatment, second baseline) there was one round where pyignh equaled
either zero or one. In these rounds, the value of the lottery was independent of risk

5 The buying version of BDM requires that a subject have working capital with which to bid. For 14 of the
28 subjects, their initial working capital was set at $20.00 (which was theirs to keep). The other 14 subjects
started with working capital of $3.00 (again, which was theirs to keep). It is also possible for a subject to
then run out of working capital. Subjects were told in advance that they would cease bidding immediately
and for the remainder of the experiment if their working capital balance went negative. This situation never
arose in the course of the experiments, however. The results reported for the buying version of BDM in this
paper do not classify estimates by initial endowment, but such a classification is available upon request.
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preference, and was equal to the payoff received with certainty. This enables the
experimenter to determine if a subject is behaving as if she both understands the BDM
institution and is revealing her true valuation of the lottery, or not.

The experiments each took around ninety minutes to run. Subjects were recruited
from students in upper division economics classes at the University of Arizona and at
Fordham University. Upon showing up, subjects were paid a $7.00 show-up fee and
began to read the instructions (included as an Appendix).

Prior to commencing the experiment the subjects read the instructions and com-
pleted two practice rounds (without monetary payment) during which the operation
of BDM was reviewed and questions were fielded. The instructions were written with
the objective of giving BDM its best shot at success. That is to say, the instructions
expressly inform the subjects that it is in their interest to truthfully report their value,
and this point is then illustrated in the instructions with cases showing the harmful
effects of either over-bidding or under-bidding. Upon completion of the experiment,
subjects were paid their earnings from the experiment. These ranged from $20.00 to
$88.00.

5 Results
5.1 Estimation results

The individual subject estimations are reported below, first for the selling version of
BDM, then for the buying version of BDM. For all subjects, the two rounds where
Phigh = 0 were dropped from estimation, due to the behavior of the natural log evalu-
ated at zero. This leaves a time series with 7 = 50. Beyond that, in the selling version,
7 of the 28 subjects offered 0 in some of the other rounds; in the buying version, 16
of the 28 subjects bid 0 in some of the other rounds. In Tables 1 and 2, the estimates
obtained when also dropping those rounds for those subjects are reported. Alternative
measures based on censored data techniques are also possible; estimates obtained by
replacing O with 0.01 as a robustness check are noted for the selling version in endnote
6, and for the buying version in endnote 8.

Also, it should be noted that the calculation of R? is different when a constant
term restriction is in place, as it is here as required by the theoretical derivation of the
estimating equation. In this case, R* can be less than zero for a particularly poorly fitting
regression.

Tables 1 and 2 present individual estimations that can be interpreted on a case-by-
case basis, and doing so reveals a wide range of behavior. The estimates obtained for
individuals can also be examined as a cross-section, and doing so provides interesting
new data addressing research questions noted earlier in this paper.

First, the stability of estimates of the parameter r-across studies and across time
within this study—using BDM data is addressed. Earlier findings of average estimates
greater than one using the selling version of BDM are replicated here, but with a
key new piece of information. The experimental design allows distinct early and late
baseline sessions (separated by treatment sessions) and hence allows distinct early and
late estimates of r. The mean (median) of the early estimates is 1.34 (1.20), but the
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Table 1 Individual estimates from selling version of BDM

Coeff. on Coeff. on Coeff. on Coeff. on
Phigh (Std. Deonvex Dconcave Dsecond

Subject error) (Std. error) (Std. error) (Std. error) T R?

1 .6602 —.2769 .0302 .0388 50 .80
(.0640) (.0909) (.0909) (.0909)

2 2.5303 —.4432 —1.2478 1240 50 .57
(.3207) (.4535) (.4535) (.4535)

3 1.0068 —.2808 7739 —.1343 42 92
(.0733) (.1036) (.1036) (.1036)

4 1.1447 —.2380 —.2226 .1360 50 91
(.0670) (.0949) (.0949) (.0949)

5 7045 —.0187 .5589 4116 50 94
(.0456) (.0645) (.0645) (.0645)

6 1.7141 —.3416 —.5576 2170 49 .83
(.1661) (.2349) (.2628) (.2349)

7 .3639 .0129 .0283 .0908 50 .59
(.0528) (.0747) (.0747) (.0747)

8 4311 4144 .3766 .6346 50 .87
(.0708) (.1002) (.1002) (.1002)

9 1.3343 3577 .0557 3631 50 .88
(.1248) (.1765) (.1765) (.1765)

10 7625 4147 .3390 2854 50 .81
(.1103) (.1561) (.1561) (.1561)

11 .6012 —.2615 .5256 1.1889 48 .34
(.2532) (.3268) (.3268) (.3581)

12 1 0 0 0 50 1
(2.47 el7) 0) 0) 0)

13 3917 .6275 4613 .5645 45 .55
(.2303) (.3192) (.3192) (.3192)

14 7103 .8395 2732 1.0216 45 .66
(.1387) (.2784) (.2195) (.2784)

15 5211 2845 5764 .5606 50 .85
(.0879) (.1243) (.1243) (.1243)

16 1.6180 —.3324 —.3326 .0335 40 .85
(.0879) (.1618) (.1766) (.1766)

17 1.3576 4678 1.0215 1.1982 50 .63
(.3301) (.4668) (.4668) (.4668)

18 9048 1291 1473 1299 50 .81
(.0933) (.1320) (.1320) (.1320)

19 9542 —.1202 —.3597 —.0767 33 .64
(.1673) (.2367) (.2241) (.2678)

20 1.2465 1183 .1994 .5436 50 73
(.1645) (.2326) (.2326) (.2326)

21 .6840 1.0655 3597 9744 50 .64
(.2462) (.3483) (.3483) (.3483)

22 4704 0 0 —.0096 50 —17.31
(.1135) (.1606) (.1606) (.1606)

23 .6737 2022 1287 0.6096 50 .06
(.3581) (.3581) (.3581) (.3581)

(Continued on next page)
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Table 1 (Continued)

Coeff. on Coeff. on Coeff. on Coeff. on
Phigh (Std' Dconvex Dconcave Dsecond

Subject error) (Std. error) (Std. error) (Std. error) T R?

24 9884 .3097 .0722 2542 50 .69
(.1511) (.2137) (.2137) (.2137)

25 9887 —.1229 —.0832 —.0244 50 93
(.0482) (.0682) (.0682) (.0682)

26 1.4501 1321 —.3543 2031 50 .80
(.1720) (.2432) (.2432) (.2432)

27 4112 9903 115 4023 50 34
(.4158) (.5880) (.5880) (.5880)

28 .6053 2917 3199 3394 50 77
(.0902) (.1276) (.1276) (.1276)

Estimating equation: In CE = a + blln(phigh) + b2(Deonvex) + b3(Dconcave) + ba(Dsecond) + Uir-

14
12 +

8+ O First Baseline
6 + W Second baseline

om0l m (] (]

<04 4-8 812 12- 16-2 224 >24
1.6

Frequency

Ri estimates

Fig. 1 Plot of individual estimates from the selling version of BDM

mean (median) of the late estimates is .92 (.91).° Graphically, the empirical densities
are shown in Fig. 1.

The plot of the estimates of the individual subjects’ r; parameters appears to decrease
in mean and decrease in variance over time.

6 Instead of dropping from estimation those observations where the subject reported a certainty equivalent
equal to 0, as was done for the estimates in the table and in the frequency plot, one can replace certainty
equivalents of 0 with 0.01 as a robustness check. Doing so one obtains a mean (median) of 1.21 (1.01)
in the early baseline, and a mean (median) of 0.85 (0.78) in the late baseline. This approach, though
crude, is useful. It gives a lower bound in estimating r;; since it fills in the missing data with the lowest
certainty equivalent that is both possible in the experiment and does not map to an undefined value of the
natural log function. More nuanced censored data techniques would yield higher estimates. (For instance,
if one interprets reported certainty equivalents of zero for lotteries with positive, but low, expected value
as showing the subject declining the effort of deciding whether the lottery is really worth 0.03 or 0.05 to
her, rather than showing that the subject actually values the lottery at zero, then in principle some missing
observations should be filled in with values greater than 0.01.)
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Table 2 Individual estimates from buying version of BDM

Coeff. on Coeff. on Coeff. on Coeff. on
Phigh (Std Deonvex Deconcave Dsecond

Subject error) (Std. error) (Std. error) (Std. error) T R?

1 1.1532 0.2110 —0.0616 0.2436 50 .85
(0.1087) (0.1537) (0.1537) (0.1537)

2 2.0186 —1.5391 —1.8767 —2.0186 36 .90
(0.1094) (0.2397) (0.3236) (0.3563)

3 0.8497 0.2365 —0.0791 —0.2922 50 44
(0.1681) (0.2377) (0.2377) (0.2377)

4 1.0230 —0.0235 0.0917 0.0356 50 .96
(0.0410) (0.0580) (0.0580) (0.0580)

5 1(0.0711) 0.0595 0.3585 —0.0085 50 91

(0.1005) (0.1005) (0.1005)

6 1.1887 —0.4025 —0.0807 —0.4219 50 .85
(0.0829) (0.1172) (0.1172) (0.1172)

7 1.1772 —0.1156 0.0283 —0.3007 46 .86
(0.0897) (0.1419) (0.1419) (0.1800)

8 1.1663 0.1608 0.0630 0.2500 48 .82
(0.1476) (0.1904) (0.2087) (0.1904)

9 —0.3249 0.5439 0.3403 0.3613 50 .04
(0.2699) (0.3817) (0.3817) (0.3817)

10 0.9263 0.8672 0.1770 0.2798 47 73
(0.1286) (0.1819) (0.1819) (0.2929)

11 1(0.0027) —0.0015 0 (0.0047) 0 (0.0038) 46 .99

(0.0038)

12 0.9357 0.0906 0.1557 0.0032 50 .90
(0.0705) (0.0997) (0.0997) (0.0997)

13 1.2841 —0.3434 0.2923 —0.3503 50 .87
(0.1026) (0.1451) (0.1451) (0.1451)

14 1.4160 —0.3639 0.2398 —0.2799 44 .92
(0.0668) (0.0944) (0.1159) (0.1159)

15 0.2420 —0.2706 —0.2420 —0.2420 33 .29
(0.0688) (0.1829) (0.1441) (0.1829)

16 1.7092 —0.8373 —1.1054 —0.3300 35 .58
(0.2380) (0.3598) (0.3461) (0.3367)

17 0.8538 0.2904 0.1791 0.2380 46 .93
(0.0430) (0.0681) (0.0864) (0.0681)

18 1 0 0 0 50 1.0
) (0) (V] )

19 1.2910 0.0466 0.3748 0.1810 49 92
(0.1033) (0.1333) (0.1333) (0.1333)

20 0.9272 0.0056 —0.0863 0.0566 50 .96
(0.0374) (0.0529) (0.0529) (0.0529)

21 0.9430 —0.0686 0.4438 0.0494 47 93
(0.0537) (0.0850) (0.0850) (0.0850)

22 1.1580 0.0941 —0.0883 —0.1375 49 92
(0.0663) (0.1049) (0.0937) (0.0937)

23 1.2666 —0.3482 0.1629 0.1337 50 91
(0.0732) (0.1035) (0.1035) (0.1035)

(Continued on the page)
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Table 2 (Continued)

Coeff. on Coeff. on Coeff. on Coeff. on
Phigh (Std. Dconvex Dconcave Dsecond

Subject error) (Std. error) (Std. error) (Std. error) T R?

24 1.4360 —1.4360 —0.4434 —1.4360 41 .86
(0.1062) (0.2066) (0.1398) (0.2494)

25 1.3028 —0.8917 —0.2631 —0.1153 41 .76
(0.1990) (0.2368) (0.3221) (0.2215)

26 1.1084 —0.0010 0.1653 0 (0.0502) 50 .98
(0.0355) (0.0502) (0.0502)

27 1.0545 0.0048 —0.5361 0.0308 43 74
(0.1501) (0.2048) (0.3318) (0.1883)

28 1.0245 0.9543 0.4919 1.0709 40 .56
(0.1097) (0.3061) (0.1818) (0.3061)

Estimating equation: In CE = a + blln(Phigh) + b2(Deonvex) + b3(Deoncave) + b4(Dsecond) + Uiz -

20

15 1

o First Baseline

W Second baseline

Frequency
o

5,,
0+ : R A— I H
<04 4-8 812 12- 16-2 224 >24
1.6
Ri estimates

Fig. 2 Plot of individual estimates from the buying version of BDM

Using the buying version of BDM, the mean (median) of the early estimates is 0.88
(0.88), but the mean (median) of the late estimates is 1.09 (0.99).7-3 The individual
estimates are plotted in Fig. 2.

7 In addition to the issue of certainty equivalents being reported as zero, already raised in connection with
the data from the selling version of BDM, these data from the buying version of BDM introduce a new
question. How does one handle regression estimates that imply an r; of infinity (that is, infinitely risk-seeking
behavior)? This is observed for 4 subjects in the late baseline of the buying version of BDM. For these
subjects, an estimate of “2” is substituted for infinity when calculating statistics such as the population mean,
and for consistency is also used in the frequency plot of estimates. This captures the qualitative nature of
the results, without skewing the mean to the point of meaninglessness. (Also, the median is reported as an
alternative measure that does not suffer from this sensitivity.)

8 As before, one can perform a robustness check by re-estimating the equation with 0.01 replacing O for
periods when the subject reported a certainty equivalent of O (and thus not be forced to drop from the
estimation those periods with a dependent variable equal to the natural log of 0). Doing so one finds that the
mean (median) of the early estimates is 0.70 (0.85), and that the mean (median) of the late estimates is 0.84
(0.78). Again, these represent the lowest possible values for these estimates; replacing certainty equivalents
of 0 with any permissible value other than 0.01 yields higher estimates.
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Table 3 Tally of hypothesis test results on subjects’ b4 coefficients

Selling version Buying version
Number of subjects showing statistically signif- 0 6
icant shift to higher r;
Number of subjects showing statistically signif- 13 2
icant shift to lower r;
Number of subjects showing no statistically sig- 15 20

nificant shift either way

Note: Significance is calculated for 95% level.

Hypothesis tests of whether individual subjects’ second baseline coefficients (from
Tables 1 and 2) are respectively significantly different from zero can shed some light
on whether or not parameter estimates shift from the early baseline to the late baseline.
Tallying the results of those hypothesis tests generates Table 3.

We see from this table that parameter estimates exhibit a statistically significant shift
away from the risk seeking end of the scale for 13 of 28 subjects in the selling version
of BDM, while the other 15 subjects in that institution do not register a significant
change one way or the other. For the buying version we then note that of the 28 subjects
in that institution, 6 show a statistically significant shift away from the risk averse end
of the scale, 2 show a statistically significant shift in the opposite direction, and the
other 20 do not show a statistically significant shift in either direction.’

Furthermore, the distributions of estimates from the different versions of BDM
appear to be converging over time. Under the early baseline, a Wilcoxon rank-sum test
rejects that the distribution of estimates from the selling version and the distribution of
estimates from the buying version are the same (calculated z = 3.408, critical z = 1.6
for « = .05). But under the late baseline, a Wilcoxon rank-sum test fails to reject that
the two distributions are the same (z = 0.77, critical z = 1.6 for @ = .05).

5.2 Confusion and learning

Since the data include four periods where the payoff of the lottery is known with
certainty, an unambiguous appraisal of the revelation properties of the BDM—and a
comparison with other dominant strategy institutions—is possible. Following Isaac
and James (2000b) both exact revelation and approximate revelation are reported.
Approximate revelation is here defined as within one cent of exact revelation; the
approximate revelation series therefore contains the exact series as a subset. The

9 It should also be noted here that changes in accumulated earnings during the experiment are unlikely to be a
satisfactory explanation for the changes in risk preference parameter estimates observed in this experiment.
The reason for this is that were one to nominate changes in wealth as causing risk preference changes in
subjects with utility functions exhibiting increasing relative risk aversion (IRRA) as an explanation of the
results in the selling version, one would then have to explain why a similar pattern of behavior is not observed
in the buying version. If anything, subjects in the buying version would be more accurately characterized
as exhibiting constant relative risk aversion (CRRA) or even decreasing relative risk aversion (DRRA).
A changes-in-wealth based explanation would have to incorporate some auxiliary theory explaining the
disparity observed across institutions. (For that matter some economists might object to invoking IRRA at
all, on theoretical grounds.)
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Table 4 Percentage of subjects using dominant strategy

Selling version Buying version
approximate approximate
Selling version revelation (within ~ Buying version revelation (within
exact revelation one cent of exact)  exact revelation one cent of exact)
1st Baseline 35.72% 50% 89.3% 92.9%
Ist Treatment 42.86% 53.57% 89.3% 96.4%
2nd Treatment 46.43% 82.14% 71.4% 89.3%
2nd Baseline 53.57% 85.71% 71.4% 89.3%

respective percentages of the subject pool following the dominant strategy of revelation
in each version of BDM are presented in Table 4.

Higher levels of exact revelation are observed here than in comparable rounds of
earlier experiments from other dominant strategy institutions. For example, Cox et al.
observe 35% exact revelation by period 20 of their second-price auction data, while
Isaac and James (2000b) observe 19.44% exact revelation by period 20 when using
the incentive compatible combinatorial auction; these can be compared to the 42.86%
exactrevelation observed in round 19 when using the selling version or 89.3% in round
19 when using the buying version.

Italso happens that violations of the dominant strategy have a statistically significant
cross-sectional relationship with deviations from risk neutrality. Specifically, one can
represent a subject’s adoption (or not) of the dominant strategy of truthful revelation
with a dummy variable, and a subject’s deviation from risk neutrality by the absolute
value of the difference between that subject’s estimated r; and the risk neutral value,
r = 1. Pooling the data from the selling and buying versions of BDM (for a total
sample of N = 56), the cross-sectional relationship between these two series can then
be modeled in a number of possible ways: ordinary least squares, probit analysis, or
non-parametric statistics. All of these various approaches in this case yield the same
results. First, increased absolute deviation from risk neutrality and failure to adopt
the dominant strategy are positively correlated in cross-section, in the early baseline
(for the Wilcoxon rank-sum test, calculated z = 3.07, critical z = 1.6). Second, when
variation in the cross-section of estimates has diminished by the late rounds of the
experiment (as illustrated and discussed in Section 5.1), this correlation disappears in
the late baseline (for the Wilcoxon rank-sum test, calculated z = 0.637, critical z =
1.6).

Furthermore, one could also posit that those subjects who utilize the dominant
strategy in the first baseline (who arguably understand the institution best) should
exhibit the least change in their parameter estimates from the early baseline to the last
baseline.!® The argument here is that since those subjects are less confused, they have
less to learn, and if learning is (at least partly) behind changes in parameter estimates,
then all else being equal these subjects’ parameter estimates should change less. This
conjecture can be addressed by performing a Wilcoxon rank-sum test to determine
whether the absolute change between the early and late baseline parameter estimates

10 T would like to thank Svetlana Pevnitskaya for suggesting this approach to the data.
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itself tends to differ between the group who utilized the dominant strategy in the first
round, and those who did not. One finds that that the groups are in fact different: the
parameter estimates are more stable for the group who used the dominant strategy in
the first baseline (for the Wilcoxon rank-sum test, calculated z = 2.35, critical z =
1.6).

These findings are not inconsistent with the conjecture that at least some deviations
from risk-neutrality in laboratory data—particularly in the early rounds, when those
deviations are most pronounced—might be the result of confusion on the part of the
subjects, rather than an indication of their risk preferences. These findings comple-
ment those of Isaac and James (2000a), who found that in own-subject controlled,
cross-institutional comparisons that subjects who appeared the most risk averse in
the first price sealed bid auction were likely to appear the most risk seeking in the
selling version of BDM, while the subjects who were risk neutral in one institution
were likely to be risk neutral in the other. One possible explanation for this result
of Isaac and James is that the subjects who demonstrate risk preference parame-
ter inconsistency across institutions—which happened also to be those far from risk
neutrality—are in some way confused. The design in this present paper allows for
a reappraisal of that conjecture based on a simple proxy for subject comprehension
(adoption of the dominant strategy). The results seem to offer further support for that
conjecture.

Interestingly, just as the respective distributions of risk preference parameter es-
timates from the two different institutions are statistically indistinguishable by the
late rounds (as shown in Section 5.1), it is also the case that by the late rounds the
occurrence of approximate revelation (bidding within one cent of valuation) across
institutions is also essentially indistinguishable: 85.71% for the selling version versus
89.3% for the buying version. Furthermore, one might note that the buying version of
BDM, which over the length of the experiment generates the higher and more stable
adoption of the dominant strategy, is also the institution that generates the more sta-
ble risk preference parameter estimates. Conversely, the selling version generates a
lower and less stable adoption of the dominant strategy, and also generates less stable
parameter estimates.'!

5.3 Payoff transformations

Finally, the data permit an assessment of the effect of payoff transformations on risky
choice behavior and on our inferences about such behavior. If subjects maximize

1 While the level of exact revelation in the buying version does drop from 89.3% in the first baseline to
71.4% in the last baseline, this does not necessarily invalidate the interpretation that high adoption of the
dominant strategy is associated with stable risk preference parameter estimates. First of all, even when it
drops to 71.4%, the level of exact revelation in the buying version is still higher than is ever achieved in the
selling version (53.57% at its maximum). On that basis, and by comparison with other dominant strategy
studies previously cited, exact revelation is still high. Second, the drop in exact revelation can be accounted
for by a handful of subjects switching from exact revelation to approximate revelation—that is, changing
their bids by one cent. This kind of fragility in exact revelation results is precisely the reason other papers
investigating dominant strategy institutions have also reported approximate measures of revelation. Some
examples of such past published papers include Cox et al. (1996), Attiyeh et al. (2000), and Isaac and James
(2000b).
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Table 5 Classification of treatment dummy coefficients

Correct sign Incorrect sign
Selling version of BDM
Statistically significant 12 12
Statistically insignificant 17 15
Buying version of BDM
Statistically significant 16 6
Statistically insignificant 13 21

the expectation of a given CRRA utility function defined over income, subject to the
payoff transformation in effect at the time, then at a minimum one would predict that the
coefficient on Donyex should be negative and that the coefficient on Dgpcave Should be
positive. One could go beyond that and make a point prediction for what each treatment
coefficient should be given the payoff transformation and the subject’s estimated r;
under the baseline. If the point prediction for a subject does not hold, expected utility
maximization of an unchanged utility function subject to the treatment regime can be
rejected. A fortiori, if the treatment coefficients are not significant, or do not even have
the correct sign, one can tell by inspection that this intra-institutional (as distinct from
cross-institutional) consistency check is being violated.

Organizing the treatment coefficient estimates by sign and significance, we have
56 observations (28 subjects participating in two treatments each) for each version of
BDM. The observations for each version are divided into four cells in their respective
parts of Table 5.

It appears that in general the payoff transformations do not have the effect predicted
for subjects with CRRA utility. This finding, made in a BDM context, echoes the
findings of Cox, Smith, and Walker when using the same payoff transformations in
a first-price auction setting. The predominant lack of statistical significance contrasts
with the results of James and Isaac, who found that non-linear payoff transformations
clearly affected prices in an experimental asset market (though this latter comparison
is confounded by a difference in the payoff transformation used).'?

An alternative approach to analyzing the data generated under the non-linear payoff
transformation treatments is to solve for the implied value of r; for each subject in
each treatment condition. To do this, one would solve the equation:

bueatment = (1 — a)/ar;

for r;, taking o (set exogenously by the experimenter as discussed in the experimental
design section) and beament (available in Tables 1 and 2) as given.

12 The results in Table 6 on the effect of payoff transformation treatments show that while the transformations
do not generally have the effect predicted for expected utility maximizing agents, such treatment coefficients
as are statistically significant are more often of the correct sign for the buying version of BDM (16 out of 22)
than was the case with case using the selling version of BDM (12 out of 24). This latter observation, viewed
in conjunction with the facts that the data from the buying version show less violation of the dominant
strategy of truthful revelation, makes one wonder whether the buying version might not be easier for the
subjects to understand.
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10

Implied Ri estimates

-15
Baseline/Convex/Concave/Baseline

Fig. 3 Path of implied risk preference parameter estimates across treaments

The implied values of r; shown in Fig. 3 are interesting for several reasons.'? First,
they are reminiscent of the anomalous results of Isaac and James, and of Berg, Dick-
haut, and McCabe: if one believes the resultant implied values of r;, then many subjects
appear to switch from risk-seeking behavior to risk averse behavior (or vice versa)
in moving from one treatment regime to the other. Interestingly, though, these results
are obtained in an intra-institutional rather than cross-institutional setting. Second, for
many subjects the values of r; calculated in this fashion are enormous: in absolute
value they are several times those estimated for the same subjects in either the early
or late baseline regimes, and would seem to be implausible on this basis alone.

The question then becomes, what does one make of these implied values of r;? One
might suggest that the payoff transformations confuse the subjects and lead them to
make errors they might not otherwise make in the absence of such transforms, and
that in consequence the calculated values of r; are not to be taken seriously.'* That
reasonable explanation raises another question, however: what kind of discounting
of results do we employ when there is not a clearly labeled, exogenously imposed
treatment involved? What happens when we move from one institution to another,
rather than from one treatment to another within a single institution? What else might
we be attributing to subject risk preferences that does not actually have anything to do
with subject risk preferences? The payoff transformation treatments employed here
could be interpreted as giving a demonstration of the kind of influence on implied risk
preference parameters we might come across, but fail to see, in other settings.

13 Qutlying data associated with subjects whose responses yielded implied r; parameters so extreme as to
re-scale Fig. 3 into illegibility were deleted. Thus Fig. 3 tracks the implied r; parameters across treatments
for only 46 of the 56 total subjects. The implied r; parameters for the other 10 subjects can be readily
calculated using Tables 1 and 2.

14 For instance, the less a subject responds to a payoff transformation, the closer the coefficient on the
subject’s dummy variable for that treatment will be to zero. As the coefficient approaches zero, the implied
value of r; approaches either positive or negative infinity (depending on whether a transformation exponent
of less than or greater than one, respectively, is in place).
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6 Conclusion

Four features of the data in this paper stand out both individually and in combination
with each other. First, risk preference parameter estimates from the buying version and
the selling version of BDM appear to converge towards each other over time. Second,
the apparent convergence seems to be in the vicinity of risk neutrality (certainly it is
nowhere near the parameter estimates from the first price auction). Third, deviation
from risk neutrality appears to be correlated with violation of the dominant strategy of
true revelation. Fourth, parameter instability also seems to be correlated with violation
of the dominant strategy of true revelation. Taken together, these results raise the
possibility that at least some deviations from risk neutrality in BDM might be the
result of confusion on the part of the subjects, particularly in the early rounds, and not
necessarily reflective of the risk preferences of subjects.
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