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Abstract
The	poison	frog	family	(Anura:	Dendrobatidae)	consists	of	species	with	conspicuous	(e.g.,	
warning	coloration	and	toxicity	or	low	palatability)	and	cryptic	(e.g.,	palatable,	and	incon-
spicuous coloration) traits. Previous literature suggests that conspicuous, but not cryptic, 
species	require	diet	specialization	in	prey	high	in	alkaloids.	To	test	for	dietary	preferences	
of	poison	frog	species,	we	identified,	to	the	lowest	possible	taxonomic	rank,	the	diets	of	21	
Epipedobates darwinwallacei (conspicuous) and 22 Hyloxalus awa	(cryptic)	frogs	living	in	
syntopy	in	the	Otongachi	Forest	in	northwestern	Ecuador.	We	then	tested	for	differences	in	
diet assemblage composition, and diet specialization, in these putatively conspicuous and 
cryptic	frogs.	Our	analyses	showed	significant	differences	in	the	composition	of	arthropod	
assemblages	consumed	by	both	frog	species,	which	translated	into	a	narrow	niche	breadth	
and	nine	arthropod	 taxa	 (out	of	 a	 total	of	18)	 consumed	by	both	 species.	Moreover,	 the	
index	of	relative	importance,	which	measures	frog’s	diet	specialization,	suggested	that	E. 
darwinwallacei, and H. awa	 prefer	 specific	 arthropod	 taxa,	where	 the	 former	 consumes	
preferentially	springtails	and	mites,	while	the	latter	consumes	mostly	ants	and	Coleoptera	
larvae.	Thus,	contrary	to	expectations,	diet	specialization	is	not	a	unique	characteristic	of	
the	species	with	conspicuous	traits	when	living	in	syntopy.
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Introduction

Trophic	ecology	of	anurans	shapes	 the	energy	flow	of	 terrestrial	and	aquatic	ecosystems	
and	helps	to	understand	frog	assemblage	organization,	life	history,	and	evolution	(Guayara-
Barragán 2018; Hughes 2009; Mendoza-Estrada et al. 2008;	Stebbins	and	Cohen	1997). The 
type	of	foraging,	prey	defense	mechanism,	and	microhabitat	can	shape	frog	diets	(Parmelee	
1999).	Although	various	plant	and	vertebrate	groups	are	part	of	the	anuran	food	resource,	
arthropods	are	essential	in	frog’s	diet,	with	ants	and	mites	being	a	preferred	group	in	several	
species (Biavati et al. 2004; Martínez-Coronel and Pérez-Gutiérrez 2011;	Moskowitz	et	al.	
2020;	Solé	and	Rödder	2010).

Poison	frogs	(Anura:	Dendrobatidae)	include	aposematic	species,	which	advertise	their	
toxicity	or	unpalatability	to	potential	predators	with	their	conspicuous	coloration	(e.g.,	spe-
cies in Epipedobates and Ameerega; Guillory et al. 2019;	Santos	et	al.	2009). The alkaloids 
that	enable	 these	 frogs	 to	effectively	communicate	 their	alarm	signals	are	obtained	 from	
their	 prey,	 such	 as	 ants	 and	mites,	with	 high	 alkaloid	 contents	 (Moskowitz	 et	 al.	2022; 
Saporito	et	al.	2004; Takada et al. 2005).	One	key	characteristic	of	aposematic	dendrobatid	
frogs	is	the	high	degree	of	diet	specialization	(Darst	et	al.	2005;	Saporito	et	al.	2012;	Santos	
et al. 2016;	Sanchez	et	al.	2019).	For	example,	Oophaga sylvatica, Ameerega hahneli, and 
A. parvula	consume	over	80%	of	ants	and	mites	in	their	diet	(McGugan et al. 2016; Darst et 
al. 2005), Epipedobates anthonyi	consume	88%	of	ants	and	mites,	and	A. bilinguis,	approxi-
mately	 73%	of	mites	 and	 ants	 (Darst	 et	 al.	2005;	 Santos	 and	Cannatella	2011). Greater 
alkaloid	capture	from	prey	promotes	conspicuous	colorations,	and	greater	toxicity,	by	frogs	
(McGugan et al. 2016;	Moskowitz	et	al.	2018;	Saporito	et	al.	2004, 2012). Because dietary 
specialization	and	aposematism	have	coevolved	(Santos	et	al.	2003),	non-toxic	species	are	
not	expected	to	specialize	in	alkaloid-bearing	invertebrates	like	mites	and	ants,	regardless	
of	the	composition	of	the	surrounding	population	(Guayara-Barragán	2018; Konopik et al. 
2014).	However,	this	hypothesis	has	seldom	been	tested	in	natural	communities.

Not	all	dendrobatid	frogs	are	aposematic.	Species	in	Hyloxalus, Nephelobates, and Colo-
stethus (Di Doménico 2016; Grant et al. 2006;	Santos	et	al.	2003)	exhibit	cryptic	coloration	
that	blends	with	background	patterns	or	colors	and	is	associated	with	a	lack	of	toxicity	and	
low	metabolic	rates	(Sanchez	et	al.	2019;	Santos	and	Cannatella	2011). Generalist species 
consume	ants,	mites,	orthopterans,	springtails,	and	other	arthropods	to	a	similar	extent	(e.g.,	
Colostethus panamensis, C. pratti, Hyloxalus maculosus, and H. sauli;	Santos	 and	Can-
natella 2011; Darst et al. 2005).	Without	 the	pressures	 imposed	by	aposematism,	cryptic	
species	are	expected	to	be	opportunistic	and	consume	a	variety	of	prey	(Hothem	et	al.	2009; 
Silva	et	al.	2009),	which	could	result	in	generalist	diets	with	high	mobility	and	solitary	hab-
its (Coloma 1995; Luría-Manzano et al. 2019;	Santos	et	al.	2003). Nonetheless, prey selec-
tion	and	feeding	behavior	of	cryptic	species	are	expected	to	be	shaped	by	general	optimal	
foraging	expectations	on	frog	and	prey	morphology	(Parmelee	1999; McElroy and Donoso 
2019).	For	example,	larger	frogs	consume	more	and	larger	prey	(Guzmán	and	Salazar	2012; 
Blanco 2016),	and	the	physical	characteristics	of	prey,	such	as	color,	body	size,	and	hairi-
ness,	influence	their	predation	rates	(McElroy	and	Donoso	2019).

Maybe	because	of	their	conspicuousness,	previous	studies	have	focused	on	aposematic	
species	 and	 their	 ability	 to	 sequester	 alkaloids,	while	 diets	 of	 cryptic	 species	 have	 been	
poorly documented (Darst et al. 2005; Velasco 2018; Klonoski et al. 2019;	Ledón-Rettig	
et al. 2010;	Moskowitz	et	al.	2022; Nadaline et al. 2019;	Santos	et	al.	2016;	Saporito	et	
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al. 2007).	Small	 prey	 (e.g.,	 ants,	 termites,	 and	mites)	 provide	high	nutritional	value	 and	
alkaloids	that	are	sequestered	by	aposematic	frogs	(Moskowitz	et	al.	2018, 2020; Parmelee 
1999).	Moreover,	 prey	 items	 in	 diets	 usually	 come	 from	 leaf	 litter,	 as	 insects	 in	 topsoil	
provide	greater	amounts	of	alkaloids	to	aposematic	frogs	than	other	insects	from	different	
substrates (Daly et al. 1994).	Here,	for	the	first	time,	we	study	the	diets	of	two	frog	species	
living	in	syntopy	(i.e.,	coexisting	in	the	same	microhabitat,	Gagliardi-Alvarez	2019):	Epipe-
dobates darwinwallacei,	with	conspicuous	(putatively	aposematic)	coloration,	and	Hyloxa-
lus awa,	with	cryptic	coloration),	focusing	on	its	composition	and	degree	of	specialization.

Methods

Collection of anurans and prey identification

We	conducted	this	study	at	the	Otongachi	Forest,	located	at	00°08’49’’S	and	78°57’15’’W,	
850	m	asl,	in	Pichincha	Province	in	the	Western	Cordillera	of	the	Andes	in	Ecuador	(Donoso	
and	Ramón	2009).	The	Otongachi	forest	is	a	20-ha	patch	of	the	Otonga	Integral	Forest	(BIO	
Reserve),	located	at	the	edge	of	Unión	del	Toachi	River	(Arcos-Argoti	2011),	with	1000–
2000	mm	of	annual	rainfall	and	a	mean	temperature	of	18	to	24	°C	(Cañadas	1983; Donoso 
2017).	We	collected	samples	in	areas	where	populations	of	Epipedobates darwinwallacei 
and Hyloxalus awa	are	found	in	syntopy	(Angulo	et	al.	2006). Because these are diurnal spe-
cies (Grant et al. 2006),	the	sampling	effort	was	in	daylight	hours	between	05:30	and	13:30,	
and	between	14:30	and	19:00	h	for	seven	days	in	May	and	July	2021.	Six	individuals	per	
frog	species	were	kept	as	vouchers	and	deposited	at	the	Museum	of	Zoology	at	Universidad	
Tecnológica	Indoamérica	(MZUTI,	Epipedobates darwinwallacei:	ZC-0525-6,	ZC-0528-9,	
ZC-0530-1;	Hyloxalus awa:	ZC-0521-4,	ZC-0527,	ZC-0532).	We	only	collected	data	from	
adults	and	subadults,	with	a	snout-vent	length	(SVL)	greater	than	13.5	mm	for	Epipedobates 
darwinwallacei;	and	greater	than	15.0	mm	for	Hyloxalus awa (Martínez-Coronel and Pérez-
Gutiérrez 2011;	Ramírez-Valverde	et	al.	2020; Páez-Vacas et al. 2010).

We	extracted	diets	from	frog	stomachs	with	the	washing	technique	described	by	Solé	et	
al. (2005)	within	two	hours	of	capture.	Briefly,	we	collected	20	ml	of	water	from	the	stream	
where	the	individual	was	collected	with	a	sterile	syringe	and	a	2	mm	diameter	silicone	tube.	
We	opened	the	snout	to	carefully	introduce	the	tube	through	the	esophagus	until	it	reached	
the	stomach.	The	stomach	content	or	reflux	obtained	was	washed	and	preserved	in	70%	eth-
anol.	We	identified	prey	down	to	the	lowest	possible	taxonomic	category	(Order	of	Family),	
and	for	Coleoptera,	we	recorded	adults	and	larvae.	We	measured	prey	items	on	photographs	
taken	with	an	SC30	digital	camera	and	Olympus	Stream	V.2.3.3	image	analysis	software	
mounted	in	an	Olympus	SZ61	stereomicroscope.

Diet analysis

All	analyses	were	done	in	R	v.4.1.2	(R	Core	Team	2021).	First,	we	tested	if	 there	was	a	
general	 relationship	 between	 the	 volume	 of	 stomach	 contents	 (V)	 and	 frog	morphology	
(snout-vent	 length,	SVL	and	snout	width,	SW),	with	a	Pearson	correlation.	Prey	volume	
determines	the	amount	and	size	of	prey	that	can	be	consumed	by	each	frog	species	(Guzmán	
and	Salazar	2012; Menéndez-Guerrero 2001).	For	this,	we	used	the	formula:	V	=	(4π/3)	*	
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(Length/2)	*	(Width/2)^2,	where	the	width	of	the	prey	corresponds	to	the	middle	part	of	the	
body,	without	counting	the	appendages,	and	the	length	is	measured	from	the	tip	of	the	head	
to	most	distal	body	part	(Moskowitz	et	al.	2020).	The	normality	of	the	data	was	determined	
with	a	Shapiro-Wilk	test	(Luría-Manzano	et	al.	2019).	Non-normal	data	were	transformed	
with	a	natural	logarithm.	For	interpretation,	values	of	r equal to or smaller than 0.35 are 
considered	no	or	low	correlation,	between	0.36	and	0.67	modest	or	moderate	correlation,	
and	0.68	to	1	strong	or	high	correlation	(Taylor	1990).

To	test	 for	differences	 in	arthropod	assemblage	composition	between	species,	we	per-
formed	an	analysis	of	similarity	(ANOSIM;	Oksanen	et	al.	2020) on volume and abundance 
matrices.	ANOSIM	 provides	 an	R-index	with	 values	 between	 –	1	 and	 1.	R values close 
to	1	suggest	dissimilarity	between	groups,	and	values	close	to	–1	indicate	similarity.	Sig-
nificance	was	assessed	with	a	p	<	0.05	(Chapman	and	Underwood	1999).	We	calculated	the	
dissimilarity	matrix	with	the	Bray-Curtis	distance.	We	then	used	a	non-metric	multidimen-
sional	scaling	(NMDS)	to	visualize	prey	assemblages	of	frog	species	in	a	two-dimension	
plot	(Moskowitz	et	al.	2020;	Saporito	et	al.	2012).	For	this,	we	used	only	prey	categories	
sampled	 in	more	 than	one	 frog	 stomach.	An	NMDS	provides	 a	Stress	value	 that	 ranges	
from	0	to	1.	Stress	values	< 0.2 suggest that distances in the plot are good representations 
of	distances	in	the	assemblage	matrix.	We	perform	these	analyses	with	the	vegan package 
(Oksanen et al. 2020)	in	R.	To	analyze	the	overlap	in	the	diet	of	both	frogs,	we	applied	the	
trophic	niche	overlap	index:	Ojk=Okj =	Σ	(Pij	xPik)	⁄	√(ΣPij^2	xΣPik^2	)	(Pianka	1973)	in	the	R	
package Biodiversity R (Kindt and Coe 2005). Here, Pij and Pik	determine	the	proportions	of	
prey used by each species (“j” and “k”).	The	analysis	provides	a	symmetrical	index	between	
0 (non-overlap) and 1 (overlap) (Gambale et al. 2020).

To	assess	the	representativeness	of	the	food	categories	in	frog	stomachs,	we	calculated	a	
hierarchy	index	(HI). To calculate HI,	the	highest	value	of	the	IRI	is	taken	as	the	reference,	
and	percentage	values	are	assigned	to	the	remaining	taxa	(Aun	and	Martori	1998; González 
et al. 2012; Villavicencio et al. 2005).	Here,	a	taxon	is	considered	‘fundamental’	if	it	has	a	
HI	between	100%	and	75%,	‘secondary’	for	values	at	75–50%,	‘accessory’	with	50–25%,	
and	‘incidental’	for	values	below	25%	(Aun	and	Martori	1998; González et al. 2012; Mina-
Angulo et al. 2019). HI	uses	an	index	of	relative	 importance	(IRI; Pinkas et al. 1971) to 
determine	the	hierarchy	of	arthropod	taxa	consumed.	The	IRI	is	an	index	that	helps	describe	
the	importance	of	each	arthropod	taxa	consumed	in	the	diets	of	the	two	frogs	(Biavati	et	al.	
2004; Valderrama-Vernaza et al. 2009). To calculate IRI,	we	used	the	formula,	IRI =	%FO* 
(%N +	%V),	where:	%FO	represents	the	relative	frequency	of	occurrence	of	a	food	category	
in stomachs; %N	represents	the	relative	abundance	of	each	prey	category	in	the	diet;	and	%V 
expresses	the	relative	volumetric	of	the	prey	in	the	diet	(nutrient	contribution	of	individual	
prey) (Pinkas et al. 1971).	Therefore,	IRI reduces biases caused by either small prey in large 
numbers	or	a	few	relatively	large	prey	(Aun	et	al.	1999).

To	determine	 the	significance	of	 trophic	niche	breadth	and	 level	of	specialization,	we	
applied	the	standardized	Levin’s	index,	Bsta =	(B–1)	/	(n–1),	where	n	is	the	number	of	items	
recorded, B corresponds to B = 1/ ∑ (Pi

2), P	is	the	proportion	of	each	resource	category	and	
i is the prey category (Krebs 1999; Moser et al. 2017). Here, Bsta	is	expressed	between	0	
(narrow	niche)	and	1	(broad	niche).	Values	below	0.5	are	considered	specialists	(Sanches	et	
al. 2019).	Specialization	of	a	frog	species	is	indicated	by	a	proportional	value	of	any	taxa	in	
its	diet	with	HI	greater	than	70%	and	a	niche	breadth	(Bsta)	less	than	or	equal	to	0.5	(Sanches	
et al. 2019;	Santos	and	Cannatella	2011).
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Results

We	captured	21	individuals	of	Epipedobates darwinwallacei:	20	adults	and	one	subadult	
with	diet	in	the	stomachs	(SVL	= 17.33 ±	1.71	mm;	SW	= 5.34 ±	0.46	mm).	Some	additional	
eight	specimens	(seven	adults	and	one	subadult)	were	found	with	an	empty	stomach	and	
were	 thus	not	 included	 in	our	analysis.	For	Hyloxalus awa,	we	found	22	 individuals:	20	
adults	and	two	subadults	(SVL	= 20.57 ±	2.39	mm;	SW	=	6.83	±	1.18	mm),	we	also	captured	
four	juvenile	specimens.	Excluding	frogs	with	empty	stomachs	and	juveniles,	we	studied	
21	 individuals	of	E. darwinwallacei	 and	22	 individuals	of	H. awa. For E. darwinwalla-
cei,	we	identified	61	prey	items	classified	into	13	arthropod	taxa	(mean	= 2.90 ± 3.62 items 
per stomach). For H. awa,	we	 found	108	prey	 items	 categorized	 into	 14	 arthropod	 taxa	
(mean = 4.91 ±	2.79).	In	total,	we	found	18	arthropod	taxa	in	both	frogs,	and	nine	of	these	
arthropods are shared by E. darwinwallacei and H. awa. Additionally, the stomach contents 
volume	(V)	of	E. darwinwallacei	was	V	= 0.49 ± 0.50 mm3,	and	of	H. awa, V = 14.15 ± 24.60 
mm3.	There	was	no	correlation	between	SVL	and	SW	with	V	of	the	two	species	(E. darwin-
wallacei:	r =	–	0.08	for	SVL,	and	r =	–	0.22	for	SW;	H. awa:	r =	0.03	for	SVL,	and	r	= 0.33 
for	SW).

The	NMDS	 showed	 a	 slight	 overlap	 in	 the	diets	 of	 both	 species,	 however,	ANOSIM	
corroborated	significant	differences	 in	 the	diet	composition	of	 the	 frog	species	 for	abun-
dance (r = 0.33, p = 0.001), and volume (r = 0.29, p = 0.001) data (Fig. 1).	We	 found	 that	
approximately	half	of	the	prey	present	in	the	stomachs	are	shared	between	E. darwinwal-
lacei and H. awa (Ojk =	0.48).	The	 importance	 relative	 index	 (IRI)	 of	 arthropod	 taxa	 in	
E. darwinwallacei	shows	that	Collembola	(IRI = 2446.9) and Acari (IRI =	2415.2)	were	the	
most	important	resources,	found	in	10	and	12	stomachs,	respectively	(Table	1). In H. awa, 
Hymenoptera (Formicidae; IRI =	2162.4)	 is	 the	main	resource	used,	 followed	by	Coleop-
tera larvae (IRI =	2102.5),	found	in	14	and	10	stomachs,	respectively.	Both	species	show	a	
narrow	trophic	niche	breadth	(Bsta  < 0.5). Epipedobates darwinwallacei is specialized (Bsta 
=	 0.22)	 in	 the	 consumption	 of	Collembola	 (HI =	100%)	 and	Acari	 (HI =	99%),	 classified	
as	 a	 “fundamental”	 resource	 in	 its	 diet	 because	 percentages	 are	 between	 75	 and	 100%.	
Hyloxalus awa is slightly less specialized (Bsta =	0.28),	with	a	diet	based	on	Formicidae	

Fig. 1	 Non-metric	multidimensional	scaling	(NMDS)	analysis	based	on	Bray-Curtis	dissimilarity	shows	
the	difference	of	(A)	the	abundance	of	prey	consumed	by	Epipedobates darwinwallacei and Hyloxalus 
awa (Stress: 0.22), and (B)	volume	of	prey	consumption	between	E. darwinwallacei and H. awa (Stress: 
0.23).	Each	point	represents	the	diet	of	each	frog	studied	(pink	for	E. darwinwallacei,	and	turquoise	for	
H. awa)
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(HI =	100%)	and	Coleoptera	larvae	(HI	=	97%),	and	these	are	also	“fundamental”	resources	
in its diet. Additionally, Acari and Collembola are consumed by H. awa, as are Formicidae, 
and beetle larvae are preyed upon by E. darwinwallacei, but in minimal quantities (<	40%,	
“accessory” or “incidental”). Other prey eaten by both species include Diptera, Coleoptera, 
Isopoda, Oribatida, and Plecoptera (<	25%,	“incidental”).

Discussion

Both	 the	 putatively	 aposematic	 frog	Epipedobates darwinwallacei	 and	 the	 cryptic	 frog	
Hyloxalus awa	showed	specialization	in	their	diet	when	living	in	syntopy.	  Epipedobates 
darwinwallacei specialized in consuming Acari and Collembola; and H. awa	preferred	ants	
and	Coleoptera	larvae.	Moreover,	Dermaptera,	Protura,	Psocoptera,	and	Siphonaptera	were	
exclusive	to	E. darwinwallacei; and, Arachnida, Hemiptera, Hymenoptera (non-ants), and 
Mollusca	were	exclusive	to	H. awa.	The	composition	of	the	diets	of	Epipedobates darwin-
wallacei and Hyloxalus awa	were	significantly	different	despite	an	overlap	of	about	50%	
of	prey	 items	consumed,	 suggesting	 there	 is	no	overlap	 in	 the	 trophic	niches	of	 the	 two	
species.	Previous	 studies	 in	 anurans	 show	 that	 trophic	 niches	do	not	 overlap	 in	 syntopy	
and	genetically	close	species	because	they	divide	resources,	which	favors	coexistence	and	
reduces competition (Avellaneda-Moreno 2016;	Muñoz-Guerrero	et	al.	2007; Oliveira et al. 
2015;	Palacio-Núñez	et	al.	2008; Paucar Guerra 2013).	An	example	is	Collembola,	which	
is	known	for	its	high	abundance	in	the	leaf	litter	layer	of	tropical	forests	and	found	in	the	

Table 1	 Relative	importance	(IRI)	and	hierarchical	index	(HI)	of	arthropod	taxa	from	stomach	contents	of	
Epipedobates darwinwallacei and Hyloxalus awa. N =	number	of	prey;	V	=	volume	of	stomachs;	O	= occur-
rence	of	prey	in	stomachs;	IRI =	Relative	Importance	Index;	HI =	Hierarchy	Index
Item E. darwinwallacei (Bsta = 0.22)** H. awa (Bsta =	0.28)**

N V O IRI HI	(%) N V O IRI HI	(%)
Acari 21 0.81 12 2415.2 99* 5 1.2 3 68.5 3.2
Arachnida - - - - - 2 23 2 82.9 3.8
Coleoptera 2 0.29 2 57.9 2.4 6 45 4 363.8 17
Collembola 12 3.28 10 2446.9 100* 15 5.7 12 856.7 40
Dermaptera 2 0.20 2 49.4 2 - - - - -
Diptera 3 0.99 3 207.5 8.5 11 6.5 10 558.5 26
Hemiptera - - - - - 12 5 9 520.3 24
Formicidae 3 0.50 3 139.1 5.7 31 16 14 2162.4 100*
Other Hymenoptera - - - - - 3 2.7 3 49.5 2.3
Isopoda 1 0.34 1 23.7 1 5 83 5 710.0 33
Ixodidae - - - - - 2 1.7 2 21.9 1
Larv. Coleoptera 8 2.64 5 919.9 38 11 112 10 2102.5 97*
Mollusca - - - - - 3 8.4 3 74.8 3.5
Oribatida 4 0.18 2 79.1 3.2 1 0.2 1 4.5 0.2
Plecoptera 1 0.69 1 39.4 1.6 1 0.7 1 5.2 0.2
Protura 1 0.17 1 15.4 0.6 - - - - -
Psocoptera 2 0.20 2 49.6 2 - - - - -
Siphonaptera 1 0.06 1 10.4 0.4 - - - - -
*Bold	values	of	the	hierarchy	index	(HI >	70%)	indicates	preference	for	taxa	in	the	prey.	**Specialization	
was	determined	by	combining	Bsta (< 0.5) and HI.
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diet	of	both	dendrobatid	frogs	(Dietl	et	al.	2009; Fittkau and Klinge 1973; Noll et al. 2018). 
Nonetheless,	Collembola	was	important	for	E. darwinwallacei,	but	not	for	H. awa. There-
fore,	our	results	suggest	that	by	focusing	on	different	preys,	E. darwinwallacei and H. awa 
coexist	in	syntopy.

While	this	is	the	first	study	to	report	the	diet	of	E. darwinwallacei,	others	have	found	
Epipedobates species to be specialists in relatively small prey. Epipedobates anthonyi 
(N =	10)	in	Cuenca	(Ecuador)	has	a	90%	ant-based	diet	(Darst	et	al.	2005;	Santos	and	Can-
natella 2011). Epipedobates boulengeri (N = 32) in Imbabura (Ecuador) consume larger 
numbers	of	mites	and	springtails	than	any	other	prey	(27%	and	31%,	respectively;	Caldwell	
1996;	Santos	and	Cannatella	2011).	To	our	knowledge,	 this	 is	 the	first	study	 that	 reports	
Dermaptera,	Protura,	Psocoptera,	and	Siphonaptera	in	the	diet	of	Epipedobates. Moreover, 
in E. darwinwallacei, mite specialization might contribute to aposematism, as mites are 
an	important	source	of	alkaloids	for	poison	frogs	(McGugan	et	al.	2016;	Moskowitz	et	al.	
2020;	Saporito	et	al.	2012, 2015).

We	found	that	Hyloxalus awa	also	prefers	ants.	The	ant	genera	most	frequently	consumed	
were	Anochetus, Solenopsis, and Azteca. These ants have a high alkaloid content and belong 
to	the	subfamilies	Formicinae	and	Myrmicinae,	which	are	usually	selected	by	toxic	dendro-
batid	frogs	(Clark	et	al.	2005;	Moskowitz	et	al.	2022; Prates et al. 2019;	Santos	et	al.	2016). 
Some	species	of	the	genus	Hyloxalus	feed	on	ants	at	a	high	percentage	compared	to	other	
prey, but they are not considered specialists on these prey (e.g., H. maculosus,	22%	and	
H. sauli,	60%;	Santos	and	Cannatella	2011; Darst et al. 2005).	Other	species	of	Hyloxalus 
have	been	described	as	diet	generalists,	consuming	several	species	of	leaf	litter	arthropods	
(e.g., H. yasuni; Menéndez-Guerrero 2001; Paucar Guerra 2013). In our study site, ant com-
munities	have	not	undergone	temporal	structural	change,	even	if	there	are	annual	rotations	
at the species level (Donoso 2017).	However,	the	sample	size,	seasonality,	and	multiyear	
variability	in	arthropod	communities	may	influence	variation	in	prey	abundance,	consump-
tion	volume,	and	the	presence	of	new	prey	in	frog	stomachs	(Aun	et	al.	1999; Donoso 2017; 
Nieva Cocilio 2019).	As	these	variables	and	temporal	changes	could	affect	niche	width	and	
diet	overlap	(da	Rosa	et	al.	2006; Moser et al. 2017; Gambale et al. 2020), assessing the diets 
of	H. awa	through	time	will	help	us	identify	whether,	despite	these	year-to-year	changes	in	
ant species, H. awa	continues	to	prefer	ants	in	its	diet.

In	contrast	to	previous	research	(Santos	and	Cannatella	2011; Darst et al. 2005),	we	found	
both	the	putatively	aposematic	and	the	cryptic	species	to	be	specialized	predators.	Examples	
of	aposematic	frogs	with	narrow	trophic	niches	and	a	specialist	diet	are	Ameerega bilin-
guis, A. hahneli, A. parvula, Allobates insperatus (Darst et al. 2005), Dendrobates aura-
tus	(Caldwell	1996) and Oophaga pumilio	(Caldwell	1996;	Moskowitz	et	al.	2018, 2020). 
However,	not	all	Epipedobates	are	diet	specialists,	for	instance,	Epipedobates boulengeri 
exhibits	broad	trophic	niche	breadth,	consumption	of	diverse	prey	(generalist),	and	cryptic	
coloration	(Cadwell	1996).	On	the	other	hand,	species	with	cryptic	coloration,	such	as	Allo-
bates zaparo, A. femoralis, A. talamancae (Grant et al. 2017; Darst et al. 2005), Hyloxalus 
bocagei (Menéndez-Guerrero 2001) and Silverstoneia nubicola	(Toft	1981)	usually	show	
wide	trophic	niches.	However,	there	are	some	cryptic	frogs,	such	as	Hyloxalus sauli,	which	
show	specialized	diets,	which	translates	to	narrow	trophic	niches	and	(at	least	in	this	case)	
preference	for	ants	(Cadwell	1996; Darst et al. 2005;	Santos	and	Cannatella	2011). In addi-
tion, H. nexipus and H. azureiventris	show	aposematic	colorations	and	possess	skin	alka-
loids,	but	their	diet	has	not	yet	been	characterized	(Santos	and	Cannatella	2011).
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Frog	 body	 and	 mouth	 size	 are	 critical	 for	 prey	 consumption	 (Luría-Manzano	 2012; 
Nieva-Cocilio 2019; Parmelee 1999).	Both	frog	species	studied	here	were	 found	 to	con-
sume	 relatively	 small	 prey	 items,	 which	 is	 common	 for	 dendrobatid	 species	 (Parmelee	
1999;	Saporito	et	al.	2007;	Moskowitz	et	al.	2018, 2020).	Some	dendrobatid	frog	species	
(e.g., Epipedobates bilinguis, Colostethus sp., Hyloxalus sauli) present positive correlations 
between	body	and	prey	size	(Menéndez-Guerrero	2001).	In	addition,	correlations	between	
frog	body	and	prey	 size	 are	positive	 in	 the	 leaf	 litter	 anurans	 in	Panama	and	Peru	 (Toft	
1981).	However,	we	did	not	find	a	correlation	between	frog	body	size	and	prey	size	in	the	
two	species,	which	agrees	with	other	studies	on	dendrobatids,	as	in	Phyllobates aurotaenia 
and Dendrobates truncatus (Marín-Martínez et al. 2019; Mina-Angulo et al. 2019). Thus, 
our	result	contrasts	with	other	studies	which	found	positive	correlations	between	morphol-
ogy	 (SVL	and	SW)	and	 the	volume	of	prey	consumed	 in	anurans	 (Guzmán	and	Salazar	
2012; Luría-Manzano et al. 2019; Nieva-Cocilio 2019).

In	our	study,	even	though	we	considered	E. darwinwallacei and H. awa to be conspic-
uous	 and	 cryptic,	 respectively,	we	 acknowledge	 that	 experimental	 evidence	 that	E. dar-
winwallacei	is	aposematic	is	lacking	(Cisneros-Heredia	and	Yánez-Muñoz	2010; Coloma 
1995).	Although	 it	 is	well-known	 that	dendrobatids	 frogs	are	often	brightly	colored,	and	
colors	serve	as	a	defensive	function	to	warn	predators	of	defensive	alkaloids	(Santos	et	al.	
2003), there is also evidence that colors may serve other purposes (Maan and Cummings 
2012;	Lawrence	et	al.	2019).	For	example,	some	species	may	be	cryptic	at	long	range	and	
display	warning	textures	and	colors	at	close	range	(Barnett	et	al.	2018). Also, the light envi-
ronment	can	alter	and	influence	frog	color	patterns	and	affect	detectability	from	predators	
(Rojas	et	al.	2014).	Additionally,	some	species	use	colors	as	sexual	signals	(Maan	and	Cum-
mings 2008).	Similarly,	there	are	species	in	Hyloxalus, a genus typically considered cryptic, 
that have conspicuous traits (e.g., H. nexipus) and alkaloid reserves (e.g., H. azureiventris; 
Santos	and	Cannatella	2011).	Therefore,	exploring	the	factors	 influencing	color	variation	
will	advance	our	understanding	of	the	relationship	between	color	variation,	aposematism,	
and diet specialization.

Overall,	we	found	that	both	Epipedobates darwinwallacei (putatively aposematic) and 
Hyloxalus awa	 (cryptic)	have	preferences/specializations	 in	 their	 diets,	 contradicting	 the	
prediction	that	cryptic	species	are	generalists.	Although	they	live	in	syntopy,	the	two	frog	
species do not overlap in their trophic niche. Epipedobates darwinwallacei and H. awa are 
specialized	in	prey	that	may	contain	alkaloids	(mites	and	ants,	respectively)	(Saporito	et	al.	
2004, 2015).	We	suggest	that	to	understand	the	role	of	food	specialization	in	aposematic	and	
cryptic	species,	species	should	be	studied	in	syntopy	to	determine	if	competition	for	specific	
prey	and	prey	partitioning	affects	food	specialization.
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