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Abstract
The analysis of two-way interactions in linear models is common in the fields of ecology 
and evolution, being often present in allometric, macroevolutionary, and experimental 
studies, among others. However, the interpretation of significant interactions can be incom-
plete when limited to the examination of model coefficients and significance tests. The 
Johnson–Neyman technique represents a step forward in the interpretation of significant 
two-way interactions, allowing the user to examine how changes in the moderator variable, 
it being categorical or continuous, affect the significance of the relationship between the 
dependent variable and the predictor. Despite its implementation in several software since 
its initial development, the available options to perform the method lack certain functional-
ity aspects, including the visualization of regions of non-significance when the moderator 
is categorical, the implementation of phylogenetic corrections, and more intuitive graphical 
outputs. Here I present the R package JNplots, which aims to fill gaps left by previous soft-
ware regarding the calculation and visualization of regions of non-significance when fitting 
two-way interaction models. JNplots includes two basic functions which allow the user to 
investigate different types of interaction models, including cases where the moderator vari-
able is categorical or continuous. The user can also specify whether the model to explore 
should be phylogenetically informed and choose a particular phylogenetic correlation 
structure to be used. Finally, the functions of JNplots produce plots that are largely cus-
tomizable and allow a more intuitive interpretation of the interaction term. Here I provide a 
walkthrough on the use of JNplots using three different examples based on empirical data, 
each representing a different common scenario in which the package can be useful. Addi-
tionally, I present the different customization options for the graphical outputs of JNplots.
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Introduction

The analysis of two-way interactions in linear models (i.e., models of the form: depend-
ent variable ~ predictor * moderator) is common in the fields of ecology and evolution 
(Hilborn and Stearns 1982; Dochtermann and Jenkins 2011; Spake et al 2023). For exam-
ple, one might be interested in the interaction between sex and size when examining the 
ontogenetic allometry of a trait in a population or species (do males and females of a given 
species show different allometries?). Macroevolutionary studies also necessitate the analy-
sis of interactions. For instance, one could be interested in testing whether a set of spe-
cies follows Bergmann’s rule (i.e., a positive association between body size and latitude; 
Bergmann 1847), but also whether this hypothetical relationship changes depending on the 
degree of precipitation these species experience (do different levels of precipitation affect 
the relationship between latitude and size across species?).

These two examples illustrate four different characteristics of models in ecology and 
evolutionary biology that may involve two-way interactions. First, the moderator (which 
is an independent variable that modulates the effect the predictor has on the dependent 
variable) can be (1) categorical (e.g., sex) or (2) continuous (e.g., precipitation). Next, an 
interaction analysis can be (3) phylogenetically-independent (e.g., the comparison of the 
ontogenetic allometry of males and females of the same species) or can be (4) phyloge-
netically-informed (e.g., the examination of the effect of precipitation on the evolutionary 
relationship between temperature and size across species). In the latter case, the influence 
of shared evolutionary history needs to be accounted for through the modification of the 
variance–covariance matrix of the taxa involved in the analysis (Revell 2010; Symonds and 
Blomberg 2014).

Regardless, a significant interaction term in either type of model provides evidence of 
an effect of the moderator on the relationship between the dependent variable and the pre-
dictor. Once this is confirmed, more information about the nature of the interaction can be 
obtained by looking at the model coefficients. Let us consider the first example (trait ~ size 
* sex). If the interaction term is significant and presents a positive coefficient a researcher 
would now know that the slope of the trait ~ size relationship is significantly higher for one 
of the sexes. Similarly, if we obtain a significant interaction term in the second example 
(size ~ latitude * precipitation) with a negative coefficient, one could infer that the slope 
of the size ~ latitude relationship becomes more negative (or less positive) as precipitation 
increases.

However, even with this information the significant effect of an interaction might have 
relevant biological implications that are not immediately obvious. For example, males 
might have a steeper allometric slope than females for a given trait based on our infer-
ence of a significant interaction, but this does not eliminate the possibility that males and 
females might not be different in shape at large (Fig. 1a) or small sizes (Fig. 1b), or even 
that they might not significantly differ in shape at any size value that is biologically rel-
evant (Fig. 1c). Moreover, in Fig. 1a, b we cannot statistically conclude that, overall, one 
sex has relatively larger trait values than the other, even though the visualization of the data 
suggests this is the case at least for most of the size range. The reason is that the assump-
tion of homogeneity of slopes, necessary to compare groups when performing analyses 
of covariance (i.e., ANCOVA), is not met when the interaction term is significant (Sokal 
and Rohlf 2012). Similarly, precipitation might have a significant and negative modula-
tory effect on the relationship between size and latitude. However, with this information 
alone one cannot know the precipitation values for which the size ~ latitude relationship is 
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significant (Fig. 1d, e). It is also possible that, despite precipitation affecting the slope of 
this association, the size ~ latitude relationship stays significant for all realistic precipita-
tion values (Fig. 1f). In either case, the examination of coefficients when obtaining a sig-
nificant interaction term might be insufficient to interpret an interaction model and obtain 
useful statistical conclusions, evidencing the need for better analytical and visualization 
techniques.

The Johnson–Neyman technique: available software, and limitations

The Johnson–Neyman technique (Johnson and Neyman 1936; Johnson and Fay 1950) is a 
method that allows a more thorough examination of interaction effects. Originally devel-
oped to account for the effect of a categorical moderator, it allows the identification of a 
range of predictor values for which the interaction between predictor and moderator results 
in non-significant differences in the dependent variable between categories (White 2003; 
Huitema 2011). For instance, it would allow one to identify size values for which trait dif-
ferences between males and females are not significant in Fig.  1a, b (indicated by grey 
areas). The Johnson–Neyman technique has already been employed in empirical research 

Fig. 1   Hypothetical examples where the interactions between the moderator and the predictor are signifi-
cant. Panels a, b, and c depict cases where sex, a categorical moderator, influences the relationship between 
a given trait and size. In (a) and (b), the trait value is larger in one sex than in the other, but because of the 
slope difference between sexes the difference in trait values might be non-significant at some unknown val-
ues of size (here depicted as grey regions). In (c), the interaction between sex and size is also significant, 
but the different slopes do not result in significant differences between sexes for any biologically relevant 
value of size. In (d), (e), and (f), precipitation, a continuous moderator, has a significant effect on the rela-
tionship between size and latitude. In (d), the relationship between size and latitude is significant at high 
(blue) and low (brown), but not intermediate levels of precipitation (dotted lines). In (e), the association 
between size and latitude is only significant and negative when precipitation is high. In (f), the relationship 
between size and latitude stays positive and significant regardless of precipitation level, although it signifi-
cantly influences the slope of the relationship. In (d–f), solid and dotted lines represent significant and not 
significant size ~ latitude associations, respectively
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in ecology and evolution. For example, Hünicken et al (2022) utilized the method to iden-
tify regions of non-significance in their allometric analysis of two species of Corbicula 
clams. They found the clam species showed different height ~ length relationships (i.e., a 
significant length * species interaction). However, despite this significant interaction, the 
Johnson–Neyman technique suggested that the two species differed in height only at the 
extremes of the length distribution, while differences in height were not significant for 
most length values (see Fig. 4d in Hünicken et al 2022).

The Johnson–Neyman technique has also been expanded to account for continuous 
moderators (Bauer and Curran 2005). Unlike the case with categorical moderators like 
’sex’ or ’species’, one might be more interested in assessing how a gradual change in vari-
ables like precipitation or temperature affect the relationship between the dependent vari-
able and the predictor (Fig. 1d–f). For example, Jaime et al (2022) estimated the rates at 
which trees in 130 experimental plots were attacked by bark beetles and how these rates 
were affected by the climatic distance between a given plot and the niche optima of the host 
tree (distancehost) and that of the beetle species (distancebeetle) (i.e., attack rate ~ distancehost 
* distancebeetle). The Johnson–Neyman technique allowed the authors to conclude that, 
although attack rates decrease with distancehost, this relationship weakens and even disap-
pears as distancebeetle values increase (see Fig. S5 in Jaime et al 2022).

Despite being a relatively unknown method, a number of software have been developed 
to perform the Johnson–Neyman technique and its expanded application for continuous 
moderators (Preacher et al 2006; Hayes and Matthes 2009; Carden et al 2017; Hayes and 
Montoya 2017; Montoya 2019; Lin 2020), the most complete being the R (R Core Team 
2021) package interactions (Long 2019), which includes all the functionality provided 
by other software and overall includes a wide range of visualization and analysis options. 
Nonetheless, this and previous software lack some functions that might prove useful for 
users exploring model interactions. Regarding the issue of phylogenetic relatedness, previ-
ous methods do not provide an option to directly incorporate phylogenetic information in 
the calculation of regions of non-significance, limiting the use of the technique in mac-
roevolutionary studies. Regarding categorical moderators, other software do not provide 
an option to visualize regions of non-significance (i.e., values of the predictor for which 
there are no significant differences between categories, e.g., Fig. 1a–c). Indeed, the uses 
of the Johnson–Neyman technique for categorical moderators reported in the literature are 
usually based on custom-made programming scripts (e.g., the study on Corbicula clams 
described above, Hünicken et  al 2022). Finally, regarding the effect of continuous mod-
erators, the function johnson_neyman of the R package interactions provides a numerical 
output as well as a plot showing the association between the value of the moderator and the 
slope of the relationship between the dependent variable and the predictor. Although this 
type of plot (Fig. 2a) resembles the one originally presented by Bauer and Curran (2005) 
and has been used to describe interaction effects in the literature (e.g., the study on bark 
beetles described above, Jaime et al 2022), its interpretation is not straightforward because 
the relationship between the dependent variable and the predictor (e.g., as in Fig. 2b) is not 
presented other than through the value of its slope.

Here I present the R package JNplots (Toyama 2023a) as a solution to fill gaps left by 
previous software regarding the calculation and visualization of non-significance regions 
through the Johnson–Neyman technique. As will be explained next, JNplots allows the user 
to calculate Johnson–Neyman intervals when including categorical or continuous modera-
tors in interaction models, and to produce graphical outputs that depict them in an intuitive 
way. It also allows the user to modify the correlation structure of the data, allowing the 
consideration of phylogenetic relationships when calculating Johnson–Neyman intervals.
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JNplots: implementation and examples

The JNplots R package can be used to analyse two-way interaction models that exhibit 
any of the four characteristics presented above (and their combinations) using the John-
son–Neyman technique and its variants. Its two basic functions, jnt_cat and jnt_cont, 
can be used to explore two-way interactions in which the moderator is categorical or 
continuous, respectively (see specific calculations performed by both functions in 
the Supplementary Materials). Both functions allow the analysis of phylogenetically-
informed models through the use of the function gls from the package nlme (Pinheiro 
et  al 2017). Both functions can be used to calculate and visualize ’regions of signifi-
cance’ in an intuitive way. Finally, the functions allow plotting flexibility as they include 
arguments that are passed on to the R base plot function. JNplots is freely available 
on the CRAN package repository (https://​cran.r-​proje​ct.​org/​web/​packa​ges/​JNplo​ts/) and 
depends on the packages ape (Paradis and Schliep 2019), nlme (Pinheiro et  al 2017), 
and scales (Wickham and Seidel 2022), which are downloaded from CRAN during the 
installation of JNplots. The package can be installed from CRAN and loaded using the 
following commands:

install.packages(’JNplots’)
library(JNplots)

Fig. 2   Hypothetical example of a significant interaction effect between latitude and precipitation and its 
effect on body size. Values of precipitation (moderator) that result in non-significant relationships between 
size (dependent variable) and latitude (predictor) can be obtained through an extension of the Johnson–Ney-
man technique. a The output of the method can be visualized as a plot showing the relationship between 
the slope of the size ~ latitude association and precipitation values (see Bauer and Curran 2005 and the R 
package interactions, Long 2019). Here the horizontal thin line represents a slope of zero, the horizontal 
thick line represents the range of precipitation data, the red line shows the negative relationship between 
the size ~ latitude slope and precipitation, the dashed lines represent 95% confidence intervals, and the ver-
tical dotted lines represent the range of precipitation values that result in a non-significant size ~ latitude 
relationship. b Alternatively, the different slopes of this relationship could be illustrated in a size ~ latitude 
plot, showing how the relationship between size and latitude changes under the effect of different precipita-
tion values. Both types of plots show the same information (higher precipitation decreases the value of the 
size ~ latitude slope, but intermediate values of precipitation result in non-significant relationships), but B is 
easier to interpret

https://cran.r-project.org/web/packages/JNplots/
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Using the following empirical examples, I present possible scenarios in which the func-
tions from JNplots can be used and provide a detailed walkthrough of their implementa-
tion. All the data needed to reproduce these examples are publicly available from their 
respective sources and are also included in the installation of JNplots.

Example 1: head length allometry in two lizard species

Data from this example comes from the study of Toyama et al (2018). In the original study 
the authors tested whether ontogenetic changes in the diet of a lizard (from insectivory to 
herbivory) corresponded to changes in its morphology (from slender to robust heads). As 
part of their analyses, the authors compared the head shape allometry of the semi-herbiv-
orous species to other congeners that showed mainly insectivorous habits throughout their 
life (see Fig. 4 in Toyama et al 2018). Using their original data, I compared the relationship 
between head length and body size in a pair of these species: Microlophus thoracicus, a 
semi-herbivore species, and M. peruvianus, a species that rarely includes plant material in 
its diet.

I prepared a subset of the original dataset (dataset ’microlophus’, included in JNplots), 
which included data on body size (measured as SVL (snout-vent-length) in millimetres), 
head length (also in mm), and species. Measurements were log-transformed. Since the 
moderator in this case is categorical (i.e., species), I proceeded to test for a possible two-
way interaction between species and size (i.e., head length ~ size * species) using the func-
tion jnt_cat. The only necessary arguments in jnt_cat are the names of the predictor (X), 
the dependent variable (Y), and the moderator (m). They are added to the function as char-
acter strings. The dataset also needs to be specified:

jnt_cat(X=’svl’, Y=’hl’, m=’species’, data=microlophus)

Notice that the character strings must coincide with the column names in the dataset 
’microlophus’. These four arguments are the minimum needed for the function to work. 
The output of the function is a list that includes the summary table of the two-way interac-
tion model (head length ~ size * species), and the lower and upper limits of the region of 
non-significance (i.e., values of the predictor for which the difference between categories 
is not significant) (Table  1). The function also produces a plot showing the association 
between the dependent variable (e.g., head length) and the predictor (e.g., size), with the 
two categories (e.g., species) represented by different symbols and/or colors, and regres-
sion lines for each individual category based on the output of the interaction model (Fig. 3).

This re-analysis of the data using jnt_cat indicated that the interaction between sex and 
size was significant (t = − 5.499, p < 0.001), and evidenced the existence of a region of non-
significance along the examined size range (Fig. 3). Specifically, the results indicated that, 
based on the data at hand, the head lengths of both species are not significantly different 
for individuals with log(SVL) values between 4.13 and 4.33 (approximately between 62.33 
and 75.63 mm).

In this particular case, the calculation of regions of non-significance using jnt_cat pro-
vided predictor (size) values that defined regions where differences between categories 
(and lack thereof) are statistically supported, which provides more rigor when interpret-
ing the results of an interaction model. However, it is important to note that, although the 
analysis provides evidence for the existence of a region of non-significance and defines its 
position, the limits of this region depend on the alpha level (default = 0.05) as well as on 
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tsample size, thus the user should be cautious when proposing biological interpretations for 
these regions. At this point it is also worth mentioning that regions of non-significance can 
exist and be relevant for the data of study despite the interaction term being non-significant 
(Rogosa 1980, 1981; Bauer and Curran 2005), thus it might be worth performing the John-
son–Neyman technique regardless of the significance of the interaction term.

Table 1   Two-way interaction 
fitted models obtained with 
JNplots for three empirical 
examples

Significant p-values are shown in bold. The limits of significance 
obtained using the Johnson–Neyman technique (min JN value and max 
JN value) and the minimum and maximum values found in the data 
(min value data and max value data) are shown at the bottom of each 
table. In the first example the moderator is categorical and the JN lim-
its refer to values of the predictor (e.g., for which predictor values are 
the differences between moderator categories non-significant?), while 
in the second and third examples the moderator is continuous and 
these limits refer to values of the moderator (e.g., for which modera-
tor values is the relationship between the dependent variable and the 
predictor (non)significant?)

Coefficient t-value p-value

Microlophus lizards
Intercept − 1.79 − 6.83 < 0.001
log(SVL) 1.06 17.57 < 0.001
species 1.59 5.47 < 0.001
log(SVL) x species − 0.38 − 5.50 < 0.001

min JN value max JN value min value data max value data
4.133 4.326 – –

Lizard home range
Intercept 4.26 23.56 < 0.001
overlap 1.77 9.11 < 0.001
network − 0.07 − 0.39 0.700
overlap x network 0.86 6.13 < 0.001

min JN value max JN value min value data max value data
− 3.296 − 1.360 − 2.169 2.481

Bird coloration
Intercept 0.32 18.40 < 0.001
precipitation − 5.03E−05 − 5.13 < 0.001
temperature − 4.40E−06 − 0.007 0.9947
precip. x temp 1.30E−06 2.80 0.0056

min JN value max JN value min value data max value data
31.106 84.853 1.7 27.5
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Example 2: drivers of home range size in a lizard

Data from this example comes from the study of Payne et al (2022a). In the original study, 
the authors were interested in uncovering the factors influencing the home range size (i.e., 
the area in which an individual interacts with the environment) of individuals of the lizard 
species Tiliqua rugosa. One of their main results indicated that the size of the home range 
of a particular individual increases together with the degree of overlap it has with the home 
range of neighboring individuals. Additionally, this relationship is stronger for individuals 
that interact with more neighbours (i.e., degree of social network).

I prepared a subset of the data (dataset ’lizard_home_range’, included in JNplots, see 
Payne et al 2022b for original dataset) that included information on the home range size of 
each individual (’hrsize95’), degree of overlap (’PHR95_overlap-z’), and social network 
degree (’degree_z’). To analyze the two-way interaction between overlap and degree of 
social network (i.e., home range size ~ overlap * social network) I used the function jnt_
cont, as the moderator (i.e., degree of social network) is continuous. As with jnt_cat, the 
necessary arguments for the function are the names of the predictor (X), the dependent 
variable (Y), and the moderator (m) as they appear in the dataset, which also needs to be 
specified:

jnt_cont(X = ’PHR95_overlap_z’, Y = ’hrsize95’, m = ’degree_z’, 
data = lizard_home_range)

As with jnt_cat, the output of the function is a list that includes the summary table 
of the two-way interaction model (home range size ~ overlap * social network), the val-
ues of the moderator that represent the limits between significance and non-significance, 
and also the minimum and maximum moderator values in the data (Table 1). The func-
tion also produces a plot showing the association between the dependent variable (e.g., 
home range size) and the predictor (e.g., overlap) (Fig. 4). However, when the moderator 

Fig. 3   Graphical output of a 
model relating head length 
to body size (SVL) and its 
interaction with species of 
Microlophus lizards (model: 
head length ~ body size * spe-
cies) obtained with the function 
jnt_cat from JNplots. Solid and 
dashed lines represent head 
length ~ body size relationships 
for individuals of each of the 
two species (also represented 
by closed and open circles), as 
shown in the legend. These rela-
tionships were obtained from the 
output of the interaction model. 
Grey area represents the non-
significance area calculated with 
the Johnson–Neyman technique. 
Data obtained from Toyama et al 
(2018) and available to use with 
JNplots 
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is continuous the interpretation of the interaction effect differs from the output of jnt_cat. 
In this example, and in agreement with the original study, home range size increases with 
overlap. Moreover, the degree of social interactions has a positive effect on this relation-
ship (i.e., the positive effect of overlap on home range size is stronger for lizards that inter-
act more with neighbours). The positive effects of the predictor and moderator are repre-
sented by multiple regression lines plotted in the output figure (Fig. 4). The multiple grey 
regression lines that constitute the grey ’area’ represent regressions fitted using moderator 
values that are outside the range of significance, i.e., values of the moderator that make 
the relationship between the dependent variable and the predictor not significant. (Fig. 4). 
The ’area’ in color consists of multiple regression lines that represent models fitted using 
moderator values that fall within the significance range (i.e., moderator values for which 
the relationship between the dependent variable and the predictor is significant). The sig-
nificant regression lines are colored in a blue-red gradient that represent lower and higher 
moderator values, respectively, illustrating how changes in the magnitude of the moderator 
(i.e., degree of social network) affect the relationship between home range size and overlap 
(Fig. 4). The plot also shows two additional lines. The solid and dashed black lines repre-
sent fitted models that use the maximum and minimum values of the moderator in the data, 
respectively. This aids in the interpretation of the plot because not all moderator values 
might be relevant for the study system or the data at hand.

In this example, a higher degree of social interactions (moderator) increases the slope 
between home range size (dependent variable) and overlap (predictor) (Fig. 4). However, 
a low degree of social interactions (specifically below a value of − 1.360, Table 1) makes 
that relationship not significant, keeping home range size small regardless of the degree 
of overlap (grey area in Fig. 4). Importantly, some moderator values that would result in 
non-significant relationships are found in the data, suggesting that this result could be 
biologically relevant (see grey regression lines between solid and dashed black lines in 
Fig. 4). It is important to consider, however, that the specific moderator values that separate 

Fig. 4   Graphical output of a 
model relating home range 
size to home range overlap and 
degree of social network in the 
lizard Tiliqua rugosa (model: 
home range size ~ overlap * 
social network) obtained with the 
function jnt_cont from JNplots. 
Colored lines represent signifi-
cant linear models obtained using 
different ’degree of social net-
work’ values, the blue-red gradi-
ent represents different degrees 
of social network going from low 
to high, respectively. Grey lines 
represent non-significant linear 
models. Solid and dashed black 
lines represent the maximum and 
minimum social network values 
from the dataset, respectively. 
Data obtained from Payne et al 
(2022b)
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non-significant and significant relationships should be interpreted in the context of the data 
at hand (e.g. sample size and quality) and significance level (alpha).

Example 3: drivers of coloration in birds

Data from this example were originally described in a study by Marcondes and Brumfield 
(2019) and reanalysed in a follow-up study (Marcondes et al. 2021). In the latter study, the 
authors assessed how climatic variables and light environments influence the plumage col-
oration of bird species of the family Furnariidae. Among other findings, the authors found 
that the brightness (a proxy for overall melanin content, with less bright plumage patches 
having less melanin) of the back plumage was negatively related to precipitation. Further-
more, an interaction between temperature and precipitation was detected, indicating that 
the negative effect of precipitation on brightness is stronger when temperature is lower (see 
Fig. 1a in Marcondes et al. 2021).

I reanalysed a subset of the data used by Marcondes et al. (2021) (dataset ’birds_colors’, 
included in JNplots, original data by Marcondes and Brumfield 2021 and Seeholzer et al 
2017) using the jnt_cont function as in the previous example. The model of interest in 
this case was brightness ~ precipitation * temperature (notice that in the ‘birds_colors’ 
dataset the columns with precipitation and temperature data are named ‘bio12’ and ‘bio1’, 
respectively). However, in contrast to the previous example, this analysis implies the non-
independence of datapoints due to phylogenetic relationships. To account for this, I used 
the argument ’correlation’ in jnt_cont. The argument ’correlation’ specifies the correlation 
structure of the model (as one would do in the gls function of nlme). Phylogenetic correla-
tion structures (e.g., ’corBrownian’, ’corPagel’, ’corBlomberg’, etc.) in turn need a phylog-
eny to be specified. Here I chose ’corPagel’ as the correlation structure and used a phylo-
genetic tree of the Furnariidae (’tree_Furnariidae’, also included in JNplots, Harvey et al 
2020), selecting ’1’ as the initial value of lambda (see Paradis and Schlieb 2019, for details 
on using different correlation structures):

jnt_cont(X=’bio12’, Y=’back_bright’, m=’bio1’, data=bird_
colors, 
correlation=corPagel(1, tree_Furnariidae))

The output of jnt_cont showed that, in agreement with the original study, plumage 
brightness decreased with precipitation and the interaction between temperature and pre-
cipitation was significant (Table 1). Specifically, the effect of precipitation on brightness 
was stronger at lower temperatures. The limits of significance represented in the plot con-
firmed this pattern and also showed that the statement is generalizable for the entire range 
of temperature values experienced by species in the dataset, as it completely overlaps with 
the region of significance (Fig. 5).

Customization of graphical outputs in JNplots

One of the main aims of JNplots is to provide graphical outcomes that allow the user to 
interpret interaction models in an intuitive way. To aid in this objective, the graphical out-
puts of its functions allow for some aesthetic flexibility.
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In the case of jnt_cat the regions of non-significance might not overlap the predictor values 
in the data. This would result in the region of non-significance not appearing or only par-
tially appearing in the graphical output. Specifying the option ’plot.full = TRUE’ (’plot.full’ 
defaults to ‘FALSE’) will result in the plot always showing the entire region of non-signifi-
cance regardless of its overlap with the predictor values of the data (compare Figs. 6a and 6b). 
Other basic aspects of the plot that can be modified are the symbols representing both cat-
egories (default: pch = c(16,1)), colors (default: cols = c(’black’, ’black’)), line types (default: 
lty = c(1,2)), line widths (default: lwd = c(1,1)), and line colors (default: line.col = c(’black’, 
’black’)). As an example, compare Fig. 6a, which uses only default settings, and Fig. 6c.

Plotting characteristics can also be specified in jnt_cont. The user can control the rela-
tive number of regression lines to be plotted with the argument ’res’, which defaults to 100. 
The exact number of lines to be plotted is equal to the value of ’res’ – 1, meaning that the 
number of plotted regressions increases with the value specified in ’res’ (compare Figs. 6d 
and 6e, which have ’res’ values of 80 and 40, respectively). The gradient of colors shown 
by the significant regression lines can also be modified. The arguments ’max_col_grad’ and 
’min_col_grad’ define the colors of the regression lines when using the maximum and mini-
mum moderator values that result in significant relationships, respectively. The colors of the 
regression lines in-between will form a gradient between the extreme colors (’max_col_grad’ 
and ’min_col_grad’ default to ’red’ and ’blue’, respectively). For example, compare Figs. 6d 
and 6f. If a color gradient indicating different moderator values is not desired then ’col.gradi-
ent = FALSE’ (defaults to ‘TRUE’) should be specified. In this case, all the lines representing 
significant fitted regressions will take the color specified in the argument ’sig_color’, which 
defaults to ’lightblue’ (compare Figs. 6g and 6h). The color of the non-significant regression 
lines can also be specified in the argument ’nonsig_color’ (defaults to ’grey’).

Fig. 5   Graphical output of a 
model relating back plumage 
brightness to precipitation and 
temperature in Furnariidae 
bird species (model: bright-
ness ~ precipitation * tempera-
ture) obtained with the function 
jnt_cont from JNplots. Colored 
lines represent significant linear 
models obtained using different 
temperature values, the blue-red 
gradient represents different 
temperatures going from low to 
high, respectively. Grey lines 
represent non-significant linear 
models. Solid and dashed black 
lines represent the maximum and 
minimum temperature values 
from the dataset, respectively. 
Data obtained from Marcondes 
and Brumfield (2021)
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Fig. 6   Graphical flexibility of JNplots. a jnt_cat was applied to a head height ~ size * species model. b 
Here the argument ’plot.full’ was changed to ’TRUE’, which allows to see the entirety of the non-signif-
icance region regardless of the range of the predictor values. c Here plot.full = ‘FALSE’, but other argu-
ments were modified to change the aesthetics of the plot (pch = c(16,17), cols = c(’dodgerblue2’, ’darko-
livegreen4’), lwd = c(2,2), line.col = c(’dodgerblue2’, ’darkolivegreen4’)). d Same as Fig.  4, jnt_cont was 
applied to the model home range size ~ overlap * network. e Here the argument ’res’ was specified to be 
40 (default = 100). Notice the lower number of regression lines and the larger space between them. f Here 
res = 80, and gradient colors are changed specifying min_col_grad = ’yellow’ and max_col_grad = ’red’. g 
Same as Fig. 5, jnt_cont was applied to the model brightness ~ precipitation * temperature, res = 150, corre-
lation = corPagel(1, tree_Furnariidae). h Argument col.gradient = ‘FALSE’ and sig_color = ’lightblue’. The 
argument sig_color is only considered when col.gradient = ‘FALSE’ and defines a single color to be used 
for all significant regression lines. The argument nonsig_color works similarly for non-significant regres-
sion lines. i In this case the correlation structure is based on a Brownian motion model of evolution (corre-
lation = corBrownian(1, tree_Furnariidae))
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Finally, as previously mentioned, the correlation structure of the data can be modified in 
both jnt_cat and jnt_cont. Although this is not an aesthetic specification, changing the correla-
tion structure will most likely change the aspect of the graphical outcome of either function. 
For example, compare Figs. 6g and 6i, which use Pagel’s lambda and Brownian motion cor-
relation models, respectively.

Conclusions

Multiple model testing is common in ecological and evolutionary studies, and under-
standing how variables included in such models interact is indispensable for their inter-
pretation (Hilborn and Stearns 1982; Dochtermann and Jenkins 2011; Spake et al 2023). 
Although the Johnson–Neyman technique was initially developed in the context of edu-
cational and psychological studies (Johnson and Neyman 1936; Johnson and Fay 1950), 
its application to other fields is evident (e.g., White 2003), as was the need to expand 
its application beyond categorical moderators and two-way interactions (e.g., Bauer and 
Curran 2005). In the same vein, JNplots aims to be a tool that facilitates the application 
of the method in ecological and evolutionary studies through the direct implementation 
of phylogenetic corrections and the possibility to analyze categorical and continuous 
moderators, thus going beyond what is possible with existing software. Equally impor-
tant, JNplots aims to aid in the interpretation of two-way interactions through more 
intuitive graphical outputs.

Although its main functions are readily available, JNplots still has room for expansion. 
For example, the Johnson–Neyman technique can be applied to three-way or higher-level 
interactions (Pothoff 1964; Hunka 1995; Hunka and Leighton 1997; Curran et  al 2004; 
Bauer and Curran 2005). Other types of regressions, like type II or reduced major axis 
regressions, and even non-linear models also represent alternatives to traditional linear 
models not yet included as analytical options in this package. These and other variations in 
the analysis of interactions remain to be implemented in JNplots (or any other software). 
Before then, users interested in such variations are free to copy and modify the functions 
from JNplots (https://​github.​com/​kenst​oyama/​JNplo​ts) and adapt them to their needs.

Together with the release of this package, I provided a quick start guide online (https://​
kenst​oyama.​wordp​ress.​com/​2023/​05/​06/​jnplo​ts-​quick-​guide/) for users that are more famil-
iar with the Johnson–Neyman technique and are specifically interested in the numerical 
and graphical outputs of JNplots. Issues with the use of the package can be reported at 
https://​github.​com/​kenst​oyama/​JNplo​ts/​issues.
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