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to classify groups of soybean genotypes to industrial 
technological variables based on agronomic traits 
measured in the field using machine learning (ML) 
techniques. Field experiments were carried out in two 
sites in a randomized block design with two replica-
tions and 206  F2 soybean populations. Agronomic 
traits evaluated were: days to maturation (DM), first 
pod height (FPH), plant height (PH), number of 
branches (NB), main stem diameter (SD), mass of 
one hundred grains (MHG), and grain yield (GY). 
Industrial technological variables evaluated were oil 
yield, crude protein, crude fiber, and ash contents, 
determined by high-optical accuracy near-infrared 
spectroscopy (NIRS). The models tested were: sup-
port vector machine (SVM), artificial neural network 
(ANN), decision tree models J48 and REPTree, ran-
dom forest (RF), and logistic regression (LR, used 
as control). A genotype clustering was performed 
using PCA and k-means algorithm, and then the clus-
ters formed were used as output variables of the ML 
models, while the agronomic traits were used as input 
variables. ML techniques provided accurate models 
to classify soybean genotypes for more complex vari-
ables (industrial technological) based on agronomic 
traits. RF outperformed the other models and can 
be used to contribute to soybean breeding programs 
by classifying genotypes for industrial technological 
traits.

Keywords Glycine max (L.) Merril · Fiber · Oil · 
Protein · Random forest

Abstract A current challenge of genetic breeding 
programs is to increase grain yield and protein con-
tent and at least maintain oil content. However, evalu-
ations of industrial traits are time and cost-consum-
ing. Thus, achieving accurate models for classifying 
genotypes with better industrial technological perfor-
mance based on easier and faster to measure traits, 
such as agronomic ones, is of paramount importance 
for soybean breeding programs. The objective was 
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Introduction

Soybean [Glycine max (L.) Merril] is the most eco-
nomically important oilseed in the world. Due to its 
high seed oil content and high protein content with 
balanced amino acid composition, soybean is an 
important alternative food in animal and human nutri-
tion (Alaswad et al. 2021). The main use of soybean, 
both in Brazil and worldwide, is as raw material for 
the industry, producing meal and oil. Meal, which is 
rich in protein, is used mainly in the feed industry for 
poultry, pigs, and cattle (Goldsmith 2008). On the 
other hand, oil is used both in the food and biodiesel 
industries. About 78% of biodiesel produced in Brazil 
comes from soybean oil (Ramos et  al. 2017), being 
the most used raw material in biodiesel production in 
the country given its availability of large-scale culti-
vation (André Cremonez et al. 2015).

Oil and protein contents in soybean are com-
plex  quantitative traits controlled by multiple genes 
and affected by environmental factors (Burton 1985). 
A current major challenge is increasing yield and 
protein content and at least maintaining oil content. 
However, there is a negative relationship between 
grain yield and protein and oil contents (Bandillo 
et al. 2015; Cober and Voldeng 2000; Kambhampati 
et  al. 2020; Pipolo et  al. 2015), which hinders the 
selection of genotypes combining good performance 
for yield and industrial technological variables such 
as oil and protein contents. Additionally, measur-
ing such industrial variables is a time-consuming 
and destructive task, requiring grain sample collec-
tion and laboratory analysis with the development of 
new equipment and methodologies, such as NIRS, it 
has allowed fast, accurate and non-destructive evalu-
ations. In this scenario, obtaining accurate models 
for classifying genotypes for industrial technological 
variables based on easier and faster to measure traits, 
such as agronomic ones, is of paramount importance 
for soybean breeding programs.

One approach that has been successfully employed 
in regression and classification problems on complex 
datasets is using machine learning (ML) techniques. 
ML is a subgroup of the artificial intelligence area in 
which algorithms can learn from data and then dis-
cover patterns in the dataset, deciding on new and 
similar information (Marques Ramos et  al. 2020; 
Singh et al. 2016; van Dijk et al. 2021). In this sense, 
algorithms such as artificial neural network (ANN), 

support vector machine (SVM), decision tree models, 
and random forest (RF) can be used to build mod-
els that allow the classification of the data of inter-
est. Several studies (Batista et  al. 2022; Marques 
Ramos et al. 2020; Teodoro et al. 2021) have reported 
meaningful improvements in the accuracy of esti-
mates when ML models are implemented compared 
to traditional methods. Schwalbert et al., (2020) used 
ML models applied to remote sensing data for soy-
bean yield prediction, in which ANN outperformed 
other algorithms. Marques Ramos et  al., (2020), 
when using ML techniques combined with differ-
ent vegetation indices, achieved satisfactory results 
in predicting maize yield, with RF algorithm stand-
ing out. Fletcher and Reddy, (2016), archived accu-
rate classification models using RF  algorithm with 
leaf  multispectral data  to differentiate three soybean 
varieties from two pigweeds. Zhou et al., (2020) used 
SVM algorithm to classify soybean leaf wilting due 
to drought stress by UAV-based imagery. However, 
studies on soybean genotype classification for indus-
trial technological variables are scarce. To the best of 
our knowledge, there are still no studies classifying 
soybean genotypes for oil and protein contents based 
on agronomic traits using ML techniques.

Our hypothesis is that it is possible to classify 
soybean genotypes with better performance for oil 
yield, and crude protein, crude fiber and ash contents, 
whose measurement is expensive in terms of time and 
financial resources, using information from variables 
that are easier to measure and can be collected in the 
field, such as the agronomic ones. The objective was 
to identify the best ML technique to classify groups 
of soybean  F2 populations clustered by their perfor-
mance for industrial technological variables using 
agronomic traits as input variables in the models.

Material and methods

Conducting the experiments

Field experiments were carried out during the 
2019/2020 crop season at two sites. The first experi-
ment was carried out at the Universidade Federal de 
Mato Grosso do Sul, campus of Chapadão do Sul, 
State of Mato Grosso do Sul (MS), Brazil (located 
at 18°46 "South, 52°37 "W and average altitude of 
810  m). The region’s climate is classified as humid 
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tropical, with mean annual rainfall of 1850 mm and 
mean annual temperature of 20.5 ± 7.5  °C. The soil 
of the experimental area was identified as Red Dys-
trophic Latossolo (Santos et  al., 2018) and presents 
the following chemical properties: pH  (CaCl2) = 4.8; 
organic matter = 17.6 (g   dm−3); P = 5.0 (mg  dm−3); 
H + Al = 5.3; K = 69.0 (mg  dm−3); Ca = 1.6  (cmolc 
 dm−3); Mg = 0.5  (cmolc  dm−3); cation exchange 
capacity (CEC) = 7.6  (cmolc  dm−3); base satura-
tion (V) = 30.0%. The second experiment was con-
ducted at the State University of Mato Grosso do 
Sul, campus of Aquidauana, MS, Brazil (located 
at 20°27’ South, 55°48 "W and average altitude of 
170  m). The region’s climate is classified as Tropi-
cal Savanna, with mean annual rainfall of 1200 mm 
and mean annual temperature of 24ºC. The soil of 
the area was classified as Red Dystrophic Argissolo 
(Santos et al., 2018) of sandy texture with the follow-
ing chemical properties: pH  (CaCl2) = 6.1; organic 
matter = 19.74 (g  dm−3); P = 67.5 (mg  dm−3); K = 0.3 
(mg  dm−3); Ca = 5.1  (cmolc  dm−3); cation exchange 
capacity (CEC) = 5.1  (cmolc  dm−3); base saturation 
(V) = 45.0%. The location of the study sites is shown 
in Fig. 1.

In both experiments, liming was performed three 
months before sowing in each season to raise the 
base saturation to 60%, as recommended by Sousa 
and Lobato (2017). The limestone used had a rela-
tive total neutralizing power (TNP) of 90% and a 
neutralizing power (NP) of 107%. The percent-
age of CaO and MgO is 31 and 21%, respectively. 
Sowing occurred in October 2019 using a conven-
tional tillage system. A randomized block design 
with two repetitions and 206  F2 soybean popula-
tions was used. The plots consisted of one row 
three meters long with spacing of 0.45  m between 
rows and 15 plants  m−1. The seeds were treated 
with fungicide (Pyraclotrobin + Methyl Thiophan-
ate) and insecticide (Fipronil) at a dose of 200 mL 
of the commercial product for every 100  kg seeds 
to protect against the attack of pests and soil fungi. 
For biological nitrogen fixation (BNF), the seeds 
were inoculated with Bradyrhizobium spp. bacteria 
at a dose of 200  mL of concentrated liquid inocu-
lant for each 100 kg seeds. The cultural treatments 
were performed according to the needs of the crop. 
Figure  1 shows the weather conditions during the 
experiment.

Fig. 1  Location of the study areas: municipalities of Chapadão do Sul and Aquidauana, Mato Grosso do Sul, Brazil
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Agronomic traits

At maturity, the following agronomic traits were 
evaluated: days to maturity (DM), first pod inser-
tion height (PIH, cm), plant height (PH, cm), num-
ber of branches (NB), main stem diameter (SD, cm), 
mass of one hundred grains (MHG, g), and grain 
yield (GY, kg  ha−1).  DM corresponded to the days 
between emergence and maturation of more than 50% 
of plants in each experimental unit. The traits PIH, 
PH, SD, and NB and were evaluated in five plants 
per plot, with the three first being evaluated with the 
aid of a tape measure. To obtain the MHG, a sample 
was taken from the harvested grains and the humid-
ity corrected to 13%. GY was evaluated by harvesting 
the central two meters of each plot and correcting for 
13% moisture.

Industrial technological variables

To determine the crude protein (%), oil (%), fiber 
(%), and ash (%) contents in the  F2 soybean popula-
tions, near-infrared spectroscopy (NIRS) (Metrohm, 
DS2500 spectrometer, Herisau, Switzerland) with 
high optical precision was used. Samples were 
homogenized and placed in a sampling dish. The 
analysis was based on illuminating a sample with 
specific wavelength radiation in the near-infrared 
region and then measuring the difference between the 
amount of energy emitted by the spectroscope and 
reflected by the sample to the detector. The record-
ing of spectral data was performed in the reflectance 
mode, within the spectral range of 400–2500  nm 
(Barnes et  al. 1989). The result obtained was com-
pared to a calibration set (Horwitz et al. 1970).

Machine learning models

The ML models tested were: artificial neural network 
(ANN), support vector machine (SVM), decision tree 
algorithms J48 and REPTree, and Random Forest 
(RF). Conventional logistic regression (LR) technique 
was used as a control model. The SVM performs 
prediction tasks by building hyperplanes in a mul-
tidimensional space to distinguish different classes 
(Rajvanshi and Chowdhary 2017). The ANN tested 
consists of the Multilayer Perceptron with a single 
hidden layer formed by a number of neurons equal to 
the number of attributes plus the number of classes, 

all divided by 2 (Egmont-Petersen et  al. 2002). The 
J48 decision tree model is an adaptation of the C4.5 
classifier that can be used in regression problems with 
an additional pruning step based on an error reduc-
tion strategy (Snousy et al. 2011). REPTree uses deci-
sion tree logic and creates multiple trees at different 
repetitions. It then selects the best tree using infor-
mation gain and performs error reduction pruning as 
the splitting criteria (Kalmegh 2015). RF model can 
produce multiple prediction trees for the same data-
set and use a voting scheme among all these learned 
trees to predict new values (Belgiu and Drăgu 2016). 
The six models tested were run on an AMD® PRO 
A10-8770E R7 CPU with 8 GB RAM, and all hyper-
parameters were set according to the default setting of 
the Weka software (Version 3.9.4, University of Wai-
kato, Hamilton, New Zeland).

To generate the genotype groups from the popula-
tions, the data were submitted to principal component 
analysis (PCA). A biplot was constructed with the 
first two principal components due to the easy inter-
pretation of these results. In this biplot, three clusters 
(C1, C2, C3) were defined based on the performance 
of the genotypes for the industrial technological vari-
ables for subsequent use of the k-means algorithm, 
which clusters treatments whose centroids are closest 
until there is no significant variation in the minimum 
distance of each observation to each of the centroids. 
These analyses were performed with the help of 
the "ggfortify" package of the free R application (R 
Development Core Team 2014). For the ML analy-
ses, the supervised learning approach was adopted, in 
which the three clusters formed were used as output 
variables of the models, while the agronomic traits 
(DM, PIH, PH, NB, SD, MHG, and GY) were used 
as input variables of the models. Cluster classification 
was performed by the six ML models in a stratified 
cross-validation with k-fold = 10 and ten repetitions 
(100 runs for each model).

Statistical analyses

To evaluate the performance of classifier models, 
the following metrics were used: percentage of cor-
rect classifications (CC) and F-score. These metrics 
use a confusion matrix, which indicates the cor-
rect or incorrect classification of the classes in use, 
grouping the results into four classes: False Nega-
tive (FN), False Positive (FP), True Positive (TP) 
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and True Negative (TN). The number of correct clas-
sifications obtained the percentage of correct classi-
fication for each algorithm by the machine learning 
algorithm in relation to the group that each genotype 
belonged to divided by the total number of classifica-
tions performed. F-score, also known as F-measure or 
F1 Score, is a precision measure of a test that con-
siders both the precision and the recall of the test to 
calculate the score. F-measure can be interpreted as 
a weighted harmonic average of precision and recall, 
where an F1 score reaches its best value at 1 and the 
worst score at 0. Precision, also called positive pre-
dictive value, is the proportion of positive results 
that are truly positive. Recall, also called sensitivity, 
is the ability of a test to correctly identify the posi-
tive results to get the true positive rate (Cornelissen 
and Loureiro 2020). These performance metrics were 
obtained on the Weka software.

To evaluate the ML models’ performance, the 
means of correct classifications (CC, %) and F-score 
for all models were grouped by the Scott-Knott test 
(Scott and Knott, 1974) at a 5% significance level. 
Boxplots were then generated to express the results 

graphically. These analyses were run on R software 
using the packages "ggplot2" and "ExpDes.en".

Results and discussion

Analysis of variance

The individual analyzes of variance for each location 
are contained in Table 1, while the joint analysis of 
variance is included in Table  2. For all traits, block 
effects were non-significant at both sites and in the 
joint analysis. The effects of genotypes (G) were sig-
nificant in individual and joint analyzes for all traits 
evaluated. In the joint analysis, the effect of environ-
ments (E) and the GxE interaction were significant 
for all traits. It is important to highlight that the coef-
ficient of variation values were less than 20% for all 
variables in all cases.

The presence of genetic variability between 
soybean genotypes and significant GxE interac-
tion is important to verify the ability of machine 
learning algorithms to classify soybean genotypes 

Table 1  P-value of 
individual analysis of 
variance for traits days to 
maturity (DM), first pod 
insertion height (PIH, cm), 
plant height (PH, cm), 
number of branches (NB), 
main stem diameter (SD, 
cm), mass of one hundred 
grains (MHG, g), and grain 
yield (GY, kg  ha−1), protein 
(%), oil (%), fiber (%), and 
ash (%) contents evaluated 
on 206  F2 soybean 
genotypes in two locations

CV, Coefficient of variation

Trait Environment Block Genotype (G) Mean CV (%)

DM Aquidauana 0.56 0.00 110.33 7.71
Chapadão do Sul 0.43 0.00 107.50 6.45

PIH Aquidauana 0.31 0.01 8.53 12.34
Chapadão do Sul 0.76 0.01 8.45 8.94

PH Aquidauana 0.09 0.00 81.25 13.98
Chapadão do Sul 0.15 0.00 78.19 11.36

NB Aquidauana 0.91 0.02 3.67 14.13
Chapadão do Sul 0.56 0.01 4.02 12.22

SD Aquidauana 0.65 0.01 3.33 8.99
Chapadão do Sul 0.47 0.02 3.67 9.07

MHG Aquidauana 0.34 0.00 17.75 13.23
Chapadão do Sul 0.22 0.00 18.90 14.98

GY Aquidauana 0.09 0.00 2350.45 15.45
Chapadão do Sul 0.17 0.00 2980.21 9.97

Protein Aquidauana 0.34 0.00 36.41 8.45
Chapadão do Sul 0.59 0.00 37.21 9.43

Oil Aquidauana 0.67 0.01 19.71 11.25
Chapadão do Sul 0.91 0.00 20.03 10.03

Fiber Aquidauana 0.20 0.03 5.56 6.45
Chapadão do Sul 0.31 0.04 5.82 6.02

Ash Aquidauana 0.44 0.04 4.96 7.09
Chapadão do Sul 0.51 0.03 4.83 6.34
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according to industrial traits. There are some stud-
ies that have carried out this procedure using spec-
tral variables obtained with remote sensors (Santana 
et al. 2023). However, for this to be done there is an 
additional cost for the breeding program. The use 
of agronomic traits, which are routinely evaluated 
in breeding programs, as input into machine learn-
ing models is a low-cost alternative to access some 
technological traits of soybean genotypes (Fig. 2).

Principal component analysis—PCA

Based on the PCA results, three homogeneous clus-
ters regarding the industrial variables were formed 
(Fig.  3). This analysis aims to measure the inter-
relationship between the treatments (genotypes 
contained in the clusters) and the variables. Most 
genotypes of cluster 1, which are associated with 
higher Protein and Ashes contents, are in the second 
quadrant. In the third quadrant are contained most 
of the genotypes in cluster 2, which is more associ-
ated with higher Protein and Fiber contents. Lastly, 
the gray points (cluster 3) are scattered throughout 
the other quadrants, showing no relationship with 
the variables. According to Hongyu et  al. (2015), 
for applications in various areas of knowledge, the 
number of components used has been the one that 
accumulates 70% or more proportion of the total 
variance. Therefore, the total variance obtained by 
PC1 plus PC2 (74.4%) indicates that the graph can 
be interpreted accurately.

Correlation analysis

According to the correlations and scatterplot (Fig. 4), 
the relationship of the genotypes of the cluster 3 with 
the variables Oil and Protein showed high variabil-
ity, while the genotypes of clusters 1 and 2 showed 
low variability. The genotypes in C2 showed high 
variability for Fiber and C1 for Ashes. The genotypes 
with higher variability are interesting for selection of 
individuals for genetic improvement. The existence 
of variability among the genotypes reveals the possi-
bility of selecting individuals with higher means for 
industrial variables, as well as discarding genotypes 
with inferior means, contributing to decision-making 
in breeding programs.

There was significance among all clusters for the 
Oil x Protein correlation, but there was a positive 
correlation only for C3. For Fiber x Protein, there 
was only a significant negative correlation for C1. 
There was no significant correlation for Fiber x Oil 
considering the clusters formed. Only C1 showed a 
significant positive correlation for Ashes x Protein, 
while for Ashes x Fiber, there was a positive correla-
tion only for cluster C2. It can be observed that the 
genotypes clustered into C1 and C2 presented a nega-
tive correlation for Oil and Protein, corroborating the 
difficulty in obtaining high means for both variables 
concomitantly.

Many studies have reported the existence of a 
negative association between protein content and 
oil yield. Thus, as protein content is increased, oil 
yield is reduced, and vice versa (Lee et  al. 2019). 

Table 2  P value of jointed 
analysis of variance for 
traits days to maturity 
(DM), first pod insertion 
height (PIH, cm), plant 
height (PH, cm), number of 
branches (NB), main stem 
diameter (SD, cm), mass of 
one hundred grains (MHG, 
g), and grain yield (GY, 
kg  ha−1), protein (%), oil 
(%), fiber (%), and ash (%) 
contents evaluated on 206 
 F2 soybean genotypes in 
two locations

CV, Coefficient of variation

Trait Block/E Genotype (G) Environment 
(E)

GxE Mean CV (%)

DM 0.47 0.00 0.00 0.04 108.92 6.71
PIH 0.56 0.01 0.00 0.03 8.49 9.61
PH 0.11 0.01 0.00 0.01 79.72 10.04
NB 0.72 0.04 0.01 0.02 3.85 13.19
SD 0.58 0.03 0.01 0.02 3.50 9.03
MHG 0.29 0.02 0.00 0.01 18.33 14.78
GY 0.16 0.00 0.02 0.01 2665.33 15.41
Protein 0.46 0.01 0.03 0.02 36.81 9.16
Oil 0.72 0.01 0.04 0.04 19.87 10.71
Fiber 0.26 0.04 0.03 0.04 5.89 6.21
Ash 0.47 0.04 0.02 0.01 4.90 6.59
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However, the C3 genotypes showed a positive corre-
lation for these variables, evidencing that although 
some authors have reported a negative relationship 
between oil yield and protein content (Bandillo 
et al. 2015; Kambhampati et al. 2020; Pipolo et al. 
2015), there are genotypes in which this correlation 
is positive. This finding is of crucial importance 
for soybean breeding since it reveals that it is pos-
sible to select genotypes with high means for both 
variables.

Performance of ML models

Figure  4 shows the percentage of correct classifica-
tions (CC) based on the different ML models tested. 
ANN, REPTree, RF, and SVM showed the highest 
percentage of correct classifications, while J48 and 
RL had the lowest CC means. For F-score, J48 and 
RF showed better performance. Therefore, RF was 
the best performing model considering both accuracy 
metrics.

Fig. 2  Principal Component Analysis (PCA) for the genotypes clustered by the k-means algorithm. Blue sample points (circles) 
belong to cluster 1 (C1), yellow points (triangles) to cluster 2 (C2), and gray points (squares) to cluster 3 (C3)
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RF is commonly used in data modeling stud-
ies, and has achieved superior results compared to 
other techniques, especially in classification studies 
using spectral, multispectral, and hyperspectral data 
(Fletcher and Reddy 2016; Teodoro et al. 2021; Zhou 
et  al. 2020). Although the accuracy values obtained 

with RF cannot be considered high magnitude (50% 
of CC and 0.40 of F-score), they are in line with those 
reported in the literature regarding the classification 
of soybean genotypes for nutritional traits. It is pos-
sible to predict the technological traits of soybeans 
using only the agronomic characters combined with 

Fig. 3  Correlations and scatter plot between the clusters and the variables crude protein (Protein), oil yield (Oil), crude fiber (Fiber), 
and Ashes contents; ***, ** and *: significant at 0.1%, 1% and 5% probability, respectively, by the F test

Fig. 4  Boxplot for mean 
correct classifications (CC, 
%) and F-score considering 
logistic regression analysis 
(LR) and the ML models: 
neural network (ANN), 
decision tree algorithms J48 
and REPTree, random for-
est (RF), and support vector 
machine (SVM). Groups of 
means with equal letters do 
not differ by the Scott-Knott 
test at 5% significance level
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this algorithm, without the need for additional analy-
sis. This information is of great importance for soy-
bean breeding programs.

However, in studies of genotype classification for 
traits of interest in plant breeding, this technique is 
still little explored. The RF algorithm is a method 
that proposes to group input variables using several 
decision trees that are built at the time of training step 
within the vector of characteristics of each tree, and 
then some of the tree attributes are randomly selected. 
Once this is done, the entropy presented by each 
attribute is calculated and the one with the highest 
entropy is chosen to separate the classes in that posi-
tion of the tree. The output of the classifier will be 
the one in which the class was returned as the answer 
by most of the trees belonging to the forest (Breiman 
2019). The main advantage of using RF is the elimi-
nation of overfitting, a very common problem when 
using decision trees (Belgiu and Drăgu 2016), which 
can justify its superior performance.

Our findings reveal that the clustering of geno-
types with better performance for industrial variables 
obtained by k-means and PCA, and the use of these 
groups as output in supervised ML models using 
agronomic traits obtained still in the field as input 
data is a promising strategy for complex data analy-
sis in soybean crop. The approach used here allows 
time, labor and funding savings, thus contributing to 
better decision-making in soybean breeding programs 
aimed at obtaining genotypes with higher oil yield, 
protein content and productive performance, which 
is one of the major current challenges in soybean 
improvement. Future studies should test other data 
modeling, such as the prediction of industrial tech-
nological variables based on agronomic ones aiming 
at identifying auxiliary variables in the selection of 
genotypes combining good performance for indus-
trial and agronomic variables, which will require even 
more powerful ML models due to the complex rela-
tionship between these variables.

Conclusion

The use of machine learning techniques enables mod-
erate accurate classification of soybean genotypes for 
industrial technological variables based on agronomic 
traits as input in models. Based on the percentage of 

correct classifications and F-score, Random Forest is 
the most efficient classification technique.
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