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Abstract Emmer is a progenitor of bread wheat and 
evolved in the Levant together with the yellow rust 
(YR), powdery mildew (PM) fungi, and a precursor 
of Zymoseptoria tritici causing Septoria tritici blotch 
(STB). We performed a genome-wide association 
mapping for the three disease resistances with 143 
cultivated emmer accessions in multi-environmental 
trials. Significant (P < 0.001) genotypic variation was 
found with high heritabilities for the resistances to 
the two biotrophs and a moderate heritability for STB 
resistance. For YR, PM, and STB severity nine, three, 
and seven marker-trait associations, respectively, 
were detected that were significant across all environ-
ments. Most of them were of low to moderate effect, 
but for PM resistance a potentially new major gene 
was found on chromosome 7AS. Genomic predic-
tion abilities were high throughout for all three resist-
ances (≥ 0.8) and decreased only slightly for YR and 
PM resistances when the prediction was done for the 
second year with the first year as training set (≥ 0.7). 

For STB resistance prediction ability was much lower 
in this scenario (0.4). Despite this, genomic selec-
tion should be advantageous given the large number 
of small QTLs responsible for quantitative disease 
resistances. A challenge for the future is to combine 
these multiple disease resistances with better lodging 
tolerance and higher grain yield.

Keywords Blumeria graminis · Major gene · 
Puccinia striiformis · Quantitative disease resistance · 
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Introduction

Hulled emmer (Triticum turgidum subsp. dicoccum) 
was the main wheat of Old World agriculture in 
the Neolithic and early Bronze Age. The tetraploid 
(2n = 4x = 28 chromosomes) emmer wheat is a 
descendant of subsp. dicoccoides, the wild emmer 
wheat (Weiss and Zohary 2011). According to 
archaeological evidence, wild emmer was one of 
the first crops cultivated in the southern Levant 
(10,300–9,500 BP; uncalibrated) (Feldman and 
Kislev 2007). Domesticated emmer characterised by 
non-brittle ears appeared several hundred years later 
(9,500–9,000 BP), and was grown mixed with wild 
emmer in many Levantine sites for a millennium 
or more. This paved the way for spontaneous 
hybridizations resulting in a high phenotypic 
variation of this crop. Due to this wide genetic base 
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and the large geographical area of cultivation in the 
Fertile Crescent (Levant, SE Turkey, Iraq, Iran), 
many tolerances to biotic and abiotic stresses can be 
expected in emmer wheat.

Among the worldwide most important pathogens 
in wheat are the biotrophic fungi yellow rust 
(YR) or stripe rust (Puccinia striiformis f.sp. 
tritici), powdery mildew (PM) (Blumeria graminis 
f.sp. tritici), and the hemi-biotrophic fungus 
Zymoseptoria tritici (teleomorph: Mycosphaerella 
graminicola) causing Septoria tritici blotch (STB). 
According to a recent review, these three diseases 
cause 2.1%, 1.1%, and 2.4% yield reduction in 
wheat globally (Savary et  al. 2019). Only leaf rust 
and Fusarium head blight cause higher losses.

YR was in previous times only episodically 
a problem for wheat, but became increasingly 
important in Europe since 2011 due to the wide 
distribution of the aggressive Warrior race 
originating from the Himalayan region (Hovmøller 
et  al. 2016). The Warrior race (named PstS7) took 
over the European YR population within the year 
2012 and has more virulence genes than previous 
European races. Two years later, a descendant of 
the Warrior race (namely PstS10, Warrior (–)) got 
predominant in Europe (see SFig. 1, GRRC 2023). 
Race composition of PM has not been analysed 
in the last decades, but the pathogen is ubiquitous 
in all major wheat growing areas. Similarly, STB 
is now reported in most wheat-growing regions 
and causes significant damage. Approximately 
70% of the fungicides used in Europe are sprayed 
for preventing Z. tritici epidemics (Torriani et  al. 
2015).

The situation of variety resistance for YR and PM 
is similar. Mainly race-specific resistances are used 
that are acting during the whole lifetime of the plant 
(all-stage resistances, ASR), but are not durable in 
most instances. A few genes are restricted in their 
action to adult plants conferring a partially expressed, 
non-race specific resistance with higher durability 
(adult-plant resistance, APR). More than 100 PM 
resistance genes or alleles mapping to 63 different 
loci (Pm1-Pm68) have been identified from common 
wheat and its relatives (Mapuranga et  al. 2022). 
Accordingly, 84 permanently and 100 temporarily 

designated stripe rust resistance genes have been 
reported in different hexaploid bread wheat, durum 
wheat, and wild species backgrounds (McIntosh et al. 
2022). For STB, 22 major genes (named Stb) have 
been mapped that contribute to qualitative resistance 
(Saintenac et al. 2021).

Additionally, quantitative resistances are available 
for all three diseases that are non-race specific 
conferring a reduced pathogen development but 
are prone to high environmental variation and 
comprise mainly adult-plant resistances. To date, 363 
quantitative trait loci (QTLs) with different names 
are known for YR (McIntosh et  al. 2022) and over 
100 QTLs for PM (Rana et al. 2022). Also, for STB, 
126 QTLs were described in a meta-analysis (Saini 
et  al. 2022). Typically, these QTLs have a minor to 
moderate effect on resistance and are scattered across 
the whole genome.

YR and PM have evolved as primary plant patho-
gens in Southwest Asia in the same region where 
the diploid and tetraploid wheats developed (Nevo 
et al. 2013). In Iran, a sister species of Z. tritici has 
been found infecting wild grasses (Stukenbrock et al. 
2007). The timing and similar geographical origin of 
the three pathogens and wild wheats strongly suggest 
a common co-evolution resulting in resistance mecha-
nisms on host side. Indeed, wild emmer harbors many 
resistance genes against PM and the three wheat rusts 
including YR (for review see Nevo 2014). Several 
major genes for stripe rust resistance were recently 
detected in wild emmer wheat (Tene et  al. 2022), 
some of them were already transferred into domesti-
cated wheat, including Yr15, Yr35, Yr36, Yr-SM139, 
and additional ASR and APR genes (Elkot et  al. 
2021). Because cultivated emmer is a direct descend-
ant of wild emmer, many resistance genes and QTLs 
should also be present in the cultivated species (Liu 
et  al. 2017a), but studies investigating larger sets of 
domesticated emmer cultivars are yet lacking. A large 
genetic variation for YR resistance was uncovered by 
molecular means in the closely-related durum wheats 
of European (Liu et al. 2017b; Miedaner et al. 2019), 
Canadian (Singh et al. 2013), and Ethiopian (Alemu 
et al. 2021; Liu et al. 2017c) origin. Because mono-
genic resistances for all three diseases are notoriously 
instable due to the highly flexible adaptation of the 
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pathogen populations, the use of quantitative resist-
ance in breeding is recommended (Miedaner et  al. 
2013). This strategy involves many genes (QTLs) and 
is best followed by genomic selection. This method 
applies high-density marker chips to large breed-
ing populations with the aim to predict the pheno-
type by its genomic composition and to test only 
the genomically selected entries in the field (Poland 
and Rutkoski 2016). In contrast to marker-assisted 
selection (MAS), where each QTL is selected inde-
pendently, the use of whole-genome prediction has a 
greater power to capture small-effect loci that would 
be missed by MAS. Because we have no possibility in 
this project for a selection experiment, we performed 
genomic prediction with the available data, instead.

Therefore, our main objectives were (1) to analyze 
the phenotypic variation for resistances to YR, PM, 
and STB, (2) to perform a genome-wide association 
study (GWAS) to uncover the inheritance of these 
resistances, (3) to evaluate the prospects of genomic 
prediction, and (4) to search for QTLs controlling 
multiple disease resistances among 143 emmer 
genotypes.

Materials and methods

Plant material and field trials

The plant material consisted of 143 genotypes of 
winter emmer, two bread wheat (Julius, Genius), two 
spelt (Franckenkorn, Zollernspelz), two winter durum 
(Wintergold, Sambadur), and one einkorn genotype 
(Terzino). All genotypes were evaluated in grow-
ing seasons 2018/19 and 2019/20 in Germany at  up 
to five  environments (year x location combinations) 
(Table 1): Hohenheim (HOH) near Stuttgart in 2019 
and 2020, Oberer Lindenhof (OLI) near Reutlingen 
in 2019  and 2020, and Rosenthal (ROS) near Peine 

in 2020. Growth regulators and fungicides were  not 
used. Trials were laid in an alpha-lattice design with 
two replicates as double rows in plots of  1m2 size. 
Yield data were available from trials at five envi-
ronments: HOH 2019 and 2020, OLI in 2020 and 
in 2019 additionally Schwäbisch Hall and Rastatt. 
Yield trials were laid in an augmented design in plots 
of >  5m2 size. Herbicides, growth regulator and fungi-
cides were here used as locally recommended. Nitro-
gen fertilization was 65% lower than in bread wheat. 
Sowing was done mechanically in all trials.

No artificial inoculation to induce diseases was 
done. Therefore, data on disease severity were 
recorded based on the natural occurrence of diseases 
in four environments for YR, two environments 
for PM, and five environments for STB. The race 
composition of YR in Germany was analysed by 
checking 50 and 59 isolates in the experimental years 
2019 and 2020, respectively, at the Julius-Kühn-
Institute, Federal Research Centre for Cultivated 
Plants, Institute for Plant Protection in Field Crops 
and Grassland in Kleinmachnow (GRRC 2023, 
SFig.  1). In 2019, Warrior(–), Triticale2015, and 
Warrior were the most frequently detected races, 
where Warrior(–) accounted for 60% of the samples, 
while in 2020, for the first time, Warrior(–) could be 
distinguished into the subraces Kalmar, Amboise, and 
Benchmark, which together increased to a frequency 
of 77%. The occurrence of Triticale2015 remained 
relatively constant, the original Warrior race was 
not detected any more. The race composition of 
PM is unknown. The scores for disease resistances 
were measured on a scale ranging from 1 to 9, 
where 1 denotes no visible disease and 9 the highest 
susceptibility to disease. Heading date was evaluated 
as the number of days from Jan. 1, when 50% of the 
heads of a plot were visible. Plant height (cm) was 
measured from the soil surface to the end of the 
spike of the main tillers once per plot. Heading date 

Table 1  Mean disease severity scorings (BLUEs, 1–9) in individual environments with natural infection

YT yield trial, HOH Hohenheim, OLI Oberer Lindenhof, ROS Rosenthal. The abbreviated name of a location is followed by the year 
of trial

Disease HOH19 OLI19 HOH20 ROS20 HOH20-YT OLI20-YT

Yellow rust 4.32 3.01 2 4.91
Powdery mildew 2.25 2.29
Septoria tritici blotch 2.89 2.78 3.3 4.01 3.19
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and plant height were recorded at four environments 
namely HOH19, OLI19, HOH20, and ROS20. Raw 
yield is the total yield including hulls, grain yield is 
from the de-hulled crop.

Phenotypic data analysis

For all traits except STB, a classical single-stage 
analysis was performed. Since, STB was recorded at 
environments with different experimental designs, a 
two-stage procedure was adapted for its phenotypic 
analysis.

On the first stage, used only for STB, evaluation 
of the single locations was performed. The mixed 
models given in Eqs.  1a and 1b were used for 
augmented design and alpha design, respectively:

where yik is the phenotypic observation for the ith 
genotype in the kth incomplete block, u is the general 
mean, gi the genotypic effect of the ith genotype, bk 
is the effect of the kth incomplete block, and eik is the 
residual.

where yijk is the phenotypic observation for the ith 
genotype in the jth replicate in the kth incomplete 
block, u is the general mean, gi the genotypic effect 
of the ith genotype, repj the effect of the jth replicate, 
bjk is the effect of the kth incomplete block of the jth 
replicate, and eijk is the residual.

For the estimates for the second stage of a two-
stage analysis, the genotype main effect gi was 
assumed as fixed effect to obtain best linear unbiased 
estimates (BLUEs) ( yi ) and their approximated 
variance–covariance matrix ( ̂V  ) in models 1a and 1b. 
Thus, separate analyses and separate effect estimates 
were obtained for each environment. Finally, 
estimates forwarded to the second stage were indexed 
by environment k ( yik, V̂k).

A weighting method in the context of two-
stage analysis can be useful to approximate the 
variance–covariance structure of adjusted means and 
hence slightly improve the analysis (Möhring and 
Piepho 2009). We used Smith’s weights (Damesa 
et al. 2017; Smith et al. 2001, 2005) obtained as the 

(1a)yik = u + gi + bk + eik,

(1b)yijk = u + gi + repj + bjk + eijk

diagonal elements of the inverse of V̂k , which is the 
variance–covariance matrix of adjusted means of the 
genotypes from first stage.

For the serial of trials, the mixed model given in 
Eq.  (2a) was implemented in the second stage for 
STB:

where yik is the BLUE of the i th genotype in the k th 
environment obtained in the first stage, � is the general 
mean, gi is the main effect of the i th genotype, envk 
is the main effect of the k th environment, gi ∶ envk 
is the genotype-by-environment interaction, and eik is 
the error of the mean yik obtained in the first stage.

For all traits except STB, the series of trials was 
analysed, according to the mixed model given in 
Eq. (2b):

where yikno is the phenotypic observation for the 
ith genotype tested in the kth environment in the 
nth replication in the oth incomplete block, u is 
the general mean, gi the genotypic effect of the ith 
genotype, envk the effect of the kth environment, 
gi ∶ envk was the genotype-by-environment 
interaction, repkn is the effect of the nth replication 
in the kth environment, bkno is the effect of the oth 
incomplete block of the nth replication in the kth 
environment, and eikno was the residual.

In models 2a and 2b, for estimating BLUEs, all 
effects except gi were assumed as random and for 
obtaining variance components, all effects were 
assumed as random. Variance components were 
estimated using the restricted maximum likelihood 
(REML) method assuming a random model (Cochran 
and Cox 1957). A likelihood ratio test with model 
comparisons was performed to test the significance of 
the variance components (Stram and Lee 1994).

For all traits, the broad sense heritability (h2) across 
the series of trials was estimated as given in Eq. (3):

where ϑ is the mean variance of a difference of two 
best linear unbiased predictors (BLUPs) and �2

G
 the 

genotypic variance (Piepho and Möhring 2007). 
Pearson’s correlation coefficients ( rp ) were estimated 

(2a)yik = � + gi + envk + gi ∶ envk + eik,

(2b)
yikno = u + gi + envk + gi ∶ envk + repkn + bkno + eikno,

(3)h2 = 1 −
�

2�2
G

,
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among BLUEs of the examined traits. All analyses 
were performed utilizing the statistical software R 
(R Core Team 2018) and the software ASReml 3.0 
(Gilmour et al. 2009).

Genotypic and molecular analysis

Molecular markers

The diversity panel containing 143 emmer genotypes 
was genotyped by genotyping-by-sequencing 
(GBS) at Diversity Arrays Technology (Yarraluma, 
Australia) (Li et al. 2015). The dominant silico-DArTs 
and the co-dominant single nucleotide polymorphism 
(SNP) markers were denoted by their clone ID with 
a suffix ‘D’ or ‘S’ corresponding to the marker type 
– DArTs or SNPs, respectively. Markers with more 
than 20% missing data across the diversity panel or 
a minor allele frequency (MAF) lower than 5% were 
removed from the initial marker set using PLINK 
(Purcell et al. 2007). Separately for DArTs and SNPs, 
the missing values were imputed using LinkImpute, 
a software package based on a k-nearest neighbor 
genotype imputation method, LD-kNNi (Money et al. 
2015). The PLINK and LinkImpute were executed 
using statistical software R (R Core Team 2018). The 
imputation accuracy was 97% and 95% for DArTs 
and SNPs, respectively. The accuracy of imputation 
is the proportion of masked known genotypes 
(default = 10,000) that were correctly imputed 
(Money et  al. 2015). Both types of markers were 
combined into one dataset. Markers with MAF lower 
than 5% were discarded again after the imputation, 
resulting in 67,605 markers. Of them 35,747 markers 
had a known map position on the reference genome 
assembly of Triticum dicoccoides—Wild Emmer 
Wheat Zavitan WEWSeq v2.1 (Zhu et al. 2019).

Population structure

Relationships among the 143 genotypes were 
analyzed by implementing principal coordinate 
analysis based on the Rogers distance (Rogers 1972), 
which was computed using genome-wide markers in 
R package “poppr”. The function cmdscale of base R 
was used to calculate principal coordinates based on 
Rogers distance (SFig.  2). The principal coordinate 
analysis revealed two major groups, i.e., one group 

consisted of 24 genotypes where 20 genotypes 
originated from the German gene bank in Gatersleben 
(Leibniz Institute of Plant Genetics and Crop Plant 
Research, IPK, 06466 Seeland, OT Gatersleben, 
Germany) while the other group consisted of all other 
genotypes including genotypes from the German gene 
bank. This grouping has been considered in this study 
by fitting the first and second principal coordinates as 
covariate variables in the model.

Association mapping

Association mapping was conducted by using 
“Bayesian-information and Linkage-disequilibrium 
Iteratively Nested Keyway (BLINK)” method (Huang 
et  al. 2019) implemented in the GAPIT R package 
(Lipka et  al. 2012; Wang and Zhang 2021). BLINK 
is a statistically powerful and computationally 
efficient algorithm, which produces fewer false 
positives and identifies more true positives than the 
most recently developed GWAS method, FarmCPU 
(Liu et  al. 2016). In addition, BLINK does not 
require quantitative trait nucleotides (QTNs) to 
be evenly distributed throughout the genome, 
whereas FarmCPU does, thus BLINK eliminates 
the unrealistic assumption (Huang et  al. 2019). 
The first two principal coordinates were fitted as 
covariate variables to reduce the false positives due 
to population stratification. For association mapping, 
we used BLUEs of traits calculated across all 
environments, and 35,747 markers with known map 
coordinates on WEWSeq v2.1.

A P value < 0.05 corrected according to Hochberg 
and Benjamini was considered as the significance 
threshold and was used to identify significant 
marker-trait associations (MTAs). The sequences 
of the significant MTAs for YR, PM, and STB are 
provided in Supplementary Table S1. The proportion 
of phenotypic variance explained by the QTLs 
was estimated by fitting the significant markers in 
linear models jointly in the order of strength of their 
association (lower the P value, higher the strength 
of association) (Würschum et al. 2015). For additive 
genetic model, marker information was coded as 0, 
1, 2, where 0 and 2 are the two homozygous (DArTs 
and SNPs) and 1 the heterozygous genotypes (SNPs). 
The total proportion of explained phenotypic variance 
 (R2) was calculated as:
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where R2
adj

 is the adjusted coefficient of determination 
of the linear model (Würschum et  al. 2015). The 
phenotypic variance explained by individual 
significant markers ( R2

m
 ) was calculated as:

where SSm is the sum of squares for the marker m and 
sstotal is total sum of squares of all markers fitted in 
a linear model. The allele substitution effect of each 
significant marker was derived as the regression 
coefficient from the linear model with only the 
respective marker under consideration.

To visualize the differences in disease severity 
between different groups of genotypes based on 
the allelic state of a given molecular marker, we 
produced the box plots. Due to the unequal number 
of genotypes in different groups, we opted to use 
the ad-hoc method of notches, which displays the 
confidence interval around the median. If the notches 
of two boxes do not overlap, there is a strong evidence 
(95% confidence) that their medians differ (Chambers 
et al. 1985).

R2
adj

= R2
adj

× 100,

R2
m
=

(

SSm

sstotal

)

× 100,

Candidate gene identification

The genes possibly controlling the phenotype 
were searched in the publicly available gene files 
for reference genome WEWseq_PGSB_v1 of 
Triticum dicoccoides—Wild Emmer Wheat Zavitan 
(https:// wheat. pw. usda. gov/ GG3/ node/ 909). Using 
customized R script, only high-confidence genes 
were retrieved for the markers that explained ≥ 5% 
phenotypic variance. Descriptions and IDs of genes 
within 3 Mbp up or downstream of the marker 
position were searched for genes with relevance to 
disease resistances.

Genomic prediction

The potential of the application of genomic selec-
tion for YR, PM, and STB was explored using two 
genomic prediction models – ridge regression best 
linear unbiased prediction (rrBLUP) and weighted 
ridge regression best linear unbiased prediction 
(w-rrBLUP), implemented using R package rrBLUP 
(Endelman 2011; Endelman and Jannink 2012). In 
w-rrBLUP approach, the QTLs, which individually 
explained ≥ 9% of the phenotypic variance were fitted 

Table 2  Summary of the phenotypic analysis

LSD least significant difference, VarG genotypic variance, VarGxE genotype-by-environment variance, VarR residual variance. Min, 
mean, max values are based on 143 emmer genotypes, whereas LSD, variance components and heritability are based on data of all 
150 genotypes including 7 checks (Julius, Genius, Franckenkorn, Zollernspelz, Wintergold, Sambadur, Terzino)
a  = not visually diseased, 9 = fully diseased
**,*** Significant at p<0.01 and 0.001, respectively

Parameter Yellow rust (1–9)a Powdery mildew 
(1–9)a

Septoria tritici blotch 
(1–9)a

Heading date (day 
in year)

Plant height (cm)

# Env 4 2 5 4 4
Means
Min 1.06 0.94 1.33 155.11 81.7
Mean 3.64 2.3 3.19 161.08 139.32
Max 6.89 6.82 6.55 167.02 165.08
LSD 5% 1.93 1.58 1.79 5.65 13.29
Variance components
VarG 1.58*** 1.34*** 0.71*** 3.25*** 274.34***
VarGxE 0.97*** 0.18** 1.37*** 12.70*** 49.10***
VarR 1.25 0.71 0.77 3.16 47.23
Heritability 0.78 0.81 0.64 0.46 0.93

https://wheat.pw.usda.gov/GG3/node/909
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as fixed effect and all other markers as random effect 
(Spindel et  al. 2016; Zhao et  al. 2014). In addition, 
we compared the prediction ability of marker-assisted 

selection (MAS) with rrBLUP and w-rrBLUP. For 
MAS, only significant markers from GWAS explain-
ing ≥ 9% phenotypic variance were used.

Table 3  Emmer genotypes that show multiple resistances to three diseases compared to the most susceptible emmer genotypes, 
emmer standards/cultivars, and other wheats; for comparison also the lodging tolerance and the yield is given

AGRO = Agroscope, Changins, CH; INRA = INRA Genetic Resource Centers (GRC), Paris, F; IPK = Leibniz-Institut für 
Pflanzengenetik und Kulturpflanzenforschung, Gatersleben, D; VÚRV = Crop Research Institute, Praha, CZ

Category genotype Origin Yellow 
rust 
(1–9)

Powdery 
mildew 
(1–9)

Septoria 
tritici blotch 
(1–9)

Lodging (1–9) Raw yield (dt/ha) Grain 
yield (dt/
ha)

Most resistant emmer
17–9115 Breed.line 1.71 2.04 2.79 3.46 48.39 30.73
16–9107 Breed.line 1.88 1.57 2.78 3.34 56.83 36.12
Sel.t.dicoccum INRA 1.43 1.30 2.70 3.13 41.29 25.39
T.dicoccum No 3 AGRO 1.86 1.46 2.63 3.88 60.10 32.71
Asturie L2 AGRO 2.34 1.40 2.99 4.09 65.49 41.89
9.003/02 IPK 2.11 1.46 2.97 4.28 60.28 38.47
9.004/03 IPK 2.06 1.55 2.04 3.04 55.27 38.87
9.106/05 IPK 2.57 1.78 2.60 4.11 63.63 38.64
9.120/05 IPK 2.84 2.53 2.27 4.62 57.20 37.81
9.124/05 IPK 1.93 1.42 2.87 6.45 60.21 40.08
9.011/99 IPK 2.63 1.58 2.26 4.34 42.05 22.90
Rudico VÚRV 2.22 1.24 2.04 3.59 48.71 29.37
9.005/99 IPK 1.75 2.35 1.82 3.84 64.50 44.99
Emmer 52 AGRO 2.98 1.04 2.65 3.31 47.37 30.91
9.037/08 IPK 2.43 1.33 2.71 3.49 39.98 24.42
9.007/99 IPK 2.81 1.37 2.71 3.10 49.73 36.35
9.213/06 IPK 2.20 1.63 2.56 6.31 56.91 35.23
9.125/05 IPK 2.71 2.58 2.35 4.73 66.86 45.88
33764_352365 INRA 2.02 1.92 2.27 2.92 55.06 33.50
Most susceptible emmer
DC.tricoccum 63 V INRA 6.36 6.49 3.03 3.75 68.10 41.86
9.016/99 IPK 3.50 2.07 5.17 4.52 52.85 32.65
9.001/97 IPK 5.59 4.94 3.69 2.64 72.16 44.29
Emmer standards
E-14005–303/40/3–423/3/3 Breed.line 5.38 1.86 1.39 2.36 80.49 49.11
Späths Albjuwel Cultivar 1.41 2.18 3.10 3.39 65.68 47.25
Roter Heidfelder Cultivar 4.56 1.38 1.82 2.27 69.64 47.17
Ramses Cultivar 4.52 1.83 2.00 4.64 57.22 38.28
Saphir Cultivar 5.60 1.35 1.85 5.17 60.72 40.12
Osiris Cultivar 5.27 4.74 3.61 2.00 52.76 31.89
Other wheats
Terzino Einkorn 0.86 1.10 2.05 3.78 31.16 14.49
Julius Bread wheat 2.90 1.98 2.78 1.08 77.28 66.70
Genius Bread wheat 1.27 1.26 4.23 0.95 73.22 62.09
LSD5% 1.93 1.58 1.79 2.11 12.54
Heritability 0.78 0.81 0.64 0.73 0.80
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The genomic prediction methods were 
implemented using five-fold cross validation 
using 80% of the data as training set (TS) and the 
remaining 20% as prediction set (PS) with 1000 runs 
(Würschum and Kraft 2014). In addition, the genomic 
prediction was performed using 80% of the data from 
one year as training set (TS) and 20% of the data 
from the second year as prediction set (PS) with 1000 
runs. The prediction ability ( � ) of a given prediction 
method was estimated as Pearson’s correlation 
coefficient between the observed and the predicted 
trait values.

The models used for MAS, rrBLUP and w-rrBLUP 
are given in Eq. (4), (5) and (6), respectively.

(4)Y = X� + e

(5)Y = Zu + e

where Y is the vector of phenotypic observations 
(BLUEs), β the vector of fixed marker effects, u the 
vector of random marker effects, X and Z the design 
matrices related to β and u, respectively, and e the 
error (residual).

Results

Naturally occurring YR was observed in four, PM 
in two, and STB in five environments (Table  1). 
The mean disease severities were low for PM, but 
moderate for the two other diseases ranging from 2.00 
to 4.91. The large-plot yield trials had similar mean 
ratings for STB like the disease trials with microplots.

The magnitude of the three disease severities 
across genotypes was quite similar that ranged 

(6)Y = X� + Zu + e,

Fig. 1  Correlation between 
BLUES of 143 emmer 
genotypes calculated 
across multiple locations 
(observation trials) for dif-
ferent traits. The correlation 
was calculated based on 
the BLUEs of 143 emmer 
genotypes
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from 0.94 to 6.89 (Table  2) showing a large vari-
ation from highly resistant to rather susceptible. 
Accordingly, the genotypic variances were signifi-
cant (P < 0.001), but also the genotype x environ-
ment (G x E) interaction variances. The resulting 
entry-mean heritabilities were high for YR, PM and 
plant height, but moderate only for STB and head-
ing date. This was mainly caused by the very high G 
x E variance of both traits surpassing the genotypic 
variance two- and fourfold, respectively.

Nineteen emmer genotypes (equaling 13.3%) 
demonstrated resistance to all three diseases with 
ratings < 3 (Table 3). Therefore, they exhibit higher 
resistance than  four of the five variety-protected 
cultivars with names. Roter Heidfelder, Ramses, 
Saphir and Osiris exhibited a high susceptibility to 
YR, whilst Osiris additionally was highly suscep-
tible to PM and STB. Thus, the new emmer geno-
types detected in this study represent significant 
breeding progress for multiple disease resistances. 

Interestingly, there are some multiple-resistant gen-
otypes from the gene banks with appreciable raw 
and grain yields which are comparable or even bet-
ter than the standard varieties. The new breeding 
line E-14005–303/40/3–423/3/3 was outstanding in 
grain yield, but highly susceptible to YR.

Low, but significant correlations occurred 
between YR and PM/STB (Fig. 1). YR and PM also 
significantly correlated with heading date, while 
plant height showed significant correlations with 
YR and STB. The distributions showed a normal 
distribution for all traits, for PM it was shifted to 
the resistant ratings. Grain yield was not closely 
correlated with YR, PM, and STB severities with 
coefficients of correlation 0.25 (p = 0.002), 0.20 
(p = 0.02), and –0.29 (p = 0.0004), respectively. 
Correlations among YR, PM, STB severities and 
heading date or plant height were low to moderate 
(Fig. 1).

Table 4  Marker trait 
associations (MTAs) 
identified using BLINK 
model; in bold are markers 
with moderate to large 
effects (≥ 15%  R2)

Markers were referenced 
to chromosomes (Chr.) 
and positions (Pos.) of 
the reference genome 
assembly of Triticum 
dicoccoides—Wild Emmer 
Wheat Zavitan WEWSeq 
v2.1 from Zhu et al. 
(2019) in base pairs (bp); p 
value < 0.05 original, HB. 
p value = p value corrected 
according to Hochberg and 
Benjamini,  R2 = proportion 
of explained phenotypic 
variance

Marker Chr Pos. (bp) MAF p value HB.p value R2 (%) α effect

Yellow rust
m1218094S 1A 72,952,131 0.42 7.19E−09 6.43E−05 2.00 0.22
m1692044D 1B 691,983,681 0.27 6.45E−11 1.15E−06 16.77 0.65
m3533508D 2A 727,144,514 0.22 1.12E−06 3.99E−03 2.27 − 0.45
m2260988S 2B 727,600,912 0.22 4.66E−07 2.78E−03 0.83 − 0.42
m1687611D 3A 634,779,387 0.32 7.86E−15 2.81E−10 27.53 0.77
m4003911D 3B 860,336,122 0.31 4.48E−09 5.34E−05 9.70 − 0.43
m1265508D 3B 846,194,219 0.22 1.07E−08 7.64E-05 3.94 0.63
m1206976D 4A 625,650,302 0.19 1.29E−05 4.19E−02 1.19 − 0.33
m42777368D 4B 66,905,207 0.26 6.90E−07 3.52E−03 14.64 0.80
Total 77.43
Powdery mildew
m5567903D 2B 743,602,330 0.15 4.34E−09 5.17E−05 3.84 1.43
m3022383S 5B 588,981,063 0.17 1.63E−12 2.91E−08 8.94 1.31
m1109265D 7A 54,945,190 0.10 1.85E−18 6.62E−14 66.55 1.75
Total 78.88
Septoria tritici blotch
m5577224D 1B 698,057,019 0.26 1.25E−08 1.11E−04 17.25 − 0.60
m3024004D 2A 779,456,803 0.31 2.58E−10 4.61E−06 23.76 0.52
m26672972D 4A 737,924,644 0.48 2.51E−08 1.79E−04 3.48 0.49
m4408709D 4B 564,470,567 0.11 6.21E−07 3.70E−03 9.84 0.03
m1671009D 5A 631,522,404 0.06 5.28E−09 6.29E−05 0.00 0.13
m9764425D 5B 706,017,440 0.10 5.67E−11 2.03E−06 1.72 − 0.21
m3934416D 6A 89,331,258 0.19 3.76E−06 1.92E−02 4.59 0.65
Total 58.59
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For YR, PM, and STB severity nine, three, and 
seven significant MTAs, respectively, were detected 
in a calculation across all environments simultane-
ously (Table 4, Fig. 2). Their effects were low to mod-
erate, only the 7A QTL for PM seems to be a major 
gene. The QTLs on chromosomes 1B, 3A, and 4B for 
YR resistance and on chromosomes 1B and 2A for 
STB resistance also explained a rather high propor-
tion of the phenotypic variance. The total phenotypic 
variance explained by a combination of  all markers 
was rather high ranging from 59 to 79%. The disease 
scores at these loci showed large differences between 
the resistant and the susceptible allele (Figs. 3, 4, 5). 
To achieve the lowest disease severities, the combina-
tion of two or three QTLs appears necessary.

From the three methods used for genomic predic-
tion in this study, the w-rrBLUP showed higher pre-
diction abilities than rr-BLUP or MAS for YR, PM, 
and STB (SFig. 3). When the five-fold cross valida-
tion was performed within the GWAS population, 
prediction abilities ≥ 0.8 were achieved for all three 
resistances (Fig. 6). When, however, cross validation 
was performed with the data from 2020 only using 
the data from 2019 as training set, prediction abilities 
dropped to about 0.7 for YR and PM resistances and 
even to 0.4 for STB resistance.

A possible candidate gene located within a 
3 Mbp interval around the nearest marker was 
detected for the 3A-m1687611D marker linked 
with YR resistance and described as "leucine-rich 
repeat receptor-like protein kinase family protein" 
(TRIDC3AG055380). For the PM resistance gene 
linked with the 7A-m1109265D marker, five genes 
were available that were described either as "WRKY 
DNA-binding protein 61" (TRIDC7AG011340), 
"WRKY transcription factor 72 family protein" 
(TRIDC7AG011350), "disease resistance protein 
RGA2" (TRIDC7AG012090, TRIDC7AG012040) 
or "disease resistance protein RPM1" 
(TRIDC7AG011800). For STB resistance, a total of 
702 high-confidence genes were found in a 3 Mbp 

interval up or down of each significant QTL. None of 
these, however, showed a specific resistance motif.

Discussion

Emmer cultivation is a small niche, but in Germany 
the crop is attracting renewed interest as a food cereal 
(Longin et  al. 2016). For that reason, we sampled a 
large collection of emmer lines from gene banks and 
our breeding program and investigated 143 emmer 
lines thereof in multiple location trials on important 
agronomic and quality traits for the market. In this 
study, we focus on disease resistance against YR, PM 
and STB.

A large genetic variation was found among 143 
emmer accessions ranging from almost disease 
free with a rating of 1 up to a rating of 7 on the 1–9 
scale (Table  2). This resulted in high heritabilities 
for PM and YR resistances. The only moderate 
heritability for STB resistance was caused by the high 
genotype x environment interaction that exceeded 
the genotypic variation as already described in 
literature (Dreisigacker et  al. 2015; Risser et  al. 
2011). The shape of the distribution for PM and 
STB severity approximated a normal distribution 
(Fig. 1), indicating that several genes are responsible 
for these phenotypes. YR resistance showed a more 
bimodal distribution, but this was attenuated by 
the segregation of further genes. Heading date had 
moderate correlations to YR and PM resistances, 
while plant height correlated with YR and STB 
resistances. The latter is known from literature 
(Miedaner et  al. 2013) and might be related to 
plant architecture. Tallness of the emmer wheat 
might be a passive resistance mechanism to STB. 
Accordingly, the correlation between plant height 
and STB resistance was negative with tall genotypes 
having lower STB ratings. There was a small, but 
significantly positive correlation between YR and 
PM resistance and a significantly negative correlation 
between YR and STB resistances. Despite weak to 
moderate phenotypic correlations to heading date and 
plant height we did not detect matching QTL with the 
three disease resistances.

We found a total of 19 significant MTAs for 
the three disease resistances, with widely varying 
proportions of explained phenotypic variation 
 (R2). This may seem like a small number of MTAs 

Fig. 2  Manhattan plots for a yellow rust, b powdery mil-
dew, and c septoria tritici blotch. The solid red horizontal line 
indicates Bonferroni-corrected p value threshold of 0.05. The 
dashed red horizontal line corresponds to the highest HB-
corrected p value of significant MTAs. Any marker falling on 
or above this line is significant according to the HB-corrected 
p value of 0.05. HB-corrected p value = p value corrected 
according to Hochberg and Benjamini

◂
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for using BLINK in GWAS, but we only report 
those associations that were significant across all 
environments, where the respective disease could 
be scored, because we believe that only these 
QTLs are of interest for practical breeding. The 
restricted population size also may have played 
a role concerning the number of detected MTAs, 
nevertheless it is still the largest diversity panel in 
cultivated emmer investigated on these diseases 
to our knowledge. Many of the QTLs had small 
contributions of 0–10% and do not appear to be worth 
pursuing, but some had larger effects.

For YR resistance, three QTLs on chromosomes 
1B, 3A, and 4B had  R2 values ranging from 15 to 
28% and might comprise individual genes (Table 4). 
For each of these positions, QTLs have been reported 
previously (Alemu et al. 2021; Liu et al. 2017a, b, c; 
Miedaner et  al. 2019; Singh et  al. 2013; Tene et  al. 
2022), but the comparison is difficult, because older 
papers lack physical positions of the QTLs, therefore 
hampering the one-to-one comparison with our study. 
Moreover, the QTLs mostly have large confidence 
intervals covering sometimes substantial parts of 
the chromosome arm. Chromosome 1B seems to be 
a hotspot for YR resistance because at least eight Yr 
genes are located here: Yr9, Yr10, Yr15, Yr24, Yr26, 
Yr29, Yr64, Yr65 as reported by Tene et  al. (2022, 
rf. to their Fig. S9). Yr29 is a known pleiotropic 
adult-plant resistance gene with moderate effect also 
designated as Lr46/Yr29/Sr58/Pm39, and located 
on chromsome 1BL at 669–673 Mbp in the Chinese 
Spring map of bread wheat (Yuan et  al. 2020) and 
was also detected in durum wheat (Lan et  al. 2019; 
Zhou et  al. 2021). Our locus was mapped with the 
nearest marker at 692 Mbp.

On chromosome 3A, the only previously cataloged 
Yr gene is Yr76 (Xiang et  al. 2016). Our locus 
with major contribution, however, is located on 
the same reference genome at 635 Mbp. Tene et  al. 
(2022) described two QTLs for YR resistance on 
chromosome 3A at positions 680 Mbp, and 720 
Mbp that are, however, not closely linked to our 
locus. Other temporarily designated Yr genes on 
chromosome 3A include YrTr2 with no known exact 
localisation (Aoun et al. 2021). Also the three QTLs 
detected in Aoun et al. (2021)were on the short arm 
of chromosome 3A. On chromosome 3B, Tene et al. 
(2022) detected three QTLs for YR resistance in the 
positions 550 Mbp, 708 Mbp, and 886 Mbp. Our 

identified Yr locus m4003911D at that chromosome 
was at 860 Mbp, thus possibly being linked to the 
latter reported locus of Tene et al. (2022).

STB resistance was caused by two major-effect 
QTLs on chromosomes 1B and 2A explaining 17 
and 24% of phenotypic variation, respectively. On 
chromosome 1B, two Stb genes are located (Stb2, 
Stb11), but their physical position is not known, 
while on chromosome 2A, no Stb gene is yet known. 
Mekonnen et  al. (2021) detected a QTL for STB 
resistance on this chromosome but it had only a low 
contribution  (R2 = 10.6%) and extends physically over 
a wide interval from 22 to 513 Mbp that is far away 
from our locus (779 Mbp).

On chromosome 7AS, monogenic PM resistance 
was found explaining 67% of phenotypic variation 
in our study. Korchanova et  al. (2022) and Ouyang 
et al. (2014) both found a monogenic, full resistance 
gene on the same chromosome in an emmer landrace 
(QPm.GZ1-7A) and a wild emmer accession 
(MlIW172), however, both genes were located on 
the long arm together with about 20 other Pm genes, 
while the gene in our study was clearly detected 
on the short arm. It confers in some genotypes a 
full resistance and had already a very high allele 
frequency in our population of about 90%. This could 
be responsible for the narrow phenotypic distribution 
skewed to resistance (Fig.  1). The high effect and 
near-fixation rate in emmer illustrates that this gene 
has already recognized by early breeder’s or natural 
selection. A search in the database resulted in six 
genes with four resistance motifs within a 3 Mbp 
interval, but none codes for the nucleotide-binding 
site-leucine-rich repeat (NBS-LRR) protein family 
what makes it even more interesting.

To the best of our knowledge, only one QTL (QPm.
caas.7A) was previously detected on chromosome 
7AS that is closely linked to the microsatellite 
Xbarc174 (ca. 90 cM, Lan et al. 2009). Unfortunately, 
also here no physical position is given. This QTL was 
detected over two environments, but explained only 
6.7% of phenotypic variance  (R2) in the previous 
mapping study of biparental populations. So, it is not 
likely that this QTL is identical with our major gene.

Three pairs of overlapping QTLs were found 
(Table  4), two between YR and STB resistances 
and one between YR and PM resistances. Marker 
m1692044D on chromosome 1B overlapped with 
m5577224D and marker m3533508D on chromosome 
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2A overlapped with m3024004D. Both STB markers 
were considered as major, also the YR marker on 
chromosome 1B. For the QTL on chromosome 1B 
the distance between the physical position was 6.9 
Mbp, for the second on chromosome, however, 
52 Mbp. Because there is in parallel a significant 
negative correlation between YR and STB resistances 
(r = ─ 0.23, P < 0.01) this might be a hint for multi-
disease resistance, that would, however, be linked 
in repulsion. A third QTL on chromosome 2B 
overlapped between YR (m2260988S) and PM 
(m5567903D) resistance in a 16 Mbp interval, having, 
however, only a small contribution to resistance to 
both YR and PM. Between both disease resistances 
a moderate positive correlation (r = 0.35) was found. 
Interestingly, no overlapping QTL were found for PM 

and STB resistances and accordingly no significant 
correlation (Fig. 1).

The main purpose of this study was to detect 
resistance within the cultivated emmer gene pool 
and to use the more resistant materials for further 
improvement of emmer. In practice, emmer has 
been found to be highly susceptible to YR. This 
may be due to the high susceptibility of the older 
variety-protected cultivars, which had YR scores of 
4.5 to 5.6 in our study (Table 3). Indeed, 19 emmer 
genotypes had quite good YR scores in our trial, but 
they did not reach the bread wheat cultivar ’Genius’ 
(Table  3). This difference is caused by the long 
selection of bread wheat breeders for YR resistance, 
which could not compete with the short time in 
which modern emmer is bred. For powdery mildew 
resistance, the emmer accessions were similar or 
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Fig. 3  Boxplots showing comparisons for yellow rust (1–9) 
between genotypes having different alleles for significant 
markers identified in GWAS. n on the x-axis denotes the num-
ber of genotypes in a group. For panels with single markers, 
the title of the x-axis contains name of the chromosome fol-
lowed by position (bp), marker name and phenotypic variance 
explained by the marker. For the panel with combination of 

markers: title of the x-axis contains names of the markers com-
bined followed by sum of the explained phenotypic variance 
by combined markers; R and S denote resistant and susceptible 
allele of a marker, respectively. Boxplots of only those mark-
ers that explained > 5% of the phenotypic variance are shown. 
For combination of multiple markers, only the haplotypes with 
n > 5 are shown
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even better than ’Genius’, which is rated 2 on a scale 
of 1–9 in the list of recommended cultivars (BSL 
2022). Rather good accessions were also found for 
STB resistance. More importantly, the 19 selected 
genotypes had good scores for all three diseases, 
which is particularly valuable. For yield, some of 
these gene bank accessions were even competitive 
with (older) recommended varieties. From the point 
of view of multiple disease resistance, the einkorn 
cultivar ’Terzino’ was by far the best, but its grain 
yield is very low.

The main challenge for the future is to combine 
these multiple-disease resistances with the lodging 
tolerance of the tall emmer. None of the emmer 
accessions could match the low lodging tolerance 

scores of the two bread wheat cultivars. This clearly 
shows that even small crops require intensive 
breeding efforts to reintroduce them into agricultural 
practice. And being an old and traditional crop is no 
value in itself.

From the three methods used for genomic 
prediction in this study (MAS, rrBLUP, w-rrBLUP), 
the differences between MAS and w-rrBLUP were 
marginal (SFig. S3), most probably because of the 
fact that we used the same markers for MAS and for 
the weighting procedure of w-rrBLUP. The difference 
in prediction ability of MAS and w-rrBLUP is 
especially minimal for YR and PM possibly because 
of large total phenotypic variance explained by 
markers used for prediction. Whereas, the markers for 

Fig. 4  Boxplots showing 
comparisons for powdery 
mildew (1–9) between 
genotypes having different 
alleles for significant mark-
ers identified in GWAS. n 
on the x-axis denotes the 
number of genotypes in a 
group. For panels with sin-
gle markers, the title of the 
x-axis contains name of the 
chromosome followed by 
position (bp), marker name 
and phenotypic variance 
explained by the marker. 
For the panel with combina-
tion of markers: title of 
the x-axis contains names 
of the markers combined 
followed by sum of the 
explained phenotypic vari-
ance by combined markers; 
R and S denote resistant 
and susceptible allele of a 
marker, respectively, while 
H denotes heterozygous 
genotype (AG). Boxplots 
of only those markers that 
explained > 5% of the phe-
notypic variance are shown. 
For combination of multiple 
markers, only the haplo-
types with n > 5 are shown
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STB used for MAS or w-rrBLUP explained relatively 
low total phenotypic variance compared with 
markers for YR or PM, and hence the difference in 
prediction abilities between MAS and w-rrBLUP for 
STB is larger (0.17) than for YR (0.03) or PM (0.02) 
(SFig. 3).

When comparing w-rrBLUP, the prediction 
abilities were very high for YR and PM resistances 
with 0.82 and 0.86 in the five-fold cross validation 
dropping only to 0.71 and 0.75 when the data 
from 2019 were used as training set to predict data 
from 2020  (Fig.  6). This shows that genotype x 
environment interaction for these resistances should 

be rather small as already illustrated by their high 
heritabilities. This was opposite to STB resistance, 
where also a high prediction ability was found (0.79) 
that dropped, however, to 0.4 in the second scenario 
(Fig. 6). Accordingly, heritability estimate was much 
smaller. This confirms the well-known fact that STB 
resistance is inherited in a much more complex 
way than resistance to biotrophic diseases and even 
Fusarium head blight (Mirdita et  al. 2015a). Also, 
the prediction ability of rrBLUP or w-rrBLUP was 
considerably higher than MAS for STB. Therefore, 
genomic selection can be considered as a promising 
way to improve STB resistance (Mirdita et  al. 
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Fig. 5  Boxplots showing comparisons for septoria tritici 
blotch (1–9) between genotypes having different alleles for sig-
nificant markers identified in GWAS. n on the x-axis denotes 
the number of genotypes in a group. For panels with single 
markers, the title of the x-axis contains name of the chromo-
some followed by position (bp), marker name and phenotypic 
variance explained by the marker. For the panel with combina-

tion of markers: title of the x-axis contains names of the mark-
ers combined followed by sum of the explained phenotypic 
variance by combined markers; R and S denote resistant and 
susceptible allele of a marker, respectively. Boxplots of only 
those markers that explained > 5% of the phenotypic variance 
are shown. For combination of multiple markers, only the hap-
lotypes with n > 5 are shown
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2015b) alongside phenotypic recurrent selection. 
The latter would increase allele frequency in the 
breeding population and circumvent the problem 
of low prediction ability, when resources should be 
used that are non-related to the training population. 
For YR and PM, the w-rrBLUP performed slightly 
better than MAS and for YR considerably better than 
rrBLUP, hence hinting at the usefulness of using 
detected MTAs explaining large phenotypic variation 
for prediction. Consequently, w-rrBLUP seems to be 
the method of choice for YR. Finally, pretty similar 
prediction abilities of three methods for PM are 
highly likely due to the two markers m3022383S 

and m1109265D explaining 9% and 67% of the 
phenotypic variation, respectively. For PM, any of the 
three methods can achieve the similar gains.

In conclusion, the set of 143 emmer genotypes 
provided resistances to YR, STB, and PM. Of these, 
four QTLs with major effects  (R2 > 10%) for YR and 
STB resistances stand out. For PM resistance even 
a major gene on chromosome 7AS was detected 
which may be novel. Cross-validation combined with 
association mapping revealed the absence of large-
effect QTLs for YR and STB resistances, preventing 
efficient pyramiding of different resistance loci by 
marker-assisted selection. For example, for the YR 
resistance, even the combination of three resistance 
QTLs only gave a median of 2.24 on a scale of 
1–9, with only a few progenies showing complete 
resistance, i.e. a rating of 1. For STB resistance, the 
best rating was 1.33, but this was, on average, even 
not reached by the combination of three resistance 
QTLs. For all three resistances, genomic selection 
seems to be a better option to improve the resistances 
within the emmer genepool than marker-assisted 
selection. Notably, also marker-assisted selection can 
be considered for improving YR and PM resistances 
owing to the large-effect QTLs discovered in this 
study.
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Fig. 6  Prediction ability of the weighted ridge regression 
BLUP (w-rrBLUP) model for yellow rust, powdery mildew, 
and septoria tritici blotch, under a five-fold cross validation 
using BLUEs across all locations in two years, and b cross 
validation using BLUEs across locations in 2019 as training set 
and BLUEs across locations in 2020 as validation set
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