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components of the generation means. Even assuming 
100% of interacting genes, for most epistasis types 
there was no statistical evidence of epistasis. Assum-
ing positive partial dominance, the signs of the epi-
static components do not allow discriminate comple-
mentary, recessive, dominant and recessive, duplicate 
genes with cumulative effects, and non-epistatic genic 
interaction. Negative epistatic components evidence 
dominant epistasis. When the additive × additive and 
dominance × dominance components are positive 
and the additive × dominance component is negative, 
there is duplicate epistasis.

Keywords Linkage disequilibrium · Epistasis · 
Diallel · Generation mean analysis

Introduction

The genetic design diallel is regularly used in plant 
breeding. It is commonly employed to provide inter-
population crosses or single crosses/F1’s from inbred/
pure/doubled haploid (DH) lines, for assessing het-
erosis, combining ability, or molecular genetic diver-
sity, for predicting non-assessed testcrosses and sin-
gle-crosses, among other applications (Mowers et al. 
2018; Kadam et al. 2016; Yu et al. 2020; Leng et al. 
2019). There are several methods of analysis but most 
investigations are based on the models (fixed or ran-
dom) and methods proposed by Griffing (1956a). 
The main reasons that explain the general choice by 
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lel parents were 15 doubled haploids from a high LD 
population. The generation mean analysis was based 
on seven generations, assuming association. Under 
low LD and no epistasis, the diallel analysis provided 
confident results about the inheritance of the quanti-
tative trait and high correlation between number of 
recessive genes and  Wr +  Vr, but biased estimates of 
the dominance components and genetic parameters. 
The additional consequences of high LD under no 
epistasis were rejection of the additive-dominance 
model assuming high heritability and lower corre-
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breeders for the Griffing’s combining ability analysis 
are: the methodology can be used for any crop and 
trait and the computation and interpretation of the 
genetic parameters are simple. Concerning the study 
of inheritance of quantitative traits, both heterosis and 
combining ability analyses allows testing non-addi-
tive effects, if there is genetic variability between the 
parents. But it is not possible to test for epistasis.

In the context of inheritance, an interesting 
approach based on diallel cross was proposed by Hay-
man (1954). However, very few inheritance studies 
based on Hayman’s method were published in the last 
10 years (de Lima et al. 2019; Makumbi et al. 2018; 
Shahadati-Moghaddam et  al. 2017; Kalinina and 
Lyakh 2011). The Hayman’s method has indeed some 
limitations, as the assumptions of no epistasis (inde-
pendent action of non-allelic genes) and no linkage 
disequilibrium (LD) (genes independently distributed 
in the parents). But it has positive aspects as testing 
the adequacy of the additive-dominance model. Then, 
if there is epistasis, the breeder can ignore the trait 
or take into account the influence of epistasis on the 
analysis. Why, then, the Hayman’s method has been 
almost ignored in the studies of inheritance of quanti-
tative traits? For sure, this cannot be attributable to a 
regular evidence of epistasis since most of the empiri-
cal data show mainly additive genetic variation (Hill 
et al. 2008). In my opinion, the main reasons are: the 
method seems very complex for breeders in regard to 
computation and interpretation; the breeders guess 
that the Griffing’s method provides the same infer-
ences; and the method is restricted for diploids and 
homozygous parents. However, Hayman’s approach 
is not very complex for computing and interpreting 
and it provides some information on inheritance that 
a combining ability analysis does not offer.

Another interesting approach for the study of 
inheritance of quantitative traits is the generation 
mean analysis, proposed by Mather and Jinks (1971). 
Similar to the heterosis and combining ability analy-
sis, this biometrical genetics methodology is based 
on the estimation of linear components of means of 
populations derived from homozygous parents. This 
approach has been commonly used by breeders of 
self- and cross-pollinated crops since its proposition 
(Rai et al. 2020; Addy et al. 2020; Verma and Singh 
2018). Its main advantages are: it is easily performed 

for crops with inbred/pure/DH lines; it is applica-
ble to any trait but few studies involved grain yield 
(Mohammed et al. 2018); it allows for testing domi-
nance and epistasis separately; and the computation 
and the interpretation are simple.

Assuming absence of epistasis, the linear compo-
nents of means do not depend on the LD. However, 
the genotypic variance and its genetic components 
are affected by LD (Hill and Maki-Tanila 2015). 
Because joint modelling epistasis and LD is a chal-
lenger for quantitative and biometrical geneticists, in 
the most important theoretical papers on heterosis 
and combining ability analysis there is only superfi-
cial information on the influence of non-allelic inter-
action (Gardner and Eberhart 1966; Kempthorne 
1956; Griffing 1956b). Because his method is based 
on components of the genotypic variance for parents 
and  F1’s, Hayman (1954) makes some statements 
on how LD and epistasis affects the diallel analysis 
(see Sects. 4.4. Correlated gene distributions and 4.5. 
Non-allelic gene interaction). The knowledge pro-
vided by Hayman (1954) was extended in the stud-
ies of Hill (1964), Nassar (1965), Mather (1967), and 
Coughtrey and Mather (1970). In regard to genera-
tion mean analysis, Mather and Jinks (1971) included 
theory and some general conclusions for the analysis 
assuming LD and epistasis (see Sect.  5.18 Linkage 
of interacting genes). Hill (1964) and Nassar (1965), 
based on 3- and 10-gene models, provided contrasting 
results regarding the consequences of LD on the  Wr/
Vr graph and the order of dominance. Mather (1967) 
and Coughtrey and Mather (1970) assumed only 
complementary and duplicate epistasis in a two-gene 
model with no LD.

Thus, none previous published study provided 
general information on the joint impact of LD and 
epistasis on the Hayman’s diallel and generation 
mean analyses. Then, the objective of this study was 
to provide significant additional knowledge about the 
influence of LD and epistasis on the Hayman’s dial-
lel and generation mean analysis, based on simulated 
data. I assumed hundreds of genes, variable degree of 
dominance, variable gene frequencies, LD, and seven 
types of digenic epistasis. In the first part of this study 
I present the theoretical background that supports the 
software used for simulating the dataset.
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Material and methods

Genetic variances and covariances of the Hayman’s 
diallel assuming LD and epistasis

Consider n inbred/pure/DH lines (n > 3). Assume initially 
LD but no epistasis. In regard to two genes, the geno-
type probabilities are P(AABB) = f

22
= uaub + Δab , 

P(AAbb) = f
20

= uavb − Δab , P(aaBB) = f
02

= vaub − Δab , 
and P(aabb) = f

00
= vavb + Δab , where u and v are the 

allelic frequencies and Δab is the measure of LD in the 
gametic pool. Note that I did not state that the parents 
are a sample from a reference population or that the two 
genes are linked. Using the same definition of Hayman 
(1954) for the genotypic values of the r-th parent and the 
 F1 between parents r and s, the variance of the parents 
is V

0L0 =
(

1 − w2

a

)

d2
a
+
(

1 − w2

b

)

d2
b
+ 8Δabdadb = D , 

where di is the deviation between the genotypic value 
of the homozygote of greater expression and the 
mean of the genotypic values of the homozygotes 
( m ) andw = u − v . Because the means of the parents 
and the  F1 are not affected by the LD (in the absence 
of epistasis), the difference between the mean of the 
 n2 progeny ( mL1 ) and the mean of their parents ( mL0 ) 
is equal to the function derived by Hayman (1954): 
(1∕2)

[(

1 − w2

a

)

ha +
(

1 − w2

b

)

hb
]

= (1∕2)h , where 
hi is the dominance deviation. The variance of the r-th 
array is Vr = (1∕4)D + (1∕4)H

1
− (1∕4)Fr − (1∕4)F

1r , 
where H

1
=
(

1 − w2

a

)

h2
a
+
(

1 − w2

b

)

h2
b
+ 8Δabhahb , 

Fr = 2
[(

1 − w2

a

)

da�aha +
(

1 − w2

b

)

db�bhb + 4Δabda�b
hb + 4Δabdb�aha

]

 , where � = 1 if AA or BB and � = −1 
if aa or bb, and F

1r = 16kΔabhahb , where k = 0 if AABB 
or aabb and k = 1 if AAbb or aaBB.

Thus, the average variance is V
1L1

= (1∕4)D + (1∕4) 
H

1
− (1∕4)F − (1∕4)F

1
 , where F = 2

[

wa

(

1 − w2

a

)

daha
+wb

(

1 − w2

b

)

dbhb + 4Δabwbdahb + 4Δabwadbha
]

 and
F
1
= 16Δab

(

uavb + ubva − 2Δab

)

hahb.
The covariance between the non-recurrent 

parents and their offspring in the r-th array is 
Wr = (1∕2)D − (1∕4)Fr . Thus, the average covariance 
is W

0L01 = (1∕2)D − (1∕4)F . Then, if there is domi-
nance and LD, the difference between the covari-
ance and the variance in the arrays is not a constant 
value. The difference is (1∕4)

(

D − H
1

)

+ k(1∕4)F
1r . 

This implies that the points ( Wr,Vr ) does not 
lie on a straight line of unit slope through their 
mean point ( W

0L01,V1L1 ). However, the function 
does not allow realizing how much LD affects the 

deviation from 1. The variance of the array means is 
V
0L1 = (1∕4)D + (1∕4)H

1
− (1∕4)H

2
− (1∕4)F , where 

H
2
=
(

1 − w2

a

)2
h2
a
+
(

1 − w2

b

)2
h2
b
+8Δab

(

1 − wawb

)

hahb . 
Finally, the total genotypic variance is V

0L1
+ V

1L1
=

(1∕2)D + (1∕2)H
1
− (1∕4)H

2
− (1∕2)F − (1∕4)F

1
 . Note 

that, because LD, the four equations independent of 
r allows the estimation of the parameters D , H

1
− F

1
 , 

H
2
− F

1
 , and F . This implies that the genetic param-

eters that are dependent of H
1
 and/or H

2
 – average 

degree of dominance, mean value of uv (symmetry) 
for dominant genes, proportion between dominant 
and recessive genes, and number of dominant genes 
– are biased. Because the functions for these param-
eters are complex, the magnitude of the bias can only 
be assed using simulated data. Further, it is not also 
clear how LD affects the order of dominance of the 
parents in the graph ( Wr,Vr).

Assume now that the two genes are epi-
static. Assuming an epistatic effect ( Iij ; i, j = 2, 
1, and 0) for each genotype, the variance of the 
parents is V∗

0L0
= V

0L0 + V(I)
0
+ 2Cov

0
 , where 

V(I)
0
= f

22
I2
22
+ f

20
I2
20
+ f

02
I2
02
+ f

00
I2
00
−
[

E(I)
0

]2 is the  
epistatic variance of the parents and Cov

0
= f

22
(

da + db
)

I
22
+ f

20

(

da − db
)

I
20
+ f

02

(

−da +db
)

I
02
+ f

00
(

−da − db
)

I
00
−
(

mL0 − ma − mb

)

E(I)
0
 is the covari-

ance between the sum of additive deviations and 
the epistatic effect for the parents. The diallel 
mean is m∗

L1
= mL1 + E(I)

1
 , whereE(I)

1
= f 2

22
I
22
+

2f
22
f
20
I
21
+…+ f 2

00
I
00

 . Because m∗

L0
= mL0 + E(I)

0
 , 

m∗

L1
− m∗

L0
= (1∕2)h + E(I)

1
− E(I)

0
 . The variance in 

the r-th array is V∗

r
= Vr + V(I)r + 2Covr , where, 

for example, for the array of the parent AABB, 
V(I)

22
= f

22
I2
22
+ f

20
I2
21
+ f

02
I2
12
+ f

00
I2
11
−
[

E(I)
22

]2 is the  
epistatic variance in the array and Cov

22
= f

22

(

da + db
)

I
22
+ f

20

(

da + hb
)

I
21
+ f

02

(

ha + db
)

I
12
+ f

00

(

ha + hb
)

I
11
−
(

E(G)
22
− ma − mb

)

E(I)
22

 is the covariance 
between the non-epistatic deviation and the epistatic 
effect in the array.

Thus, V∗

1L1
= V

1L1 + V(I)
1
− V(I)

1
+ 2Cov1

1
− 2Cov2

1
 , 

where V(I)
1
= f 2

22
I2
22
+ 2f

22
f
20
I2
21
+…+ f 2

00
I2
00
−
[

E(I)
1

]2 
is the  F1 epistatic variance, V(I)

1
= f

22

[

E(I)
22

]2

+f
20

[

E(I)
20

]2
+ f

02

[

E(I)
02

]2
+ f

00

[

E(I)
00

]2
−
[

E(I)
1

]2 
is the variance of the average epistatic values of 
the array means, Cov1

1
= f 2

22

(

da + db
)

I
22
+ 2f

22
f
20

(

da + hb
)

I
20
+…+ f 2

00

(

−da − db
)(

da + db
)

I
22
+ 2f

22
f
20

(

da + hb
)

I
20
+…+ f 2

00

(

−da − db
)

 is the covariance  
between the non-epistatic 



 Euphytica (2022) 218:63

1 3

63 Page 4 of 13

Vol:. (1234567890)

deviation and the epistatic effect in the  F1, and 
Cov2

1
= f

22

(

E(G)
22
− ma − mb

)

E(I)
22
+ f

20

(

E(G)
20
−

ma − mb

)

E(I)
20
+ f

02

(

E(G)
02
− ma − mb

)

E(I)
02
+ f

00
(

E(G)
00
− ma − mb

)

E(I)
00
−
(

mL1 − ma − mb

)

E(I)
1
 is 

the covariance between the average non-epistatic and 
the epistatic values of the array means.

The covariance in the r-th array is 
W∗

r
= Wr + Cov1

01(r)
+ Cov2

01(r)
+ Cov3

01(r)
 , where, for 

example, for the array of the parent AABB,
Cov1

01(22)
= f

22

(

da + db
)

I
22
+ f

20

(

da − db
)

I
21
+ f

02
(

−da + db
)

I
12
+ f

00

(

−da − db
)

I
11
−
(

mL0 − ma − mb

)

E(I)
22

,
Cov2

01(22)
= f

22
I
22

(

da + db
)

+ f
20
I
20

(

da + hb
)

+ f
02

I
02

(

ha + db
)

+ f
00
I
00

(

ha + hb
)

− E(I)
0

(

E(G)
22
− ma − mb

)

 , 
and

are the covariances between the non-epistatic 
deviation of non-recurrent parent and the epistatic 
effect of  F1, between the non-epistatic deviation of 
 F1 and the epistatic effect of non-recurrent parent, 
and between the epistatic effects of non-recurrent 
parent and  F1, respectively. The average covariance 
is W∗

0L01
= W

0L01 + Cov1
01
+ Cov2

01
+ Cov3

01
 , where 

Cov1
01

= f
22

(

da + db
)

E(I)
22
+ f

20

(

da − db
)

E(I)
20
+ f

02
(

−da + db
)

E(I)02 + f00
(

−da − db
)

E(I)00 −
(

mL0 − ma − mb

)

E(I)1,
Cov2

01
= f22I22

(

E(G)22 − ma − mb

)

+ f20I20
(

E(G)20 − ma − mb

)

+f
02
I
02

(

E(G)
02
− ma − mb

)

+ f
00
I
00

(

E(G)
00
− ma − mb

)

−E(I)
0

(

mL1 − ma − mb

)

 , and Cov3
01

= f
22
I
22
E(I)

22
+ f

20
I
20

E(I)
20
+ f

02
I
02
E(I)

02
+ f

00
I
00
E(I)

00
− E(I)

0
E(I)

1
.

Note that the difference between the covariance 
and the variance in the arrays is W∗

r
− V∗

r
= (1∕4)

(

D − H
1

)

+ k(1∕4)F
1r + Cov1

01(r)
+Cov2

01(r)
+ Cov3

01(r)
−

V(I)r − 2Covr . Thus, the epistasis is an additional fac-
tor that deviate the points ( W∗

r
,V∗

r
 ) from a straight 

line of unit slope through the mean point 
( W

0L01,V1L1 ). However, the function does not also 
allow realizing how much epistasis affects the devia-
tion from 1. The variance of the array means is 
V∗

0L1
= V

0L1 + V(I)
1
+ 2Cov2

1
 . Finally, the total geno-

typic variance is V∗

0L1
+ V

∗

1L1
= V

0L1
+ V

1L1
+ V(I)

1
+

V(I)
1
+ 2Cov1

1
 . Thus, epistasis introduces an addi-

tional bias in the estimates of the Hayman’s genetic 
parameters, which can only be assessed using simu-
lated data.

Cov3
01(22)

= f
22
I2
22
+ f

20
I
20
I
21
+ f

02
I
02
I
12

+ f
00
I
00
I
11
− E(I)

0
E(I)

22

Generation mean analysis with LD and epistasis

Assuming two linked epistatic genes, an epistatic 
effect for each genotype, and parents AABB and 
aabb (association), the genotypic values of the par-
ents and the  F1 are G

22
= ma + mb + da + db + I

22
 , 

G
00

= ma + mb − da − db + I
00

 , and G
11

= ma + mb+

ha + hb + I
11

 , respectively. Using the notation of  
Mather and Jinks (1971) for the additive and dominance  
components, P

1
= m + [d] + I

22
 , P

2
= m − [d] + I

00
 , 

and F
1
= m + [h] + I

11
 . Because epistasis, m is not 

the F∞
 mean, given by 

(

I
20
+ I

02

)

= m + E(I)(∞)

F
∞
= m +

[

1∕2(1 + 2r)
](

I
22
+ I

00

)

+
[

r∕(1 + 2r)
]

 , where r  
is the recombination frequency. Note that in 
 F2, linked genes with r lower than 0.5 are in 
LD. The absolute LD value in the gametic pool  
of  F1 is (1 − 2r)∕4 . The value is positive with cou-
pling and negative with repulsion. The mean of the  
 F2 generation is F

2
= m + (1∕2)[h] + E(I)(0) , where  

E(I)(0) =
[

(1 − r)∕2
]2
I
22
+ 2

[

(1 − r)∕2
]

(r∕2)I
21
+…+

[

(1 − r)∕2
]2
I
00

 is the expectation of the epistatic val-
ues. The  Fn+2 mean is Fn+2 = m + (1∕2)

n+1
[h] + E(I)(

n) , 
where n is the number of selfing generations. It is 
interestingly to note that the expectation of the epi-
static values in a selfed generation is not directly 
proportional to the expectation in the  F2 generation, 
since E(I)(n) = E(I)(0) + deviation (see the deviation 
for the  Fn+2 generation in the Appendix).

The average genotypic values of the two back-
cross generations are BC

1
= m + (1∕2)[d] + (1∕2) 

[h] + (1∕2)E(I)
1
 and BC

2
= m − (1∕2)[d] + (1∕2) 

[h] + (1∕2)E(I)
2
 , where E(I)1 = (1 − r)

(

I22 + I11
)

+ r
(

I21 + I12
) 

and E(I)
2
= (1 − r)

(

I
11
+ I

00

)

+ r
(

I
10
+ I

01

)

 . Thus, 
assuming digenic epistasis, the means of the parents, 
 F1,  F2,  F3, and backcrosses (seven equations) depend 
on 10 genetic linear components (seven epistatic com-
ponents). A very known approach for allowing testing 
epistasis and estimating and testing epistatic com-
ponents was provided by Mather and Jinks (1971). 
This simplified approach has been used for modelling 
epistasis in genomic selection, GWAS (genome-wide 
association studies), and QTL mapping. Mather and 
Jinks (1971) assumed I

22
= I

00
= −I

20
= −I

02
= [i] , 

I
21

= −I
01

=
[

j
]

 , I
12

= −I
10

=
[

j�
]

 , and I
11

= [l] . How-
ever, because linkage (LD), E(I)(0) =

[

(1 − 2r)∕2
]

[i]

+(1∕4)
[

1 + (1 − 2r)2
]

[l] , E(I)
1
= (1 − r)([i] + [l])+

r
([

j
]

+
[

j�
])

 , and E(I)
2
= (1 − r)([i] + [l]) − r

([

j
]

+
[

j�
])

.
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Note that I wrote simplified approach because the 
assumptions for the additive x additive, additive x 
dominance, and dominance x additive components 
do not necessarily met for any type of digenic epista-
sis, including complementary, duplicate, dominant, 
recessive, dominant and recessive, duplicate genes 
with cumulative effects, and non-epistatic genic inter-
action, regardless of the degree of dominance. To 
characterize complementary epistasis it is necessary 
to assume da = db = ha = hb = iab = jab = jba = lab ; 
for duplicate epistasis, da = db = ha = hb = −iab =

−jab = −jba = −lab ; assuming recessive epistasis 
implies da = ha = iab = jba and db = hb = jab = lab 
or da = −ha = −iab = jba and db = −hb = jab = −lab ; 
in case of dominant epistasis, da = ha = −iab = −jba 
and db = hb = −jab = −lab or da = −ha = iab = −jba 
and db = −hb = −jab = lab (Mather 1967). Then, it is 
assumed complete dominance (|h/d|= 1).

Data simulation

The simulated dataset was generated using the soft-
ware REALbreeding (available by request). REAL-
breeding has been used in studies related to genomic 
selection (Viana et  al. 2018), GWAS (Pereira et  al. 
2018), QTL mappisng (Viana et  al. 2017), LD 
(Andrade et  al. 2019), population structure (Viana 
et  al. 2013b), heterotic grouping/genetic diversity 
(Viana et  al. 2020), and plant breeding (Viana et  al. 
2013a). In summary, the software simulates indi-
vidual genotypes for genes and molecular markers 
and phenotypes in three phases, using inputs from 
the user. The first phase (genome simulation) is the 
specification of the number of chromosomes, molec-
ular markers, and genes as well as marker type and 
density. The second phase (population simulation) is 
the specification of the population(s) and sample size 
or progeny number and size. A population is charac-
terized by the average frequency for the genes (bial-
lelic) and markers (first allele). The last phase (trait 
simulation) is the specification of the minimum and 
maximum genotypic values for homozygotes, the 
minimum and maximum phenotypic values (to avoid 
outliers), the direction and degree of dominance, and 
the broad sense heritability.

The current version allows the inclusion of 
digenic epistasis, genotype × environment interac-
tion, and multiple traits, including pleiotropy. The 
population mean (M) and additive (A), dominance 

(D), and epistatic (additive × additive (AA), addi-
tive × dominance (AD), dominance × additive 
(DA), and dominance × dominance (DD)) genetic 
values or general combining ability (GCA), spe-
cific combining ability (SCA), and epistatic (I) 
effects, or genotypic values (G), depending on the 
population, are calculated from the parametric gene 
effects and frequencies and the parametric LD val-
ues. The population in LD is generated by crossing 
two populations in linkage equilibrium followed 
by a generation of random cross. The parametric 
LD is Δ(−1)

ab
=
[(

1 − 2rab
)

∕4
](

pa1 − pa2
)(

pb1 − pb2
)

 , 
where rab is the recombination frequency, p is an 
allelic frequency, and the indexes 1 and 2 indi-
cates the parental populations. The phenotypic  
values ( P ) are computed assuming error effects  
(E) sampled from a normal distribution 
( P = M + A + D + AA + AD + DA + DD + E = G + E 
or P = M + GCA1 + GCA2 + SCA + I + E = G + E).

The types of digenic epistasis are: complementary  
( G
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G
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00
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10
 and  

G
02

= G
01

 ; proportion of 12:3:1 in a  F2, assuming  
independent assortment), recessive ( G

22
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21
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G
12

= G
11

 , G
02

= G
01

 , and G
20

= G
10

= G
00

 ; proportion  
of 9:3:4 in a  F2, assuming independent assortment),  
dominant and recessive ( G

22
= G

21
= G

12
= G

11
=

G
20

= G
10

= G
00

 and G
02

= G
01

 ; proportion of 13:3  
in a  F2, assuming independent assortment), duplicate  
genes with cumulative effects ( G

22
= G

21
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12
= G

11
 ,  

and G
20

= G
10

= G
02

= G
01

 ; proportion of 9:6:1 in 
a  F2, assuming independent assortment), and non-
epistatic genic interaction ( G

22
= G

21
= G

12
= G

11
 , 

G
20

= G
10

 , and G
02

= G
01

 ; proportion of 9:3:3:1 in a 
 F2, assuming independent assortment).

Because the genotypic values for any two inter-
acting genes are not known, there are infinite  
genotypic values that satisfy the specifications of  
each type of digenic epistasis. For example, fixing  
the gene frequencies (the population) and the parameters 
m, d, h, and h/d (degree of dominance) for each gene (the 
trait), the solutions G
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= G

12
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11
 = 5.25 and 

G
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00
  

= 2.71 define complementary epistasis but the genotypic 



 Euphytica (2022) 218:63

1 3

63 Page 6 of 13

Vol:. (1234567890)

values are not the same. The solution implemented in 
the software allows the user to control the magnitude of 
the epistatic variance (V(I)), relative to the magnitudes 
of the additive and dominance variances (V(A) and 
V(D)). As an input for the user, the software requires 
the ratio V(I)/(V(A) + V(D)) for each pair of interacting 
genes (a single value; for example, 1.0). Then, for each 
pair of interacting genes the software samples a ran-
dom value for the epistatic value I

22
 (the epistatic value 

for the genotype AABB), assuming I
22

∼ N(0,V(I)) . 
Then, the other epistatic effects and genotypic values are 
computed. In this study, I assumed ratio 1. Increasing 
the ratio increases the magnitude of the additive, domi-
nance, and epistatic genetic values.

I simulated grain yield (g/plant) and expan-
sion volume (a measure of popcorn quality; ml/g), 
assuming 400 genes distributed in 10 chromosomes 
of 200 cM. For grain yield and expansion volume, I 
specified positive dominance (average degree of dom-
inance of 0.6) and bidirectional dominance (average 
degree of dominance of 0.0), respectively. For grain 
yield, the minimum and maximum genotypic values 
for homozygotes were 30 and 160. The minimum and 
maximum phenotypic values for homozygotes were 
10 and 180. For expansion volume, I assumed 5 and 
55 as the minimum and maximum genotypic values 
for homozygotes. The minimum and maximum phe-
notypic values were 0 and 60. I assumed no epista-
sis (but LD), seven types of digenic epistasis and 
an admixture of these types, defining 30 and 100% 
of epistatic genes. For the diallel cross, I generated 
1,000 DH lines from a population with high LD and 
selected 15 DHs. The number of dominant genes in 
the DHs ranged from 136 to 278. The criterion for 
selecting the parents was two to three DHs at random 
from six classes for the number of dominant genes: 
0 to 140 up to 261 to 290. The number of dominant 
genes in the selected DHs ranged from 161 to 246. 
Then, the selected DHs were crossed in a complete 
diallel without reciprocals. For the generation mean 
analysis, I generated the contrasting parental inbred 
lines  (P1 and  P2), assuming all genes in association, 
and the generations  F1,  F2,  F3,  BC1, and  BC2. The 
numbers of plants per generation were 50, 50, 50, 
400, 400, 400, and 400, respectively.

I also generated a scenario of low LD and no 
epistasis, assuming 10 independent genes and 10 DHs 
sampled from 1,000 DHs. The criterion for select-
ing the 10 DHs was minimization of the LD. The 

LD values ( Δab = pAB − pApB ) ranged from − 0.11 
to 0.09 (absolute average value 0.04). For compari-
son purpose, I computed the LD values for the 80 
genes in the chromosomes 1 and 2. The ranges and 
the means of the absolute LD values for the genes 
in chromosomes 1, 2 and for the independent genes 
were, respectively, − 0.15 to 0.25 and 0.07, − 0.16 to 
0.21 and 0.05, and − 0.20 to 0.20 and 0.05. The broad 
sense heritability at the plant level was 20%. For the 
progeny level were 40, 60, and 80%. To avoid the 
influence of the experimental error, all analyses were 
based on the parametric genotypic values and vari-
ances and covariances, provided by REALbreeding.

Results

The impact of LD on the Hayman’s diallel analysis 
is evident even in the scenario of independent genes. 
The analysis of variance of  Wr−Vr indicated adequacy 
of the additive-dominance model (P value of 1.00) 
even assuming a heritability of 80%. The regression 
of  Wr on  Vr indicated partial dominance ( �

0
= 0.02 ; P 

value of 0.00) and �
1
 equal to 1 (P value of 0.38). The 

coefficient of determination was 0.99. The conclu-
sion of partial dominance is correct since the average 
degree of dominance is 0.52 (in the range 0.01–1.16). 
However, the LD between the independent genes led 
to a bias of − 22.5 and − 27.3% in the estimates of the 
dominance components and a bias in the range − 13.8 
to − 47.7% for three of the genetic parameters, ignor-
ing the estimate of the number of dominant genes that 
is always sub estimated (4 vs. 9, because the DHs 
have one fixed gene). The correlation between the 
number of recessive genes and  Wr +  Vr was 0.92 and 
the number of dominant genes for the parents’ order 
of dominance was 6, 6, 6, 6, 5, 5, 4, 5, 4, and 2. These 
results indicates that when there is low LD and no 
epistasis, the Hayman’s diallel analysis provides con-
fident results about the inheritance of the quantitative 
trait but biased estimates of the dominance compo-
nents and the genetic parameters.

The negative consequences of high LD under no 
epistasis are also biased estimates of the dominance 
components and genetic parameters plus a biased 
estimate of the covariance F, a significant test for the 
homogeneity of  Wr −  Vr assuming a heritability of 
80%, and an intermediate value for the correlation 
between the number of recessive genes and  Wr +  Vr 
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(0.51) (Table  1). Thus, high LD can lead to inad-
equacy of the additive-dominance model for a high 
heritability trait. The number of dominant genes for 
the parents’ order of dominance was 245, 176, 246, 
195, 230, 229, 203, 189, 191, 217, 166, 176, 214, 
203, and 161. Regardless of the heritability trait, 
there was evidence of partial dominance and a slight 
deviation from 1.0 for the regression coefficient.

As demonstrated from the theory, epistasis is a 
significant additional factor negatively affecting the 
Hayman’s diallel analysis, especially assuming a high 
proportion of interacting genes. Assuming 100% of 
epistatic genes and dominant, recessive, duplicate 
genes with cumulative effects, and non-epistatic genic 
interaction, there was evidence of inadequacy of the 
additive-dominance model, regardless of the trait her-
itability (Table  1 and Online Resource Fig.  1). Irre-
spective of the type of epistasis and significance of 
the test of adequacy of the additive-dominance model, 
there was a tendency for concluding in favor of over-
dominance, which is a wrong inference. Further, the 
correlation between the number of recessive genes 
and  Wr +  Vr tends to be lower (in the range − 0.01 to 
0.67; 0.39 on average) and all genetic components 
and parameters will be very biased. Assuming 30% of 
epistatic genes, there was a tendency for accepting the 
additive-dominance model for low heritability traits 
and for rejecting the model for high heritability traits 
(Table  1 and Online Resource Table  1 and Fig.  1). 
Regardless of the significance level of the adherence 
test, there was evidence of partial dominance and the 
correlation between the number of recessive genes 
and  Wr +  Vr had intermediate magnitude (in the range 
0.31–0.62; 0.50 on average). However, as demon-
strated from the theory, the genetic components and 
parameters will be very biased. Note that, in general, 
the coefficient of regression has a magnitude close 
to 1.0, but only assuming an admixture of epistasis 
types it is consistently not statistically different from 
1.0. In regard to the heterosis, that is unaffected by 
LD, note that the epistasis tends to decrease it, except 
assuming duplicate genes with cumulative effects and 
non-epistatic genic interaction (Table  1 and Online 
Resource Table 1).

In the absence of epistasis, as theoretically dem-
onstrated, linkage (LD) does not affect the generation 
mean analysis, respecting that this method cannot 
distinguish absence of dominance from symmetrical 
bidirectional dominance. Under the sample sizes and 

heritability (a low value, 20%) assumed, the experi-
mental evidence is that there is additive variability, 
dominance, and no epistasis, for both traits (Table 2). 
Additionally, there was evidence of (predominantly) 
positive dominance for grain yield and (predomi-
nantly) negative dominance for expansion volume. 
Note also that, regardless of the trait, heritability, and 
genetic control, if the sample sizes for parents and 
derived generations are representative, the analysis 
will provide confident estimates of the parametric 
means (correlations close to 1.0 between the esti-
mated and true means). However, linkage and epista-
sis significantly affects the estimates of the genetic 
components of the generation means, regardless of 
the type of epistasis, proportional the percentage of 
epistatic genes (Table 2). One impressive result by fit-
ting the epistatic components ([i], [j], and [l]) is that, 
even assuming 100% of interacting genes, for most 
epistasis types there were evidence of no epistasis 
(P values in the range 0.052–0.15). Another remark-
able result is a null or negative correlation between 
the epistatic components of my model and of the 
Mather and Jinks’ model, for most of the epistasis 
types. Note that the two higher correlations (among 
four) are associated with the less biased estimates of 
the non-epistatic components, under duplicate genes 
with cumulative effects and non-epistatic genic inter-
action. Fitting the Mather and Jinks’ complete model 
when there is statistical evidence of epistasis or fitting 
the additive-dominance model when there is epistasis 
but no statistical evidence of epistasis provides biased 
estimates of the genetic components, proportional to 
the percentage of epistatic genes (Table 2 and Online 
Resource Table  2). For grain yield, under duplicate 
and dominant and recessive epistasis, a wrong infer-
ence about dominance occurred (negative dominance 
and absence of dominance, respectively, instead of 
positive dominance).

Discussion

Probably because Hill (1964), Nassar (1965), Mather 
(1967), and Coughtrey and Mather (1970) used sim-
plified genetic models (2 to 10 genes, complete domi-
nance, only LD or epistasis) for investigating the 
effects of LD or epistasis on Hayman’s diallel analy-
sis, their main findings are very limited and only par-
tially confirmed in this study. Hill (1964) concluded 
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that LD led to a significant upward curvature on the 
 Wr/Vr graph and alters the level of dominance. My 
results do not support his conclusions. I observed a 
downward curvature and a change in the level of 
dominance only under a high proportion of epistatic 
genes. Nassar (1965) observed that LD determines 
serious deviations in the slope of the  Wr/Vr regression 
line (consistently lower than one) and an intercept 
predominantly below the origin (indicating overdomi-
nance). I generally observed a slope with magnitude 
close to 1 but statistically lower than one in 50% 
of the scenarios, but there was evidence of over-
dominance only under a high proportion of epistatic 
genes. I also did not observe a  Wr/Vr graph concave 
upwards with complementary epistasis, regardless of 
the percentage of interacting genes, as emphasized by 
Mather (1967) and Coughtrey and Mather (1970).

Concerning the impact of LD and epistasis on 
the Hayman’s diallel analysis, the results describe 
an apparently very negative effect: biased estimates 
of the non-additive components and, consequently, 
biased estimates of the genetic parameters. But in my 
opinion, average degree of dominance, symmetry, 
proportion of dominant to recessive genes and, espe-
cially, number of dominant genes has no current sig-
nificance for breeders. Assuming no epistasis or 30% 
of interacting genes, the results show a correct infer-
ence on the inheritance of a low heritability quanti-
tative trait: partial positive dominance. The decrease 
in the correlation between the number of dominant 
genes and  Wr +  Vr is not so serious to make the Hay-
man’s diallel analysis useless. However, breeders 
should be conscious to process and interpret only the 
traits that show adequacy of the additive-dominance 
model (homogeneity of the difference  Wr −  Vr), func-
tional relationship between  Wr and  Vr (slope of the 
regression statistically different from zero), and espe-
cially a reasonable coefficient of determination of the 
regression analysis (say, greater than 75%). Unfortu-
nately, this was not observed in some recently pub-
lished studies (Pessoa et al. 2019; de Lima et al. 2019; 
Shahadati-Moghaddam et  al. 2017). Thus, breeders 
must realize that LD and epistasis are not their major 
problem when processing a Hayman’s diallel analy-
sis, but the experimental error.

As theoretically demonstrated, only in a very par-
ticular case the Mather and Jinks’ model will provide 
unbiased estimates of the genetic components. This 
will occur only if I

22
= I

00
 , I

21
+ I

12
= −I

01
− I

10
 , and 

E(I)(n) = (1∕4)
n+1I

11
 . But, because epistasis implies 

in more genetic components than generations, the 
only option is to fit the Mather and Jinks’ model. In 
my opinion, biased estimates of the genetic compo-
nents are not a serious problem if the inferences on 
the inheritance of the quantitative trait are correct. 
In general, even assuming 100% of epistatic genes, 
the analyses correctly evidenced positive dominance 
for grain yield but, unfortunately, in 5 out of 10 sce-
narios the epistasis was not detected. Thus, a more 
serious problem of the generation mean analysis is 
not allowing the detection of epistasis even when the 
percentage of interacting genes is high. When there is 
evidence of epistasis, another serious problem is the 
correct attribution of the predominant type. Regard-
less of the percentage of interacting genes, the signs 
of the seven epistatic components do not separate 
complementary, recessive, and dominant and reces-
sive types, as well as duplicate genes with cumulative 
effects and non-epistatic genic interaction. Assum-
ing positive partial dominance and 100% of interact-
ing genes, the signs of the epistatic components [i], 
[j], and [l] do not allow discriminate complementary, 
recessive, dominant and recessive, duplicate genes 
with cumulative effects, and non-epistatic genic inter-
action (all positive). When the three components are 
negative, there is predominantly dominant epistasis. 
If the additive × additive and dominance × domi-
nance components are positive and the additive × 
dominance component is negative, there is duplicate 
epistasis, as emphasized by Mather and Jinks (1971).

Recent published generation mean analyses based 
on field data, involving diverse crops and traits, six 
to seven generations, one to six crosses, one or more 
seasons or environments, evidenced epistasis in many 
cases but not all epistatic components were statisti-
cally different from zero (Shirinpour et al. 2020; Rai 
et  al. 2020; Pal et  al. 2020; Verma and Singh 2019, 
2018; Mohammed et  al. 2018). This is not a prob-
lem since the non-additive components are a sum of 
effects that take sign. In few studies, the authors con-
cluded in favor of complementary or duplicate epista-
sis but assuming diverse combinations of signs for the 
epistatic components. This is not in agreement with 
Mather and Jinks (1971). In two investigations also 
involving a qualitative analysis, the two analyses pro-
vided inconsistent results. For example, the qualita-
tive analysis showed dominant and recessive epistasis 
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and the generation mean analysis evidenced comple-
mentary epistasis.

Concluding, taking into account the theory pre-
sented and the results from the simulation study, 
LD and epistasis can have negative effects on the 
Hayman’s diallel analysis and on the Mather and 
Jinks’ generation mean analysis, proportional to the 
LD level and the percentage of epistatic genes, and 
depending on the predominant type of epistasis. How-
ever, biased estimates of quadratic or linear genetic 
parameters are not so serious if the inheritance of the 
quantitative trait is correctly inferred, at least par-
tially. Note that, excepting for a high proportion of 
epistatic genes under high LD, the general correct 
conclusion was partial positive dominance for grain 
yield from both analysis. Further, the order of domi-
nance provides a good discrimination between the 
parents, regardless of the type of epistasis, percentage 
of interacting genes, and level of LD. Unfortunately, 
the detection of epistasis from both analyses is highly 
affected by the trait heritability, predominant type of 
epistasis, and percentage of interacting genes.
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Appendix

The expectation of the epistatic effects in the  
 Fn+2 generation is E(I)(n) = E(I)(0) + p

(n)
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 , 
where n is the number of selfing generations and

where F = 1 − (1∕2)
n is the inbreeding coefficient, 

f
(0)

ij
 is a genotype probability in  F2 (i and j = 2, 1, or 0), 

c = 1 − 2r(1 − r) , P(n)
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(1 + 2r)} , and |Δ| = (1 − 2r)∕4 (positive for coupling 
and negative for repulsion). Defining P
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 as the gamete probabilities of the  F1, 

where, for example, P
(0)

11
= P

(0)

00
= (1 − r)∕2 and 

P
(0)

10
= P

(0)

01
= r∕2 for coupling, the probability of the 
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