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Abstract TIron deficiency chlorosis (IDC) under
calcareous and alkaline soils is a significant abiotic
stress affecting the growth and yield of peanut. In this
study, the genomic regions governing IDC tolerance
were mapped using a recombinant inbred line (RIL)
population derived from TMV 2 (susceptible to IDC)
and TMV 2-NLM (tolerant to IDC), which was phe-
notyped during the rainy seasons of 2019 and 2020
in the iron-deficient calcareous plots. The best linear
unbiased prediction (BLUP) values for IDC tolerance
traits like visual chlorotic rating (VCR), and SPAD
chlorophyll meter reading (SCMR) were used for
QTL analysis along with a genetic map carrying 700
GBS-derived SNP, AhTE and SSR markers. In total,
11 and 12 main-effect QTLs were identified for VCR
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and SCMR, respectively. Among them three QTLs
were major with the phenotypic variance explained
(PVE) of 10.3-34.4% for VCR, and two QTL were
major for SCMR with PVE of 11.5-11.7%. A region
(159.3-178.3 cM) on chromosome Ahl3 carry-
ing two QTLs (one each for VCR and SCMR) was
consistent with the previous report. A SNP marker,
Ah14_138037990 identified from single marker anal-
ysis for VCR was located in the intronic region of the
gene Arahy.QAOCI, which is important for protein-
binding. Overall, this study identified new QTLs and
also validated QTL for IDC tolerance. These genomic
resources could be useful for genomics-assisted
breeding of peanut for IDC tolerance.
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Introduction

Peanut (Arachis hypogaea L.) is a major legume food
and oilseed crop mainly grown on sandy, loamy, and
clayey soils (Zhao et al. 2015) across the globe. Pea-
nut grown on clay soils suffers from iron deficiency
chlorosis resulting in yellowing and stunted growth
symptoms and pod yield loss of 16-32% (Singh
2001). These symptoms are generally related to the
important roles of iron in photosynthesis, respiration,
nitrogen fixation, hormone production, chlorophyll
formation apart from being a component of various
redox and iron-sulphur enzymes in plants (Zheng
2010). Acute iron deficiency can lead to plant death
and even complete crop failure. Foliar application of
salicylic acid and sodium nitroprusside (a nitric oxide
donor) could reduce the IDC symptoms and promote
iron uptake, translocation and activation (Kong et al.
2014). The treatment also modulated the balance
of mineral elements and protected iron deficiency
induced oxidative stress.

The mechanisms which reduce the adverse effects
of iron deficiency by increasing the soluble iron
have been identified (Romheld & Marschner 1986).
Molecular components of iron uptake and transport
have also been characterized. In peanut, the full-
length cDNA of ARFROI was isolated and found to
code for Fe(Ill)-chelate reductase, a membrane pro-
tein with role in iron uptake (Ding et al. 2009). Later,
AhRNRAMP], coding for a functional iron transporter,
was found to be induced by iron deficiency in both
roots and leaves. The study also suggested its role in
iron acquisition in peanut plants (Xiong et al. 2012).

Recent genomics studies using the RIL popula-
tion of TAG 24 XICGV 86,031 and a map of 191 SSR
markers identified two major QTLs for VCR with
the highest PVE of 31.8% and a single major QTL
for SCMR with a PVE of 11.0% (Pattanashetti et al.
2020). Subsequently, Pandey et al. (2021) improved
the genetic map for TAG 24 xICGV 86,031 using
1028 SNP loci genotyped with a high-density 58 K
“Axiom_Arachis” array and 177 SSR markers. The
genome-wide QTL analysis identified a single major
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main-effect QTL for VCR with a PVE of 33.9% and
two major main-effect QTLs for SCMR with the
highest PVE of 22.4%. These identified QTLs shared
a common genomic region on chromosome B03 on
diploid genome corresponding to Ahl3 of tetraploid
genome.

TMV 2 and TMV 2-NLM differ for IDC tolerance
(our unpublished data). The RIL population derived
from TMV 2 and TMV 2-NLM has demonstrated its
utility in mapping complex traits (Hake et al. 2017;
Jadhav et al. 2021) since the latter parent is an EMS-
derived mutant of the former, and helps in subtract-
ing out a major genomic portion common to both the
parents. Therefore, an effort was made in this study
to map the genomic regions governing IDC tolerance
using a RIL population derived from TMV 2 and
TMV 2-NLM.

Materials and methods

Population Development and phenotyping A RIL
population developed (Pattanashetti 2005) from the
cross between TMV 2, an elite variety of peanut and
its EMS-mutagenized derivative TMV 2-NLM (Nar-
row Leaf Mutant) (Prasad et al. 1984) was used for
mapping the tolerance to iron deficiency chlorosis.
TMV 2 is a Spanish bunch cultivar with susceptibil-
ity to IDC (Boodi et al. 2016), while TMV 2-NLM
(Prasad et al. 1984) is a semi-spreading cultivar with
tolerance to IDC. Phenotypic and genotypic differ-
ences between TMV 2 and TMV 2-NLM have been
previously reported by Hake et al. (2017).

Fi9.59 generations of the 432 RILs together with
the parents were grown during the Rainy-2019 and
Rainy-2020 at College of Agriculture, Vijayapur,
University of Agricultural Sciences, Dharwad,
India. During each season, the RILs were grown in
two replications with a spacing of 30X 10 cm with
recommended agronomic practices. Soil proper-
ties of experimental sites during Rainy-2019 and
Rainy-2020 are given in Supplemental Table S1.
The climatic factors during the crop period (June to
October) at Vijayapur in 2019 and 2020 information
given (Supplemental Table S2). Visual chlorotic rat-
ing (VCR) at 30, 60 and 90 days after sowing (DAS)
was recorded as per the scale proposed by Singh
and Chaudhari (1993) based on the severity and the
spread of interveinal chlorosis on the leaves where 1
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is normal green leaves with no chlorosis, 2 is green
leaves but with slight chlorosis on some leaves, 3
is moderate chlorosis on several leaves, 4 is moder-
ate chlorosis on most of the leaves and 5 is severe
chlorosis on all the leaves on an overall line basis
(Fig. 1a). SPAD chlorophyll meter reading (SCMR)
was recorded at 30, 60 and 90 DAS using SPAD 502
(Konica Minolta, Japan).

Analysis of variance (ANOVA) was performed for
each trait to test for the significant differences among
the RILs. Phenotypic coefficient of variation (PCV),
genotypic coefficient of variation (GCV) and broad
sense heritability (thS) were estimated using the
plant breeding package Windostat ver. 8.5 (Indostat
Services, Hyderabad, India, https://www.indostat.org/
agriculture.html). Pearson’s correlation coefficients
(r) among the different traits were estimated over
the seasons using the 16" version of SPSS. For fur-
ther analysis, best linear unbiased prediction (BLUP)
values for VCR and SCMR at the three stages (30,
60 and 90 DAS) across the seasons were calculated

Fig. 1a Visual chloro-

tic rating used for visual
screening for iron defi-
ciency chlorosis in peanut
b Response of parent for
iron deficiency chlorosis ¢
Response of the RIL popu-
lation for iron deficiency
chlorosis

(b)

using the Ime4 package (Bates et al. 2011) of R,
which helps fit linear and generalized linear mixed-
effects models.

Population genotyping and map construction,
QOTL and candidate gene discovery The genetic map
with 700 mapped markers (SNP, AhTE and SSR)
previously constructed by Jadhav et al. (2021) was
used for QTL mapping. The main-effect QTL analy-
sis was carried out using the “Composite Interval
Mapping (CIM)” approach (Zeng 1994) with Model
6 and a scanning distance of 1.0 cM between mark-
ers and moving window size of 10.0 cM using Win-
dows QTL Cartographer version 2.5 (Wang et al.
2007). Forward-backward stepwise regression

method was used to set the marker cofactors for the
background selection. Highest peak was considered
to locate QTL where the distance between the peak
and the QTL was less than 5.0 cM. Permutation
(1,000) test was performed to work out the thresh-
old and identify the significant QTL. The QTLs
with>3.0 LOD and phenotypic variance explained

(c)
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(PVE)>10% were considered major effect QTLs
for a particular trait. Those with a PVE<10%
were considered as minor effect QTLs. Based on
the trait name and chromosome number, the QTLs
were named, where the first letter ‘g’ indicated the
QTL and the abbreviated capital letters indicated
the trait followed by the chromosome number and
the numerical number indicating the serial number
of the QTL for a trait. For instance, gVCR30_Ah04-
I the first QTL for visual chlorotic rating 30 days
after sowing was detected on chromosome Ah0O4.
Analysis for the epistatic QTL (Q X Q) was con-
ducted using the function “two-dimensional scan-
ning ICIM-EPI” implemented in inclusive compos-
ite interval mapping (ICIM) software version 4.1
(Wang et al. 2014) with 5 cM step and 0.001 prob-
ability mapping parameters in stepwise regression.
The minimum threshold LOD value for significant
epistatic QTL was set at 3.0. Multiple QTL Map-
ping was performed with the r/qtl package’s step-
wise qtl () function (https://rqtl.org/). Association of
the markers with the VCR and SCMR was tested by
single marker analysis (SMA) using the Im() func-
tion (linear regression) of R programme. Putative
genes were identified for the major QTL clusters
and selected markers using the GBrowse https://

www.peanutbase.org/gb2/gbrowse/arahy. Tifrunner.
gnm?2/) at PeanutBase.

Results

IDC tolerance-related traits such as VCR and SCMR
across the stages (30, 60 and 90 DAS) showed nor-
mal distribution (Fig. 2) in the rainy seasons of 2019
and 2020. ANOVA showed significant differences
for VCR and SCMR among the RILs (Supplemen-
tal Tables 3 and 4). Across the years, TMV 2 showed
susceptible response to IDC over all the three stages
with VCR ranging from 3.0 to 4.0 and SCMR ranging
from 17.1 to 29.9, while TMV 2-NLM was found to
be tolerant to IDC with VCR ranging from 1.0 to 2.0
and SCMR ranging from 28.3 to 40.2 (Table 1). Wide
variation was observed among the RILs for VCR,
which ranged from 1.0 to 5.0 over the three stages
across the years, while SCMR ranged from 2.8-52.9
(Fig. 1b and c; Table 1). The average VCR score
increased from VCR30 to VCR60, but it decreased in
VCRO90 with the recovery of some of the RILs. The
average SCMR reduced from SCMR30 to SCMR60,
but increased in SCMR90 again with some RILs
showing recovery (Fig. 2).

(a) VCR30 VCRS60 VCR90
8 8 8
8 8 8
8 . 8 - I E . I
b) SCMR30 SCMR60 SCMR90

20 40 60 80 100 120 ~
20 40 60 80 100 120

1 2 3 4 5 6

Fig. 2 Frequency distribution of RILs for VCR and SCMR a
frequency of RILs and parents for VCR score (1 to 5) across
three stages (30, 60 and 90 DAS) over two years b frequency
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of RILs and parents (number) for SCMR groups (6) across
three stages (30, 60 and 90 DAS) over two years
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Table 1 Estimates of genetic variability for tolerance to iron deficiency chlorosis among the RILs of TMV 2 and TMV 2- NLM of

peanut
Traits Parents RILs PCV (%) GCV (%) ths (%) GA GAM (%)
™V 2 TMV 2-NLM Mean Range

VCR30 3.0 1.0 1.5 1.04.0 10.8 9.0 68.7 0.2 15.3
VCR60 4.0 2.0 2.0 1.0-5.0 16.7 16.0 91.5 0.6 31.5
VCR90 4.0 2.0 1.9 1.0-5.0 31.1 30.8 98.0 1.2 62.8
SCMR30 29.9 40.2 30.5 4.0-474 11.2 8.2 52.9 3.7 12.2
SCMR60 17.1 28.3 21.2 2.8-48.8 17.6 12.7 51.9 4.0 18.8
SCMR90 20.1 323 28.4 2.8-52.9 18.2 16.3 80.2 8.5 30.0
NPPP 7.8 3.1 6.1 1.3-174 29.7 26.6 80.4 3.0 49.2
PYPP 5.6 2.4 4.0 0.4-15.1 28.1 23.4 69.2 1.6 40.0

PCV: Phenotypic coefficient of variation (%); GCV: Genotypic coefficient of variation (%); h2Bs3 Heritability in broad sense (%);
GAM: Genetic advance as percent of mean (%); VCR30: Visual chlorosis rating at 30 days after sowing (DAS); VCR60: Visual chlo-
rosis rating at 60 DAS; VCR90: Visual chlorosis rating at 90 DAS; SCMR30: SPAD chlorophyll meter reading at 30 DAS; SCMR60:
SPAD chlorophyll meter reading at 60 DAS; SCMR90: SPAD chlorophyll meter reading at 90 DAS; NPPP: Number of pod per plant

and PYPP: Pod yield per plant

Phenotypic coefficient of variation (PCV) and
genotypic coefficient of variation (GCV) for VCR
and SCMR increased over the stages. Highest PCV
and GCV observed for VCR were 31.1% and 30.8%,
respectively. SCMR showed the highest PCV and
GCV of 18.2% and 16.3%, respectively. Herit-
ability and genetic advance over mean (GAM) also
increased over the stages for VCR and SCMR. The
highest heritability and GAM recorded for VCR
were 98.0% and 62.8%, respectively, while SCMR
showed the highest heritability and GAM of 80.2%
and 30.0%, respectively.

VCR across the stages showed positively sig-
nificant correlations (0.3-0.7). SCMR also showed
positively significant correlations (0.3-0.5). How-
ever, VCR and SCMR were significantly negatively
correlated across all the three stages (—0.2 to —0.8)
(Table 2). VCR across the stages showed a signifi-
cantly negative correlation with the number of pods
per plant (NPPP) and pod yield per plant (PYPP),
while SCMR showed significantly positive cor-
relations with productivity traits. Multiple regres-
sion analysis showed the significant coefficients for
VCR60 and SCMR30 with the model showing a mul-
tiple R of 16.2% (F of 10.1 with p value <0.05).

Table 2 Pearson correlation coefficients for iron deficiency chlorosis related traits among the RILs of TMV 2 and TMV 2-NLM of

peanut

Traits VCR30 VCR60 VCR90 SCMR30 SCMR60 SCMR90
VCR30 1.0

VCR60 0.3%* 1.0

VCR90 0.3%* 0.7#* 1.0

SCMR30 —0.5%* —0.3%* —0.2%* 1.0

SCMR60 —0.3%* —0.8%* —0.6%* 0.3%* 1.0

SCMR90 —0.3%* —0.6%* —0.8%* 0.3%* 0.5%* 1.0
NPPP -0.1 —0.3%%* —0.2%% 0.2%* 0.2%* 0.1%*
PYPP -0.0 —0.3%* —0.2%% 0.2%* 0.2%* 0.2%*

**_Correlation is significant at the 0.01 level (2-tailed);

VCR30 Visual chlorosis rating at 30 days after sowing (DAS); VCR60 Visual chlorosis rating at 60 DAS; VCR90 Visual chlorosis
rating at 90 DAS; SCMR30 SPAD chlorophyll meter reading at 30 DAS; SCMR60 SPAD chlorophyll meter reading at 60 DAS;
SCMR90 SPAD chlorophyll meter reading at 90 DAS; NPPP Number of pod per plant and PYPP Pod yield per plant
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«Fig. 3 Genetic map showing location of QTL in different
chromosome for iron deficiency chlorosis related traits among
the RILs of TMV 2 and TMV 2-NLM

QTL analysis using the BLUPs over two seasons
identified a total of 11 and 12 QTLs for VCR and
SCMR, respectively (Fig. 3; Table 3). Among the
11 QTLs for VCR, two, four and five QTLs were
detected for VCR30, VCR60 and VCR90, respec-
tively. Among them gVCR30_Ah0O4-1 on chromosome
Ah04 was a major QTL for VCR30 with a PVE of
20.0% and LOD value of 4.4. TMV 2-NLM contrib-
uted the favourable allele at this QTL for VCR. Two
major QTLs (gVCR90_AhlI3-1 and gVCR90_AhlI2-1)
on chromosome Ahl3 and Ahl2 were detected for
VCR90 with a PVE of 34.4% and 10.3% and LOD
values of 4.3 and 4.3 respectively.

Among the 12 QTLs for SCMR, six, two and
four QTLs were detected for SCMR30, SCMR60
and SCMRY0, respectively (Fig. 3; Table 3). Among
them, gSCMR30_Ah13-1 on chromosome Ahl3 was
a major QTL for SCMR30 with a PVE of 11.5%.
Likewise, gSCMR90_Ah12-1 on chromosome Ahl2
was a major QTL for SCMR90 with a PVE of 11.7%.
Of the two QTLs detected for SCMR60, the highest
PVE of 3.7% was observed for gSCMR60_Ah12-1.

In total, two QTL clusters were identified for VCR
and SCMR. Cluster 1 of 24.5 cM (5.7-30.2 cM)
flanked by Ah02_100365825 and Ah12_108904988
on Ah12 chromosome was common for VCR90 and
SCMR0. It showed the maximum PVE of 10.3% and
11.7% for VCR90 and SCMRO0, respectively. Clus-
ter 2 of 19 cM (159.3-178.3 cM) region flanked by
Ah13_80163117 and Ah13_50074616 on chromo-
some Ah13 controlled VCR90 and SCMR30 with the
PVE of 34.4% and 11.5%, respectively (Table 3).

Single marker analysis showed the significant
association (LOD more than the threshold calcu-
lated using 1,000 permutations) of four markers
(AhTE1144, AhTE0087, AhTE0120 and AhTE0242)
for VCR30. The marker AhTE1144 showed the high-
est PVE of 7.7% followed by AhTE0242 (7.4%).
AhTEQ087 with a PVE of 6.3% was found in the
vicinity of the major QTLs gVCR30_AhO4-1 (Sup-
plemental Table S5). An attempt was made to find
epistatic QTLs for VCR and SCMR. However,
genomic regions with epistatic interactions were not
identified. Multiple QTL mapping could identify the
same major QTLs for all the traits.

Candidate gene discovery resulted in the iden-
tification of 300 genes in cluster 1 flanked by
Ah02_100365825 and Ahl2_108904988 and 259
genes in cluster 2 flanked by Ah13_80163117 and
Ah13_50074616 (Supplemental Tables S6 and S7).
All the markers showing significant association with
VCR30 through single marker analysis were non-
genic. However, an SNP marker Ah14_138037990,
which showed a PVE of 4.3% with a LOD score of
3.0 for VCR30 was located in the intronic region
of Arahy.QAOCI (on chromosome Ahl4) which is
known to have protein binding function.

Discussion

This study reports identification of QTL for IDC-
related traits like VCR and SCMR in peanut using an
existing genetic map from a RIL population of TMV
2 and TMV 2-NLM and the phenotypic data collected
over two seasons in iron deficient soils. With the nor-
mal distribution of VCR and SCMR, they showed
significant association with the productivity traits like
NPPP and PYPP though a few RILs recovered from
the IDC stress at 90 DAS. This recovery could be
due to the enzymatic activities of the efficient RILs
(Romheld & Marschner 1983). VCR60 and SCMR30
together contributed for 16.2% variation at PYPP,
indicating the influence of VCR and SCMR on pro-
ductivity. TMV 2 (Spanish type) and TMV 2-NLM
clearly show susceptible and tolerance responses,
respectively. High PCV and GCV were recorded
for VCR and SCMR among the RILs indicating the
presence of substantial variability. In peanut, Span-
ish bunch types were found to be more tolerant to
IDC than the other botanical types (Pattanashetti
et al. 2018), and the pod yield was positively corre-
lated with chlorophyll content as reflected by SCMR
(Singh et al. 2018). SCMR was successfully used as
an indicator of IDC tolerance (Samdur et al. 1999).
High heritability and GAM indicated a high propor-
tion of phenotypic variance which is heritable and the
extent of improvement in the mean genotypic value,
respectively for VCR and SCMR during the three
stages (30, 60 and 90 DAS).

Though 11 QTL were identified for VCR, only
three QTL; ¢VCR30_Ah0O4-1 for VCR30, and
qVCR90_Ah13-1 and qVCR90_Ahi2-1 for VCR90
were major regions with a PVE of 20.0%, 34.4%
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Table 3 Identification of main effect QTLs for iron deficiency chlorosis related traits among the RILs of TMV 2 and TMV 2-NLM

of peanut

Trait Chr  Position (cM) Flanking distance Left marker Right marker LOD PVE Additive effect
VCR30

qVCR30_AhO4-1  Ah0O4 9.2 0.0-15.4 ATEQ0087 TC11HO06 44  20.0 -0.007
qVCR30_Ahl6-1  Ahl6 2.0 0.0-7.1 AhTE(0242 AhTE0060 5.7 6.9 0.013
VCR60

qVCR60_Ah0O3-1  AhO3 130.2 123.2-133.8 AWTEI1158 AhTE0249 3.1 6.5 0.042
qVCR60_Ah03-2  AhO3 1358 133.8-141.4 AhTE(0249 AhTEO164 43 5.7 0.039
qVCR60_Ah09-1  Ah09 111.1 111.1-112.7 AhTE0303 Ah09_117710533 3.6 34 -0.030
qVCR60_AhI4-1  Ahl4 153.8 151.8-154.9 Ah14_54578739  Ahl4_32873753 4.5 5.6 -0.043
VCR90

qVCR90_Ah03-1  AhO3 136.8 133.8-141.4 AhTE0249 AhTEO164 5.0 8.4 0.120
qgVCR90_AhI2-1  Ahl12 19.7 5.7-30.2 Ah02_100365825 Ah12_108904988 4.1 10.3  0.003
qVCR90_AhI3-1  Ahl3 1633 159.3-178.3 Ah13_80163117 Ah13_50074616 4.3  34.4 0.005
qVCR90_AhIS-1  Ahl8 274 27.4-30.8 AhTEO0556 Ah18_3399929 4.0 3.8 0.082
qVCR90_AhIS8-2  Ahl8 50.8 49.8-53.9 AhTEO517 AhTEO0143 44 7.5 0.117
SCMR30

gSCMR30_Ah09-1 Ah09 111.1 111.1-112.7 AhTE0303 Ah09_117710533 4.4 4.1 0314
gSCMR30_Ahll1-1 Ahll 673 67.3-69.8 AhTE0212 AhTEO0129 4.8 46 -0.328
gSCMR30_Ah13-1 Ahl3 161.3 159.3-178.3 Ah13_80163117 Ah13_50074616 5.1 11.5 -0.461
gSCMR30_Ahl4-1 Ahl4 24.1 17.1-24.2 AhTE0050 AhTE0107 5.0 5.1 0.357
gSCMR30_Ahi4-2 Ahl4 325 31.4-36.2 Ah14_138037990 AhTE0001 4.1 73 0415
gSCMR30_Ahl5-1 Ahl5 323 32.3-32.4 PM36 Ah15_142386409 3.6 3.8 -0.330
SCMR60

gSCMRG60_AhI2-1 Ahl12 129.5 129.5-140.9 Ah12_1893158 Ahl12_12348612 4.0 3.7 0.526
gSCMR60_Ah18-1 Ahl18 274 27.4-30.8 AhTEO0556 Ah18_3399929 3.6 33 0252
SCMR90

gSCMR90_AhI2-1 Ahl12 212 5.7-30.2 Ah02_100365825 Ahl12_108904988 3.8 11.7 -0.251
gSCMR90_AhI2-2 Ahl12 27.7 5.7-30.2 Ah02_100365825 Ahl12_108904988 4.2 5.6 -0.834
gSCMR90_Ah18-1 Ahl8 49.8 49.8-53.9 ATEQ0517 AhTEO0143 3.6 33 0.582
gSCMR90_Ah19-1 Ahl19 652 65.2-67.1 Ah19_155127338 Ah19_155127364 3.8 3.5 0.659

Chr Chromosome;LOD Logarithm of odds;PVE Phenotypic variance explained;

VCR30 Visual chlorosis rating at 30 days after sowing (DAS);VCR60 Visual chlorosis rating at 60 DAS; VCR90 Visual chlorosis
rating at 90 DAS; SCMR30 SPAD chlorophyll meter reading at 30 DAS; SCMR60 SPAD chlorophyll meter reading at 60 DAS and

SCMRO90 SPAD chlorophyll meter reading at 90 DAS

The naming of QTL is as follows gVCR30_Ah04-1 ‘q’ indicates QTL identified for VCR at 30 DAS on chromosome Ah04 and 1

showing no of QTLs on same chromosome

and 10.3%, respectively. Of the 12 QTLs detected
for SCMR, ¢SCMR30_AhlI3-1 for SCMR30 and
qgSCMR90_Ah12-1 for SCMR90 were two major
regions with PVE of 11.5% and 11.7%, respectively.
qVCR30_Ah04-1 was also supported by a marker
(AhTEO0087) (Fig. 4) identified through single marker
analysis. However, none of these five major QTL
showed epistatic interaction with other genomic
regions. A QTL for VCR30 and VCR60 identified on

@ Springer

AhO04 was found to govern NPPP from the previous
study using the same mapping population (Jadhav
et al. 2021). Similarly, a QTL on Ah14 for SCMR30
was common with NPPP thus indicating the scope for
improving the productivity using these IDC traits.

Of the five major QTL, four were clustered in two
genomic regions; a 24.5 cM region on Ahl12 chro-
mosome with 300 predicted genes carried one QTL
each for VCR90 and SCMR90, and a 19 cM region
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Fig. 4 Mean of the geno-
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on chromosome Ah13 with 259 predicted genes car-
ried one QTL each for VCR90 and SCMR30. The
cluster 2 on Ahl3 was consistent as it was also
identified for VCR90 by Pattanashetti et al. (2020),
while Pandey et al. (2021) identified a QTL cluster
on Ah13 for VCR30, SCMR60 and SCMR90. These
regions can be the targets for further fine-mapping.
A marker (Ah14_138037990) identified with a PVE
of 4.3% for VCR30 using single marker analysis
was located in the intronic region of the gene Arahy.
QAOCI, which is known to have protein bind-
ing function. Further fine-mapping and candidate
gene discovery, as it has been reported in soybean
(Merry et al. 2019; Assefa et al. 2020) and mung-
bean (Prathet et al. 2012), could be useful for gene-
based methods of improving peanut for IDC toler-
ance. Overall, this study validated the results of the
previous studies in a different mapping population,
and also provided more evidence for the QTL, espe-
cially for VCR and SCMR influencing tolerance to
iron deficiency chlorosis in peanut.
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