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deep learning application for HTP. The deep learning 
principles are described and contextualized relative to 
machine learning and conventional computer vision 
algorithms. Novel and emerging deep learning appli-
cations are identified. Recommendations are provided 
with the intent of choosing the most suitable models 
and training strategy for the capturing and predicting 
sensor-based phenotyping traits. It also includes steps 
and suggestions for the development and eventual 
deployment of such models for multi-task phenotyp-
ing. Public datasets have been identified and these 
datasets are reported which can be used for model 
training and benchmarking. Overall, this study pro-
vided a comprehensive overview of deep learning, it’s 
application in plant phenomics, potential barriers and 
scope of improvement.

Keywords  Deep learning · High-throughput plant 
phenotyping · Convolution neural network (CNN) · 
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Introduction

A principal objective of crop improvement is to 
enhance our understanding of phenotypic charac-
teristics such as growth, yield, disease resistance 
and agronomic robustness of crops. Multitude of 
factors related to genotype and environment inter-
act in complex ways which is manifested in form 
of phenotypic variation. This makes it essential 

Abstract  With climate change and ever-increasing 
population growth, the pace of varietal development 
needs to be accelerated in order to feed a population 
of 10 billion by 2050. Non-invasive high-throughput 
plant phenotyping (HTP) using advanced imaging 
technology has capabilities to boost the varietal devel-
opment process. The tremendous data generated with 
sensor aided HTP have created the big data and prob-
lem in the downstream data analysis pipeline. The 
higher-level abstraction achieved on high dimensional 
data by multiple hidden layers for function approxi-
mation have made deep learning applications in HTP 
of significant interest. Application of deep learning 
models to enhance image-based throughput in pheno-
typing is an emerging and dynamic area of research 
in plant phenomics. In this comprehensive review we 
highlighted the recent developments in the field of 
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to capture extensive phenotypic data if one wants 
access to the ’genotype–phenotype’ map (Nyine 
et al. 2018). However there exists a lag in through-
put of plant phenotyping relative to genotypic 
characterization. Phenomics is the acquisition of 
high-dimensional phenotypic data on an organism-
wide scale (Fahlgren et al. 2015). It is the enabling 
force to trace causal links between genotypes and 
environmental factors, studying the genotype–phe-
notype map, identifying the genetic basis of com-
plex traits (Nyine et al. 2018); (Sandhu et al. 2020) 
(Sandhu et al. 2021b). As the high dimensional data 
is inherent to phenomics, it becomes very intensive 
for modelling and deriving phenotypic informa-
tion. To relieve the phenotyping bottleneck, high 
throughput phenotyping is necessary. Here the term 
high throughput refers to capacity and speed that 
enables the current phenotyping system to acquire 
phenotypic data of hundreds of genotypes in a 
short period of time. Such capabilities inherent to 
the high-throughput plant phenotyping (HTP) sys-
tems allow for screening of mutant populations and 

detection of quantitative trait loci (QTLs) (Fahlgren 
et  al. 2015). HTP is generally achieved by acqui-
sition of images to quantify traits over a whole 
growth cycle of crop plants (Ampatzidis and Partel, 
2019). The throughput combined with the multitude 
of imaging sensors causes accumulation of big data. 
Images are information rich and as such deriving 
information from vast arrays of images is becoming 
the new bottleneck in the task of plant phenotyping 
(Minervini et al. 2015). It has become the rate lim-
iting step in throughput and clog the data analysis 
pipeline that translates data acquisition to infor-
mation and finally to insight (Schmidhuber, 2015). 
Deep learning (DL) application in plant phenom-
ics (Fig. 1) has been emerging as the much-needed 
catalyst to relieve this bottleneck in HTP. The mul-
tidimensional nature of data demands for such mod-
els which can extract and model phenotypic traits 
utilizing the hidden relationships and patterns in 
the data (Sandhu et al. 2020); (LeCun et al. 2015). 
This capability of high-level abstraction from data 
to generate valuable phenotypic information can 

Fig. 1   Illustration of deep 
learning applications in 
various areas of plant 
phenotyping with examples 
reviewed in this paper. It is 
obvious that deep learning 
has already penetrated the 
research and workflow in 
HTP across a wide range of 
applications which ranges 
from image reconstruction 
(Li et al. 2017; Yuan et al. 
2017), genotype classifica-
tion (Taghavi Namin et al. 
2018), root tips (Yasrab 
et al. 2019), spikelets 
(Pound et al. 2018), spike 
(Hasan et al. 2018), fruits 
(Sa et al. 2016), hypocotyl 
length (Sa et al. 2016) and 
instance segmentation of 
plant organs (Douarre et al. 
2018; Yamamoto et al. 
2017; Sadeghi-Tehran et al. 
2019; Ghosal et al. 2019)
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only be achieved by application and use of DL mod-
els for data analysis pipeline in plant phenotyping 
(Sandhu et al. 2021c).

Earlier the task of computer vision was confined 
to detection of corners, edges, circles, etc. and fea-
tures were handcrafted. But with the advancement 
in powerful computers and ubiquitous nature of 
imaging technology the computer vision needed to 
be advanced. Since the last few decades this much 
needed boost is provided by DL. This includes convo-
lution neural network (CNN), multilayer perceptron 
(MLP), recurrent neural network (RNN) and genera-
tive adversarial networks (GAN) (Wang et al. 2020a, 
b); (LeCun et  al. 2015). There are multiple reviews 
and surveys about machine learning, DL, and appli-
cation of machine learning in agriculture (Kamilaris 
and Prenafeta-Boldú, 2018; Liakos et al. 2018; Mago-
madov, 2019; Zhu et al. 2018) but it is quite lacking 
in DL applications for HTP. Also reviews related to 
phenotyping are present (Araus et al. 2018; Li et al. 
2020; Minervini et al. 2015; Singh et al. 2018) but it 
lacks an exhaustive overview of DL based principles 
and application in plant phenotyping. The objective of 
this review is to show why and how DL has been inte-
grated in the fabric of HTP as well as to give exposure 
to the existing well-organised, annotated, and public 
datasets and tools to have a head start in this field. 
Recommendation of models for task specific purpose 
with its advantage attributed to unique network archi-
tecture has been elucidated for deeper understanding 
into how model architectures are designed, modified, 
or selected for HTP analysis pipeline.

Deep learning concept and models

DL is a branch of machine learning which comprises 
a complex model that enables higher-level abstraction 
in data through multiple nonlinear transformations 
(Bengio et al. 2015). The word "deep" in "deep learn-
ing" emphasises the multitude of hidden layers (i.e., 
substantial credit assignment path or CAP depth) 
in DL algorithms through which the data is trans-
formed. The CAP depth refers to a chain of transfor-
mations which occurs on input data to yield output. 
For a feedforward neural network, it is calculated by 
using the count of hidden layers in the network plus 
one (Schmidhuber 2015). Deep learning evolved from 
simple neural networks as a need to achieve a higher 

level of abstraction to capture intricate structure 
inherent in the big data made possible by multiple 
hidden layers as processing units (Bengio et al. 2015; 
Voulodimos et al. 2018). Percepton is the basic struc-
tural unit of such networks which is analogues to bio-
logical neurons. Mathematically individual percepton 
(`f) can be expressed in terms of weight w, bias term 
b and nonlinear activation function a, which together 
transforms input x.

�f = a(wx + b)

Stacks of such perception form a layer and the 
interconnected layer forms a network. When all the 
nodes are connected then it is called fully connected 
neural networks (FCNN). Another important type of 
network is the CNN characterized uniquely by convo-
lution operation which considers the spatial data for 
learning (Fig. 2). Unlike FCC having a dense weight 
matrix the CNN is very sparse due to the concept of 
tied weights (Bengio et  al. 2015; Voulodimos et  al. 
2018). The CNN architecture often features a con-
volution layer as an automatic feature extraction unit 
and a fully connected layer to perform classification, 
regression on the feature extracted (Bresilla et  al. 
2019; Schmidhuber 2015). The network topology can 
be understood as a combination of multiple layered 
operation which includes but not restricted to convo-
lution, non-linear activation and subsampling layer 
(Jarrett et  al. 2009). This layered structure makes 
network architecture flexible and customizable to use 
cases (Oquab et  al. 2014). This analogous structure 
design makes DL networks capable of extraction of 
useful features from locally correlated data points. 
Three by three window size (3 × 3) convolution ker-
nels has been most popularly (Lin and Guo  2020; Sa 
et al. 2016) (Sandhu et al. 2020) used but the size of 
the convolution kernel can be customized with target 
object size for which we want to preserve the features 
(Chollet, 2017). Convolution kernel slides over image 
and produces output image which is then passed to 
a non-linearly processing layer of the network. The 
introduction of non-linearity with the use of activa-
tion functions in the network leads to a nonlinear fea-
ture space that helps in learning abstraction of input 
data as well as activation patterns (Lin and Guo 2020; 
Sandhu et al. 2020); (Bresilla et al. 2019).

CNN has automatic feature extraction capabili-
ties from images for which one of the most important 
operations is convolution operations performed by the 
convolution kernel on the image matrix. Kernels are 
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flexible but generally used in odd pixel size dimen-
sions (DeChant et  al. 2017). These kernels can be 
simply understood as filters in the network. As the 
image passes through these convolution layers, fea-
tures get extracted which acts as input to a fully con-
nected layer for prediction which can be either dis-
crete (classification) or continuous (regression). The 
backpropagation during training allows for selection 
of appropriate features which are relevant for the 
learning process and keep in check the overfitting. 
Complex regression tasks can also be accomplished 
using CNN based models (Sandhu et al. 2020).

Application of deep learning in plant phenotyping

DL includes a multitude of network architecture for 
example- deep neural networks (DNN), CNN and 

RNN. In recent years, CNNs have shown usefulness 
in a large variety of natural language processing and 
computer vision applications, including segmentation 
and image classification, and often surpassed state-of-
the-art techniques (Mikolov et al. 2013; Szegedy et al. 
2017). HTP relies heavily on non-destructive image-
based phenotyping (Das Choudhury et  al. 2019). A 
digital image is mathematically a matrix of digital 
numbers arranged in rows and columns resulting in 
extensive data. The major challenge is deriving infor-
mation from such bigdata (Gnädinger and Schmid-
halter 2017). In recent years DL based solutions for 
HTP is an emerging field finding its application in 
numerous tasks. It has become the go-to state-of-the-
art technology for multi-task phenotyping (Michael 
P. Pound et  al. 2017a, b). Deep learning integration 
in the phenomics image analysis pipeline to achieve 
high-throughput is depicted in Fig. 3.

Fig. 2   Network archi-
tecture of deep learning 
networks includes a deep 
neural networks having 
input, multiple hidden 
layers and a final output 
layer. Each layer consists of 
multiple neurons which are 
interconnected to neurons 
in the subsequent layers, 
resulting in the formation of 
a deep network; b pipeline 
for convolutional neural 
networks which consist of 
convolutional, max pool, 
flatten, dense and output 
layers. Information flows 
using multiple filters in the 
convolutional layer by using 
input images to provide the 
results at the output layer 
using various activation 
functions and dropouts
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Image classification for plant phenotyping

CNN is simply the best state of the art model than any 
other for classification tasks (LeCun et  al. 2015). It 
can achieve higher accuracy even in smaller datasets. 
This is due to the fact that it is capable of automatic 
extraction of relevant features by convolution opera-
tion after training instead of hand-crafted features. 
The image classification task in plant phenotyping 
ranges from feature classification (awn, root tips, leaf 
tip, spike), growth stage detection, genotype classifi-
cation to classification of various diseases.

Awn and awn-lessness is an important pheno-
typic trait. Screening genotypes for presence of awn 
using conventional methods had been challenging. 
For this purpose, Pound et  al. 2017b developed an 

ACID dataset (Annotated Crop Image Dataset) with 
520 wheat crop images of dimension containing a 
total of 4100 ears and 48,000 spikelets. The images 
were also tagged for presence or absence of awned 
phenotype. Awned plants made one third portion of 
the total ACID dataset. This dataset was then used 
for training multitask CNN architecture with hour-
glass structure which classified genotypes along with 
localizing spikelets and spikes. The stacked hourglass 
structure allowed for helping in combining hierar-
chical features from multiple scales which helps to 
preserve spatial resolution in the network output. At 
the resolution of 512 × 512 the network achieved a 
near perfect accuracy of 99% while lowering resolu-
tion of input data to 256 × 256 caused accuracy loss 
(98.39%) (Pound et al. 2017a, b). Wang et al. (2018) 

Fig. 3   An illustration of deep learning applications integrated 
in the image analysis pipeline to achieve higher-throughput 
plant phenotyping. One of the first steps includes a data col-
lection, labelling and curation to make it suitable for input. 
Data obtained can be from multiple sources like RGB, hyper-
spectral, multispectral, NIR, fluorescence, and LIDAR sensors. 
Next step involves b model selection and suitable optimiza-
tion algorithms for faster and efficient model training. Suit-
able model development for task specific application in itera-
tive process. The back arrow represents tweaking the model 
selection, architecture and hyperparameters for better accuracy. 
Once assured of model performance, c model is used for infer-
ence on new phenotypic data obtained non-invasively using 
non-invasive sensors. The back-arrow represents the itera-

tive nature of the model training process because models are 
not developed in one day, but it needs multiple training with 
finer adjustment in model hyperparameters for achieving better 
accuracy reflected performance measures like-MSE, RMSE, 
F1 score, precision, and recall. Finally, d the inferences are 
subjected to various data analysis techniques like GWAS, QTL 
mapping, broad sense heritability etc.as well characterization 
of plant stress tolerance response based on deep learning mod-
el’s inference derived traits. In this way instead of conventional 
manual labour-based plant phenotyping, deep learning-based 
application has been streamlined and very deeply integrated 
into workflow for enhancing the throughout high throughput 
phenotyping. This ultimately helps translate large phenotypic 
data into informative phenotypic data for crop improvement



	 Euphytica (2022) 218:47

1 3

47  Page 6 of 22

Vol:. (1234567890)

used resampled hyperspectral images as input to the 
CNN model (ResNet) which achieved higher accu-
racy than traditional machine learning approach for 
classification of damaged blueberries (Cyanococcus 
spps) from healthy (Wang et al. 2018). CNN can also 
perform classification using RGB images of sour lem-
ons (Citrus limon) from the healthy ones at a higher 
accuracy on images running from low resolution to 
high resolution images (Jahanbakhshi et  al. 2020). 
Availability of automated remote sensor-based phe-
notyping systems make non-invasive data collection 
throughout the life cycle. Such a multitemporal data 
set has a big advantage that it captures the pheno-
logical stages and change in crop over its whole life 
cycle (Sandhu et  al. 2021a, b, c). The only problem 
is deriving information from such a huge amount 
of data. This bottleneck can be addressed by CNN-
LSTM based networks which can take and derive 
meaning from multitemporal data (Ghosal et  al. 
2018; Taghavi Namin et  al. 2018). Long short-term 
memory (LSTM) fully connected layers can solve the 
problem of long-term dependencies which is helpful 
to assimilate plant development multi-temporal data. 
For genotype/phenotype classification CNN_LSTM 
model proved very useful as it has CNN derived auto-
matic deep feature extraction from images which is 
then used for classification using LSTM that showed 
improved classification over time with an accuracy 
of 0.93 (Taghavi Namin et  al. 2018). Phenological 
stages are important for plant phenotyping. CNN 
classification model was shown to predict pheno-
logical stages CNN based approach for the classifica-
tion of different phenological stages of multiple crop 
which included wheat, barley (Hordeum vulgare L.), 
lentil (Lens culinaris L.), cotton (Gossypium hirsutum 
L.), pepper (Piper nigrum L.) and maize (Zea mays 
L.) at different critical stages of crop life cycle (Yal-
cin 2017). Pretrained AlexNet was used in this study 
for classification which is fine tuned on a dataset of 
400 images sampled in patches of 227 × 227 dimen-
sion. The trained model showed higher accuracy for 
wheat 83.4% as compared to manually extracted tex-
tural features trained machine learning model. Simi-
lar trend of higher accuracy for CNN was seen in all 
other crops.

Other than spike, the quantification of traits 
like number of leap tips, shoot tips and leaf base 
are important for detailed phenotypic studies. The 
automated robotic data acquisition demands also a 

computer vision based automated feature extraction. 
To attain this automation Pound et al. (2017a, b) used 
a dataset of root and lead tip labelled images. Image 
dimensions of 32 × 32 and 64 × 64 features were taken 
for training classification networks with annotations 
for its tip and base. Such small dimension images 
reduce training time as well provide enough feature 
details. A total number of 43 641 root and 62 118 
shoot images were split in a ratio of 80:20. CNN lay-
ered architecture with multiple convolution and pool-
ing layers finally culminating into a fully connected 
layer was used. More than 99% accuracy achieved for 
both shoot and root classification network. The net-
work was then deployed on the whole image in stride 
mode for subpixel level classification inorder to local-
ize the tips and based on root and leaves in the whole 
image. Also the quantitative data thus obtained was 
then used for QTL discovery for which many QTL 
regions were successfully identified. Wang et  al. 
(2019) developed WheatNet DL model for detecting 
multiple phenotypic parameters of wheat under field 
condition using multi-array assembly of RGB cam-
eras capable of collecting georeferenced proximal 
images of wheat canopy. WheatNet model consisted 
of ResNet18 as a base classifier for classifying single 
images divided in patches followed by a voting layer 
for prediction of heading percentage, awn and awn-
less phenotype. The model showed near perfect accu-
racy of 98.6% for discrimination of awned and awn-
less phenotype. Predicted traits from CNN showed 
high broad-sense heritability with a value of 0.99 
for heading percentage and 0.51 for rate of heading 
(Wang et al. 2019).

Regression problems in high‑throughput plant 
phenomics

Unlike classification where outcomes are categori-
cal, regression problems involve continuous value as 
output. Regression is a very important technique in 
research for modeling and prediction of traits from 
training data in plant phenotyping. Earlier it was con-
fined to only numerical data but with CNN image 
data has been regressed to important plant traits like 
length, biomass etc. (Zhou et  al. 2020). Emergence 
counting under field condition particularly of wheat 
is not possible with conventional computer vision 
algorithms because wheat being a monocot plant 
has narrow overlapping leaves. Aich et  al. (2018) 
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used convolutional blocks which consisted of sim-
ple convolution operation followed by local response 
normalization and rectified nonlinearity with simpli-
fied residual blocks to design CNN architecture for 
biomass estimation and emergence counting on seg-
mented wheat field image (Aich et al. 2018).

The phenotypic data collected on hundreds of gen-
otypes are generally multidimensional in nature. In 
addition, with the development of inexpensive imag-
ing sensors and Unmanned Aerial Vehicle (UAV) 
platforms, the task of data acquisition throughput 
crop life-cycle has become easier (Sankaran et  al. 
2019). It resulted in a shift of focus from data acquisi-
tion to data analysis – extracting significant features 
and recognizing underlying patterns paving way to 
significant insights. Conventional data analysis tech-
niques are not able to exploit the benefits of huge and 
multidimensional data. Dataset from multiple targets 
(example crop genotype, soil, weather etc.) can be 
easily assimilated in a DL model for yield prediction 
for genotypes under varied environment conditions 
(Khaki and Wang 2019; Sandhu et al. 2020). Hyper-
spectral dataset are unique in the sense that the images 
capture over hundred of wavelengths giving its high 
dimensionality. The spectral data are converted into 
various indices which are derived from mathematical 
operations on significant spectral bands that reflect 
physiological status and health of the plant. Earlier 
studies used only index-based phenotyping (Zhu et al. 
2020), but such index-based phenotyping was not 
able to get the benefits of DL applications on high-
dimensional spectral data as well as some indices like 
Normalized Difference Vegetation Index (NDVI) gets 
saturated problem for higher leaf area index (Gitelson, 
2004). Recent studies on hyperspectral data spectrally 
unmixing for spike and leaf pixels as input to DNN 
(multilayer perceptron) networks showed promising 
in prediction of crop yield parameters with high cor-
relation (0.79) and low normalized root mean square 
0.24 at sub-plot scale (Moghimi et al. 2020). Itakura 
et  al. (2018) used CNN based regression model on 
fluorescence spectroscopy images for prediction of 
Brix ratio which is an indicator of fruit maturity. Seed 
content in individual pods is also an important plant 
parameter determining yield in podded crops (Itakura 
et  al. 2018). CNN classification architecture was 
repurposed for regression by using softmax activation 
function in the output layer to ensure continuous out-
put for regressing pea (Pisum sativum L.) pod image 

to seed count (Uzal et al. 2018). Similarly, ResNet50 
as based model was repurposed for scoring of cof-
fee (Coffea arabica) leaves with an accuracy of 97% 
for severity estimation (Esgario et  al. 2020). Such a 
system when deployed on edge computing devices 
might prove to be a suitable tool for real time phe-
notyping under field conditions (Partel et  al. 2019). 
Genome wide prediction is another area at which the 
function approximation capacity of CNN model can 
be exploited because of the high dimensional nature 
of marker data which is used to predict phenotypes. 
Sparse one dimensional CNN with l1-norm regulari-
zation was found to provide accurate and computa-
tionally efficient to estimate phenotypes with accu-
racy improvement of 25% on simulated data over east 
Absolute Shrinkage and Selection Operator method 
(LASOO) (Waldmann et al. 2020).

Feature localisation and counting

Yield determining crop features which are local-
ized in nature include number of spikes, spikelets, 
number of ears and fruits are of central importance 
for the task of phenotyping. Feature localization of 
specific plant organs can be achieved by computer 
vision and image processing techniques that deals 
with detecting instances of target semantic objects by 
predicting coordinates or regions of objects of inter-
est based on annotated training dataset (Gao et  al. 
2020; Majeed et  al. 2020). Popular feature localiza-
tion algorithms are you-only-look-once (YOLO) 
(Redmon et  al. 2016), single-shot detector (SSD) 
(Liu et  al. 2016) R-CNN (Girshick et  al. 2014), and 
Faster R-CNN (Ren et  al. 2017). The YOLO family 
and the SSD framework are one-stage models which 
makes it faster but with an added disadvantage that it 
suffers with extreme imbalances in number of objects 
detected as well as many times evades detection of 
small target objects. However, region based CNN 
(R-CNN), encoder-decoder type networks use region 
proposal layers which output multiple regions that 
are subjected to classification for instatance detec-
tion resulting in high accuracy(Girshick et  al. 2014; 
Zhang et  al. 2018). However, R-CNN has relatively 
higher training and inference time requirement due 
to the process of proposing and classifying thou-
sands of regions per image which involved multiple 
convolutions. This drawback was overcome with the 
development of Faster-RCNN (F-RCNN) which does 
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only one convolution for region proposal, making it 
faster and suitable for real-time application while 
maintaining higher localization accuracy (Gao et  al. 
2020; Ren et al. 2017). Itzhaky et al. (2018) showed 
tiny-YOLOv3 (ADAM optimizer with a learning rate 
of 0.00001) real time inference with higher accuracy 
(F1 score = 0.94) which was comparable to F-RCNN 
for leaf detection and counting application on Arabi-
dopsis (Arabidopsis thaliana) (Itzhaky et  al. 2018). 
Stein et al. (2016) used faster R-CNN for light detec-
tion and ranging (LIDAR) based detection of fruit 
for yield estimation of mango (Mangifera indica L.) 
orchards (Stein et  al. 2016). Koirala et  al. (2019) 
designed MangoYOLO with 33 layered architec-
ture (as compared to YOLOv3 having 106 layers) to 
preserve details of smaller and darker mangoes on 
tree and achieved a F1 score of 0.968 and average 
precision of 0.983 on test dataset (refer to Table 1). 
MangoYOLO(s)-512 achieved the highest average 
precision (AP = 0.986), with similar results achieved 
for MangoYOLO(pt) (AP = 0.983), and SSD-300 
(AP = 0.982), while the lowest AP was associated 
with Faster R-CNN-VGG-original (AP = 0.917). 
The accuracy is not only determined by choice of 
algorithm but also the input data (Koirala et  al. 
2019). A study done by Sa et al. (2016) using image 
fusion techniques for generating fused training data 
from different imaging sensors showed significant 
improvement in model performance. It was reflected 
in higher F1 scores values of models trained on late 
fused (RGB and near-infrared (NIR)) dataset (0.83) 
in comparison models trained separately on RGB 
(0.816) and NIR (0.797) images. The time of fusion 
in the network also showed to influence detection 
accuracy with the later stage fusion showering higher 
accuracy than the early fusion network architecture 
(F1 score = 0.799) (Sa et al. 2016).

In the case of wheat, the number of spikes is an 
important yield determining factor. Detection and 
counting of spikes by non-destructive methods 
proved to be a significant step forward in the area of 
HTP (Michael P. Pound et al. 2017a, b). The state-of-
the art DL models have shown high detection accu-
racy avoiding tedious field phenotyping and achiev-
ing high-throughput. For control conditions, proximal 
sensing of a single plant allows for higher resolution 
images which ultimately can be used to derive more 
detailed phenotyping traits. Spike and spikelet count 
with a near perfect accuracy 95.91% and 99.66% can 

be obtained by just using a simple consumer grade 12 
MP camera (Pound et al. 2017a, b). The model used 
was the encoder and decoder architecture network 
containing four stacked hourglasses including inter-
mediate supervision. This unique network architec-
ture design allowed for conservation of resolution and 
relevant features during down-sampling and up-sam-
pling operation. Leaves are the plant’s most important 
organ as it is the seat of photosynthetic processes and 
dubbed as a food factory for plants. So, the number of 
leaves is an important phenotyping parameter which 
determines vegetative growth of plants as well as pro-
ductivity. However, leaf counting in rosette plants has 
been a challenging task for computers. Various pio-
neering studies have been done recently using CNN 
models for counting plant leaves (Ubbens and Stav-
ness 2017); (Buzzy et al. 2020; Itzhaky et al. 2018). 
Ubbens and Stavness 2017 used multiple datasets 
having two arabidopsis (A1 and A2) and one tobacco 
dataset (A3) image with leaf annotations. The lay-
ered CNN architecture with stacked convolution and 
pooling layers followed by a fully connected layer 
and ADAM optimizer was trained on RGB images. 
It showed appreciable counting performance with 
mean absolute difference (MAD) value of 0.61 for 
arabidopsis dataset and tobacco dataset. However 
MAD score was shown to depreciate with A1 data-
set due to compact and overlapping nature of leaf 
phyllotaxy for that accession of arabidopsis. Itzhaky 
et  al. 2018 designed a network with two approaches 
for leaf counting tasks. The one network architecture 
was based on regression while the other on detection 
of keay-point. The regression network was designed 
with FPN backbone and a count regression submodel. 
The key-point detection model consisted of detection 
subnetwork and counting sub-network. Both models 
optimized with ADAM, showed higher precision of 
95% which was improved over its previous counter-
parts. One of the recent studies has shown the poten-
tial of Real time phenotyping for leaf counting with 
inference time of 0.01 s using TinyYOLO v3 has been 
shown to achieve a F1 score of 0.94 (Buzzy et  al. 
2020). The inference time was 1000 times faster to 
Faster R-CNN (F1 score 0.89).

Segmentation in plant phenotyping

Image segmentation is one of the most fundamental 
and indispensable image pre-processing steps which 
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allows for masking of images so that only the region 
of interest remains in images. It can be done for an 
instance or to segment a semantic in images. Conven-
tionally segmentation was achieved using threshold-
based masking which fails when background is com-
plex, particularly under field conditions. CNN comes 
to the rescue under such conditions as it can reap the 
benefits of exploiting spatial relationships among pix-
els using higher level abstraction (Ramcharan et  al. 
2019). In the plant phenotyping process certain tar-
gets in the image, particularly thin and slender objects 
of interest like root and seedlings are hard to segment 
from the background. U-Net deep CNN has become a 
very popular algorithm for segmentation tasks in the 
plant phenotyping community (Mohanty et al. 2016). 
The strength of UNet lies in the fact that it is excel-
lent for finding and segmenting thin objects like root 
and shoot (Dobos et  al. 2019). The capability can 
be seen from the fact that U-Net CNN architecture 
with smooth Dice coefficient loss function was used 
for segmentation of seedling’s hypocotyl of different 
species (Dobos et  al. 2019). The segmented skeletal 
output image was then utilized for hypocotyl length 
estimation. CNN models are also revolutionizing the 
throughput of root phenotyping tasks. Earlier root 
system analysis software was used to be semiauto-
matic like RootNAV 1.0, SmartRoot (Lobet et  al. 
2011). It has reached a new height with the devel-
opment of RootNAV 2.0. RootNAV was originally 
semi-automatic but with the release of version 2.0 it 
became powered by a DL algorithm that automates 
the task of extracting root architecture and makes it 
ten times faster without sacrificing accuracy (Yasrab 
et al. 2019). It can generate automatic masks for first 
and second order roots as well as heatmaps for tip 
localization. This approach was effective as it seam-
lessly made it possible to combine the local pixel 
information to the global scene information (Yasrab 
et al. 2019).

DL based pipelines for determination of image-
based traits in HTP systems have been gaining trac-
tion. High throughput capability of such a pipeline 
using F-RCNN for stalk counting and FCN coupled 
with ellipse fitting for width determination of the seg-
mented stalk for sorghum (Sorghum bicolor L.) geno-
types which achived a accuracy of 0.88 for stalk count 
and low mean absolute error for stem width determi-
nation of 2.77  mm (Baweja et  al. 2018). This pipe-
line was advantageous as F-RCNN is an improvement 

over the RCNN (Ren et al. 2017), due to inclusion of 
specialized architecture called region proposal net-
works (RPN) which predicts object position based 
on features from the previous layer of VGG-16 net-
work. Similarly, Mask R-CNN when coupled with 
DBSCAN clustering algorithm allowed automatic 
segmentation of overlapped poplar seedling leaves 
(Liu et al. 2020).

It can perform in real time when implemented on 
a graphics processing unit (GPU) based DL system. 
A major limitation is that many times it is not able to 
detect highly overlapping instances of objects due to 
non-maximal suppression rejection which is prevalent 
in images acquired under field conditions (Gao et al. 
2020). Fully automated measurements from such a 
pipeline were proved to be accurate to within 10% of 
human validation measurements for stalk count and 
2.76 mm on average measure for stalk width proves 
robustness of DL for HTP workflow. Such applica-
tion of automated phenotypic data acquisition can 
be extended to other crops like sorghum, sugarcane 
(Saccharum officinarum), maize (Zea mays L). The 
application of these networks is not limited to RGB 
images but rather it can be extended to hyperspec-
tral images and LIDAR data (Tsoulias et  al. 2019). 
Feng et al. (2020) reported DL based neural network 
architecture for semantic segmentation of plants from 
hyperspectral images for plant phenotyping to have 
outperformed conventional approaches as revealed by 
higher value of segmentation performance measures 
like symmetric best dice (SBD) score for DL pipeline 
(Feng et al. 2020). However, use of DL for hyperspec-
tral image segmentation might prove to be an over-
kill when simple machine learning techniques can do 
a better job due to higher content of information per 
pixel in hyperspectral images. Miao et al. (2020) used 
simple machine learning techniques like support vec-
tor machine, linear discriminant analysis, and partial 
least-squares discriminant analysis to achieve pixel 
based organ-level semantic segmentation of leaf, stalk 
and panicle of sorghum and maize genotypes to iden-
tify genes controlling variations of these phenotyp-
ing parameters (Miao et al. 2020). LIDAR images are 
unique in a way that it gives 3D point cloud informa-
tion having a depth map of the target object. F-RCNN 
on compressed 2D versions derived from 3D LIDAR 
images can be used for individual maize segmenta-
tion (Jin et  al. 2018). DL is proving to be essential 
for plant phenotyping for biotic stress tolerance. Root 
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phenotyping is challenging considering the factors 
that there is very less contrast between soil and roots. 
Douarre et al. (2018) used transfer learning on X-ray 
computed tomography images to segment roots from 
the soil. Thus while semantic segmentation is useful 
for masking the whole object from the background, 
the instance based segmentation serves the purpose of 
specified plant parts like spike, fruits, roots (Douarre 
et al. 2018); (Yamamoto et al. 2017). Combining the 
best features of pre-existing models to make a new 
model for achieving multitasking phenotyping capa-
bilities and achieving better accuracy have become 
a new trend. Misra et al. (2020) leveraged the Local 
Patch extraction Network (LPNet) and Global Mask 
refinement Network (GMRNet) to design SpikeSeg-
Net with capabilities for segmentation of spike from 
wheat RGB image grown in controlled phenotyp-
ing facility in pots (Misra et  al. 2020). The network 
trained on RGB data of wheat grown in pots for 200 
epochs achieved a near perfect accuracy of 0.99 for 
spike segmentation and 0.95 for spike counting.

The model accuracy, precision and recall all 
depends on the data provided to the model. Image 
characteristics like contrast, resolution, quantiza-
tion and number of bands play an important part in 
determining the accuracy of the trained CNN model 
(Yamamoto et al. 2017). To enhance contrast, some-
times only RGB imaging does not prove sufficient. 
This is often the case with field phenotyping using 
only RGB sensors. However, multiple image fusion 
techniques have been devised so that information 
from a multitude of sensors can be used in unison to 
achieve better predictions. The fusion of RGB image 
with multispectral image sensor provided much more 
contrast and thus performed better in segmentation 
(Lu et al. 2017).

Deep learning‑based field phenotyping

Spike characteristic is a proxy measure for grain pro-
duction. Under field conditions performing this task 
become complex with traditional methods due to 
overlapping of features as well as variability in vis-
ibility conditions. The R-CNN model has been found 
to perform with high accuracy (93.4%) and F1 score 
(0.95) for the detection and counting of spikes under 
field conditions (Hasan et  al. 2018). Such DL tech-
niques on RGB images are crucial for high-through-
put quantitative assessment of a multitude of traits. 

As the data so is the model performance, got reflected 
in fact that model trained on higher colour contrast 
dataset between the object of interest and the back-
ground (yellow plant and green spike stage of wheat) 
showed better accuracy, over dataset having lower 
contrast between plant and spike (when both spike 
and plant were green and in later stages when both 
plant and spike were yellow). The case of field phe-
notyping is totally different because the background 
under field condition is very different (Ghosal et  al. 
2018). Simple linear iterative clustering (SLIC) 
which helps to develop masks using super-pixels is 
becoming an algorithm of choice for masking vegeta-
tion in field conditions with low computational cost. 
Output masked images can be fed to DL networks 
for counting. Sadeghi-Tehran et al. (2019) with SLIC 
and binary cross-entropy loss function leveraged the 
U-Net model with VGG model without fully con-
nected layers as its encoder mechanism to develop 
DeepCount model for quantification of spikes under 
field conditions for large-scale breeding programs 
(Sadeghi-Tehran et  al. 2019). These models outper-
formed the handcrafted image-based methods with 
a correlation coefficient value of 0.94 and root mean 
square of 25.1 which was attributed to DL model abil-
ity to handle the complexity of movements, shadow 
and overlap under field conditions. UAV is becoming 
a popular platform for field based plant phenotyping 
(Sankaran et al. 2019); (Ghosal et al. 2018). Lin and 
Guo (2020) used U-NET CNN model for segmenta-
tion of sorghum panicles based on UAV acquired data 
followed by its counting using open-source computer 
vision library (OpenCV) contour based functions. 
The U-Net architecture is so popular in biological 
application as its contracting part captures context 
and an asymmetric expanding path enables precise 
localization (Lin and Guo 2020). The model con-
catenates the encoder feature maps to up-sampled 
feature maps from the decoder at every stage. Other 
encoder and decoder type models are also very popu-
lar in such tasks. Field phenotyping calls for integra-
tion of DL with robotics and other computer vision 
techniques for development of DL based phenotyping 
solutions. Complex pipelines involving multiple algo-
rithms are becoming a new trend to solve real world 
field phenotyping challenges for example Stalknet 
(Baweja et al. 2018). The Stalknet pipeline comprises 
Faster R-CNN, FCN and OpenCV based algorithms. 
Data flow through Faster R-CNN to give tiller count 
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number, FCN acts as a masking module for the stalk 
while OpenCV ellipse fitting algorithms determined 
the width of the masked stalk using stereo images and 
the output of the masked stalk images from the FCN 
layer (Gao et al. 2020). This higher level of integra-
tion among algorithms allowed for synergistic effect 
allowing for multiple tasks like counting and width 
estimation with higher accuracy. In sorghum head 
detection and counting using UAV acquired images 
RetinaNet with ResNet-50 backbone was shown 
to give close estimates to the true count that too 
achieved with less training dataset (only 40 labelled 
images) for semi-trained CNN model (Ghosal et  al. 
2018). The model on transfer learning over only 40 
epochs showed a high correlation coefficient of 0.88 
and mean average precision of 0.94 for sorghum head 
labelling and counting respectively.

DL backed phenotypic data acquisition and 
hyperspectral image reconstruction

Other than the general trend of acquisition and pre-
diction of plant traits there are numerous applica-
tions due to the inherent flexibility of DL models. It 
becomes obvious with the work of Wu et  al. (2019) 
which showed that the decision making process for 
next optimal viewpoints of multiple robotic arms 
deployed simultaneously (for 3D images based plant 
phenotyping) can be driven by point completion net-
work (PCN) based DL with high accuracy (Wu et al. 
2019). So, DL driven robots can accelerate the data 
acquisition process making it autonomous and effi-
cient (Ferentinos, 2018). Hyperspectral and multi-
spectral imaging proved to be indispensable for plant 
phenotyping as it reveals the physiological charac-
teristics of plants which RGB sensors cannot achieve 
at that scale (Yendrek et al. 2017) Zhao et al. (2020) 
used UAV acquired multispectral imagery for model-
ling vegetation index from RGB image (Zhao et  al. 
2020). The reconstruction of hyperspectral data from 
the down sampled version of the data can acts as 
opportunity to derive hyperspectral images form mul-
tispectral sensor (Feng et  al. 2020) and also derive 
super-resolution hyperspectral images from low 
resolution data ((Li et  al. 2017); (Yuan et  al. 2017). 
Xiong et  al. (2017) used HsCNN model for hyper-
spectral image recovery under sampled projections. 
The HsCNN model features an encoder-decoder 
layer with skips connections to allow for image 

reconstruction without loss of low-level details. The 
trained HsCNN model for 150 epochs achieved nor-
malized root mean square error value of 0.38. RGB 
images are ubiquitous and affordable while hyper-
spectral sensors are expensive and require technical 
expertise (Xiong et al. 2017). So many hyperspectral 
image reconstruction from RGB cameras using sparse 
coding (Arad and Ben-Shahar, 2016) and DL (Shi 
et  al. 2018) were attempted with appreciable accu-
racy. Shi et al. (2018) designed HsCNN + model pair 
(HsCNN-R and HsCNN-D) for hyperspectral recon-
struction which achieved a mean relative absolute 
error of 0.014. The HsCNN-R having residual block 
allowed for propagation of smaller details as well as 
eliminated the requirement of designing hand-crafted 
down-sampling. In the HsCNN-D the network archi-
tecture featured densely connected structure allowing 
for going more deeper for high fidelity hyperspectral 
reconstruction (refer to Table 1). A major limitation 
of using RGB images as input to DL-CNN models 
for hyperspectral reconstruction is that RGB images 
are tuned for human vision making their spectral 
responses not optimal for hyperspectral reconstruc-
tion. To overcome this limitation, Nie et  al. (2018) 
used DL derived spectral response functions instead 
of spectral response for hyperspectral image recon-
struction from RGB data (Nie et al. 2018).

Strategy for development and deployment of deep 
learning models for high throughput plant 
phenotyping

DL models are complex in its architecture. Inorder to 
develop and deploy such models’ various strategies 
are available. It ranges from using pre-trained mod-
els directly to designing custom model architecture. 
The strategy to choose depends on the application and 
type of dataset in HTP. If datasets are almost similar, 
then trained models directly or transfer learning can 
be used. However, when datasets on which model is 
developed and on which inference is to be made are 
not similar then customized model architecture needs 
to be designed. Furthermore, DL model choice (listed 
in Table  2) is an important factor which is usually 
based on dataset, computing power available and task 
specific application. Some of the examples of recent 
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studies as well as technical details with advantage and 
limitations are elucidated below.

Use of pre‑trained models directly

From recent studies, we found a trend of sharing 
pre-trained DL models for specific tasks. One such 
example is for canola flower and rosette leaf count-
ing in a proper software format named “Deep plant 
phenomics” (Ubbens and Stavness 2017). Sharing a 
CNN is easy with new repository and version man-
agement tools like github. Vegetation segmentation 
network is publicly available with the capability to 
achieve automatic segmentation of vegetation of 
interest from background pixels and thus speeding up 
the process of image pre-processing using DL. Other 
specialized task contribution from the research com-
munity involves Hypocotyl UNet model (Dobos et al. 
2019) which can be downloaded and easily deployed 
for high-throughput estimation of hypocotyl length in 
seedling (https://​github.​com/​biomag-​lab/​hypoc​otyl-​
UNet) (Dobos et al. 2019).

Transfer learning from pretrained models

DL networks as of now are very task specific based 
on the training dataset and intended use. Such trained 

models often cannot be used directly but instead, can 
be used as a starting point for DL application in plant 
phenomics on similar datasets (Liu et al. 2017). This 
is possible as the network architecture can be custom-
ized, and trainable parameters can be updated in the 
network such that it easily maps input to output for 
the new dataset. The changes and updates are usually 
at the end of the network in FCC layer with respect to 
number (based on number of class) and type of out-
puts (discrete or continuous) at the FCC layer and the 
rest of the CNN network are generally kept frozen for 
using it as just feature extractors. The term transfer 
refers to the fact that a major portion of model weight 
and trainable parameters are frozen that help to 
exploit previously learned features (Ward and Mogh-
adam 2020). In addition to this, a plant phenotyping 
expert can choose from a wide variety of network 
architecture based on specific task, computational 
power available and nature of input data (Canziani 
et al. 2016). To give a few example-MLP for regres-
sion and classification, UNet for image segmenta-
tion task, ResNet (He et al. 2016), Inception-ResNet 
(Szegedy et  al. 2017), AlexNet (Krizhevsky et  al. 
2012), GoogleNet (Szegedy et  al. 2017), MobileNet 
(Howard et  al. 2017) and VGG (Simonyan and Zis-
serman 2014) for image classification, RNN (Man-
dic and Chambers 2001) and LSTM for time-series 

Table 2   Various deep learning model architectures used for high throughput phenotyping

DL Model Application description References

R-CNN Wheat spike detection and counting Hasan et al. (2018)
SpikeSegNet Wheat spike segmentation and counting Misra et al. (2020)
RetinaNet Sorghum head detection and counting Ghosal et al. (2019)
CNN_LSTM Phenotype/genotype classification based on temporal image data Taghavi Namin et al. (2018)
Faster RCNN Detection of multiple fruit types Sa et al. (2016)
UNet model Hypocotyl length determination Dobos et al. (2019)
Inception model Image classification of tobacco and Arabidopsis Tapas (2016)
U-Net model Spike counting under field phenotyping condition Sadeghi-Tehran et al. (2019)
Faster R-CNN and 

regional growth 
algorithms

Maize segmentation from terrestrial LIDAR data Jin et al. (2018)

StalkNet Deep learning-based measurement of plant stalk count and stalk width Baweja et al. (2018)
Deep neural networks Crop yield prediction using hyperspectral image data at sub-plot scale-based 

input spike leaf pixel obtained from spectral unmixing
Moghimi et al. (2020)

WheatNet Deep learning model for flowering time detection as well as heading percent-
age

Wang et al. (2020a, b)

MangoYolo Real-time fruit detection and orchard fruit load estimation Koirala et al. (2019)
HsCNN +  Hyperspectral reconstruction from RGB image data Shi et al. (2018)

https://github.com/biomag-lab/hypocotyl-UNet
https://github.com/biomag-lab/hypocotyl-UNet
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data, Faster RCNN (Mao et  al. 2018), YOLO (Red-
mon et al. 2016) and SSD (Liu et al. 2016) for object 
detection.

MLP models are the most basic deep neural net-
works which are composed of a series of fully con-
nected layers (Collobert et  al. 2011); (Sandhu et  al. 
2020) with hidden layers greater than four which help 
to learn from higher level features to solve regres-
sion and classification problems. U-net is revolution-
izing image segmentation with its unique ability to 
segment even hard to segment objects using autoen-
coder-decoder like hourglass structure (Ronneberger 
et  al. 2015). Autoencoders are unique DL archi-
tectures which use a contracting and an expanding 
branch to find representations of the input of a lower 
dimensionality (Vincent et  al. 2008). In short it can 
be understood as analogous to principal component 
analysis but with non-linearity included. The ResNet 
became a very popular model for image classifica-
tion tasks due to the fact that it overcomes the prob-
lem of accuracy less with increase in network depth 
by using residual blocks (Sladojevic et  al. 2016). 
The residual blocks improve model performance to a 
large extent while allowing to make deeper networks 
by acting as a shortcut to data flow through the DL 
network architecture and also behave like ensembles 
of classifiers (Veit et al. 2016). GoogleNet is also an 
advanced model architecture as it features inception 
blocks that permits convolution and pooling operation 
in parallel to model locality and abstraction (Szegedy 
et  al. 2015). Also, the network learns which path of 
convolution and pooling operation to take for solving 
computer vision problems at hand. For making pre-
dictions on sequential data (time-series data) RNNs 
can be used as it takes care of long term dependencies 
in the input data by use of state variables that per-
mits cells to have memory and model any finite state 
machine (Mandic and Chambers 2001). However, 
learning those long-term dependencies is challeng-
ing for RNN. To solve this problem LSTM networks 
(Hochreiter and Schmidhuber 1997) and gated recur-
rent units (GRU) were designed which have long term 
memory learning inherent in the network architec-
ture. So based on application, input data and network 
unique structural design one should choose appropri-
ate models (Chung et al. 2014).

Deep-CNN features are more generic in early lay-
ers and more dataset-specific in later layers, there are 
four major scenarios. So, when the dataset is small 

and contrasts with the original dataset on which the 
model is trained, which is often the case for phenom-
ics dataset, we should go for fine tuning only the last 
few layers for the model to be efficient. Tapas (2016) 
used Inception model v3 for classifying Arabidop-
sis and tobacco (Nicotiana tabacum L.) plants with 
an accuracy of 98% on a small dataset of only 284 
images (Tapas 2016). RootNAV 2.0 software for root 
phenotyping was developed using a DL model trained 
on a high-resolution wheat root database. The trained 
model used in RootNav 2.0 when retained using trans-
fer learning approach on images of Brassica napus 
from a hydroponic assay, demonstrated good accuracy 
despite the small dataset (Yasrab et  al. 2019). The 
application can be further extended to high-through-
put root cross section studies. F-RCNN model trained 
on rice (Oryza sativa) root cross-section images was 
able to accurately detect root, stele and late metax-
ylem objects (Wang et  al. 2020a, b). Ghosal et  al. 
(2019) deployed ResNet for counting sorghum heads 
in UAV acquired images with just 40 labelled images. 
This shows that transfer learning breaks the myth 
that deploying DL based solutions for phenotyping 
tasks will require a large amount of training dataset 
(Ghosal et  al. 2019). The added advantage of trans-
fer learning aloowed for less training time and lower 
computational requirements as the network converged 
over 40 epochs and achived appreciable performance 
mean average precision (mAP = 0.94) (Pan and Yang 
2010). On the other hand, it is disadvantageous as 
transfer learning for a given DL model can only be 
used for similar types of problems, not for radically 
different tasks. Also, the availability of large-scale 
public dataset and pre-trained models are not exhaus-
tive and extensive till now and need further research, 
development and archiving of data.

Deep learning model development from scratch

It might sound easy and efficient to use transfer learn-
ing in all possible cases but when the training data-
set available is large and different in content from the 
original dataset (on which the model was trained), 
training network from scratch has been proved to 
be more beneficial (Zhuang et  al. 2020). DL from 
scratch requires lots of data for function approxima-
tion as well as network design customized to data. 
This has been shown to add advantage for the model 
robustness to the new datasets. The major drawback 
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is that acquiring and pre-processing such a large 
dataset is a tedious job. However, with image aug-
mentation techniques applied on input dataset by 
applying distortions (brightness, contrast, cropping, 
and flipping) help in generation of more images with 
slight variations. This allows the network to see new 
images every time during training making the result-
ant trained model more general by preventing the 
overfitting. Most of the training strategy followed the 
80–20 train-test split which helps in “early stopping” 
and thus prevent overfitting (Kingma and Welling 
2019). Data augmentation also can be achieved by 
harnessing high fidelity simulation for target objects 
and can help in generating training data. Ubbens 
et  al. (2018) proved the pragmatic characteristic of 
this approach by using synthetic plant data for train-
ing set data augmentation to ensure robustness of the 
DL model development for counting leaves on model 
plant (Arabidopsis) (Ubbens et  al. 2018). The suc-
cessful generation of supplementary 2D data training 
images from the 3D model of the plant improved the 
accuracy of the resultant model. Aich et  al. (2018) 
designed a network which included convolution 
blocks for feature extraction and similar to inception 
network for faster training as well to allow for deeper 
layers without loss of accuracy for biomass and emer-
gence estimation (Aich et  al. 2018). Koirala et  al. 
(2019) designed new architecture called MangoY-
OLO. For this YOLO architecture was restructured to 
constitute only 33 layers for achieving optimal trade-
off between higher inference speed as well as accu-
racy tradeoff compared to tiny-YOLOv2 (16 layered) 
and YOLOv3 (166 layered) for detection of mangoes 
(Koirala et al. 2019).

Tool for development and deployment of deep 
learning model for high throughput plant 
phenotyping

In recent decades, many tools have been developed 
for development and deployment of DL models. 
Some of the earlier libraries were Theano (Bastien 
et al. 2012) and Caffe (Jia et al. 2014) characterized 
by modular design. However the clear winner based 
on use in recent studies has been the tensorflow 
framework (Abadi et al. 2016) and higher level librar-
ies like keras (Chollet, 2017). Higher level applica-
tion programming interfaces are very popular among 

the plant phenotyping communtiy as they are easier 
to use and understand. On top of that Ubbens and 
Stavness (2017) developed higher level framework 
based on keras (Deep Plant Phenomics) having mod-
els customized for performing HTP tasks like rosette 
leaf counting, vegetation segmentation etc. with 
some pretrained models available (https://​deep-​plant-​
pheno​mics.​readt​hedocs.​io/​en/​latest/​Tools/) (Ubbens 
and Stavness 2017). Other popular frameworks used 
are Microsoft Cognitive Toolkit (CNTK, (Seide 
and Agarwal 2016), Pytorch (Team, 2017) etc. Also 
ready to use software like RootNAV 2.0 (Yasrab et al. 
2019) and pretrained models available in the public 
domain can be deployed quickly and easily with little 
knowledge of computers for relieving the data analy-
sis bottleneck in phenomics. Nowadays AutoML and 
neural architecture search (NAS) algorithms are pav-
ing the way for computing power based neural archi-
tecture design which has the ability to generate opti-
mized model architecture on the fly during training 
(Zhang et al. 2019). Hence it eliminates the need for 
manually designing network architecture as network 
architecture design optimization can now be done by 
computers itself (Abdelfattah et  al. 2020). However, 
it has limitation that a very high computing power is 
required to train such model.

Publicly available datasets for high throughput 
plant phenotyping

Labelling, annotating, organising, and preprocess-
ing images are labour and time intensive tasks which 
limit new researchers in participation and quick hands 
in DL based application for HTP. However, availabil-
ity of organised and labelled datasets (listed in Table 3) 
from the research community overcomes this limita-
tion. It enabled new researchers to have direct first hand 
experience of DL based solutions for plant phenotyp-
ing. The Annotated Crop Image Database (ACID) data-
base is one such database. As the name database sug-
gests, it consists of hundreds of annotated crop images. 
It has image datasets for root system architecture and 
annotations in root system markup language of wheat 
seedlings grown hydroponically for root tip detection, 
images of hydroponic wheat, oilseed rape and Arabi-
dopsis plates roots (Michael P Pound et  al. 2017a, b) 
as well as wheat spike dataset with 500 images and its 
json annotation for spike as well as spikelets (Pound 

https://deep-plant-phenomics.readthedocs.io/en/latest/Tools/
https://deep-plant-phenomics.readthedocs.io/en/latest/Tools/
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et al. 2018). Other public datasets available are domi-
nated by Arabidopsis plant images (Bell and Dee 2016; 
Minervini et  al. 2015). The yield related plant organ 
like fruit and spike is also a popular category of data-
set available. Many attempts have been made in recent 
studies to provide access to wheat spike dataset anno-
tated for detection (Hasan et  al. 2018) as well as for 
spike segmentation (Sadeghi-Tehran et  al. 2019). The 
DeepFruit dataset is important for phenotyping of horti-
culture crops as it contains annotated dataset of various 
fruit types (Sa et  al. 2016). Next group of dataset are 
seedling datasets consisting of various species (Gisels-
son et al. 2017) as well as specialized parts like hypoc-
otyl (Dobos et  al. 2019). From a variety of datasets 
one can choose any dataset for DL based applications 
in plant phenotyping, model development and finally 
benchmarking. Furthermore, freely available dataset 
are acting as fuel, accelerating the pace of integration 
of DL in HTP.

Challenges in deep learning for plant phenotyping

DL may seem lucrative in every scenario, but it is 
challenging in  situations where the amount of train-
ing data is less. Data augmentation techniques alone 
are not enough to overcome such limitations. Fur-
thermore, preparation of training dataset particularly 
for feature localization and counting as well as image 
segmentation is a very tedious and intensive process. 
It requires special tools and several hours to organize 
the dataset in proper format.

DL based application in plant phenomics has its 
unique challenges which are specific to this field. 
One of the major challenges for new researchers from 
plant breeding and agriculture is the requirement of a 
high level of technical and computing skills required 
for application of deep learning in plant phenotyping. 
Some studies attempted to ease the adoption of tech-
nology with the development of graphical user inter-
face (GUI) tools for example RootNav2 (Yasrab et al. 
2019). However there is a lack of such easy to use 
GUI tools for quick development and deployment of 

Table 3   List of publicly available dataset for deep learning-based plant phenotyping and model benchmarking

Dataset Details Links & References

Annotated crop image database (ACID) Annotated wheat root dataset Pound et al. 2018 (http://​plant​images.​notti​
ngham.​ac.​uk/)

Spike dataset Annotated wheat spike dataset under field 
condition

Hasan et al. 2018 (https://​sourc​eforge.​net/​
proje​cts/​spike-​datas​et/)

Seedling dataset Seedling dataset of 960 unique plants 
images belonging to 12 species

Giselsson et al. 2017 (https://​vision.​eng.​au.​
dk/​plant-​seedl​ings-​datas​et/)

Hypocotyl dataset Semantic segmentation dataset with images 
of plant seedlings from three species 
(Arabidopsis thaliana, Brachypodium 
distachyon and Sinapis alba)

Dobos et al. 2019 (https://​www.​kaggle.​com/​
tivad​ardan​ka/​plant-​segme​ntati​on/)

International plant phenotyping net-
work (IPPN) dataset

Datasets of synthetically generated Arabi-
dopsis thaliana rosettes with Ground truth 
leaf count values

Ubbens et al. 2018 (https://​figsh​are.​com/​artic​
les/​SATLC-​28-​09-​17_​zip/​54500​80)

Plant phenotyping dataste Leaf dataset for segmentation and clas-
sification

Minervini et al. 2015 (https://​www.​plant-​
pheno​typing.​org/​datas​ets-​home)

Arabidopsis dataset Annotated plant time series dataset Bell and Dee, 2016 (https://​zenodo.​org/​
record/​16815​8#.​Xvxty​ufhWUk)

Deep fruits dataset Annotated fruit dataset Sa et al. 2016 (http://​enddl​22.​net/​wordp​ress/​
datas​ets/​deepc​rops-​datas​ets-​and-​annot​
ation-​tool)

Arabidopsis and tobacco dataset 284 images of tobacco and Arabidopsis 
plant data

Minervini et al. 2016 (https://​www.​plant-​
pheno​typing.​org/​datas​ets-​home)

Deep count Semantic segmentation annotated dataset 
for wheat spikes

Sadeghi-Tehran et al. 2019 (https://​ckan.​grass​
roots.​tools/​datas​et/​304c6​b6d-​ac6b-​4238-​
afd6-​e7330​2c8ec​e0)

http://plantimages.nottingham.ac.uk/
http://plantimages.nottingham.ac.uk/
https://sourceforge.net/projects/spike-dataset/
https://sourceforge.net/projects/spike-dataset/
https://vision.eng.au.dk/plant-seedlings-dataset/
https://vision.eng.au.dk/plant-seedlings-dataset/
https://www.kaggle.com/tivadardanka/plant-segmentation/
https://www.kaggle.com/tivadardanka/plant-segmentation/
https://figshare.com/articles/SATLC-28-09-17_zip/5450080
https://figshare.com/articles/SATLC-28-09-17_zip/5450080
https://www.plant-phenotyping.org/datasets-home
https://www.plant-phenotyping.org/datasets-home
https://zenodo.org/record/168158#.XvxtyufhWUk
https://zenodo.org/record/168158#.XvxtyufhWUk
http://enddl22.net/wordpress/datasets/deepcrops-datasets-and-annotation-tool
http://enddl22.net/wordpress/datasets/deepcrops-datasets-and-annotation-tool
http://enddl22.net/wordpress/datasets/deepcrops-datasets-and-annotation-tool
https://www.plant-phenotyping.org/datasets-home
https://www.plant-phenotyping.org/datasets-home
https://ckan.grassroots.tools/dataset/304c6b6d-ac6b-4238-afd6-e73302c8ece0
https://ckan.grassroots.tools/dataset/304c6b6d-ac6b-4238-afd6-e73302c8ece0
https://ckan.grassroots.tools/dataset/304c6b6d-ac6b-4238-afd6-e73302c8ece0
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DL models. Hence translating research to mass adop-
tion in phenomics facilities around the world for real 
time inference is still lagging. It is further compli-
cated by the fact that DL model deployment for infer-
ence requires various dependencies which are related 
to both hardware and software. Some efforts have 
been made in development of dedicated hardware 
for quick DL deployment on Nvidia edge computing 
devices (Yamamoto et al. 2017); (Milioto et al. 2018; 
Partel et  al. 2019). However, application of such 
ready to use devices and alternative options needs to 
be further explored for potential real time application 
to achieve higher throughput in plant phenotyping.

Another unique challenge specific to this disci-
pline is the nature of sensor and datasets acquired. 
Majority of the studies in deep learning is con-
fined to RGB image data. Hundreds of algorithms 
suited for such a dataset were specifically designed 
for better accuracy and computational efficiency 
as discussed in this review. In phenomics, multiple 
sensors like fluorescence, multispectral and hyper-
spectral are used which acquire datasets that have 
different features and information than simple RGB 
images  (Signoroni et  al. 2019). On one side hyper-
spectral data are high-dimensional having both spec-
tral and spatial information while Fluorescence data 
has temporal information of fluorescence induction 
curve which captures plant physiological parameters. 
Exploiting such unique information for attaining bet-
ter accuracy as well as with computational efficiency 
required designing of novel CNN architecture. This 
area needs further research so that data from all the 
sensors can be assimilated in the DL network for 
a comprehensive phenotyping. Phenomics image 
data are captured throughout the crop growth cycle 
which makes it essential for using the multitempo-
ral dataset for model training. But only few studies 
were found that used temporal data for HTP (Taghavi 
Namin et al. 2018). Further there are only a few stud-
ies using image fusion techniques for DL based HTP. 
But integration of image from different sources is 
necessary to model complex traits in plant pheno-
typing like fresh biomass, yield etc. (Sa et al. 2016). 
Another major challenge is that most of research is 
done in controlled conditions and thus escape chal-
lenges associated with field environments, for exam-
ple- occlusion, variable light conditions amongst 
several others (Fahlgren et  al. 2015). Benchmarking 
of models after is an essential task for comparison 

and standardization to ensure wider adaptability 
among the plant phenomics community and perfor-
mance. But benchmarking for better comparison and 
standardization is still a challenging task due to lack 
of availability of exhaustive publicly available data-
sets (Giselsson et  al. 2017; Minervini et  al. 2015). 
It is going to become a more pivotal issue for wider 
adoption of DL models among diverse plant phenom-
ics communities which are growing faster than ever 
before.

Conclusion and future prospects

DL has expanded to almost all the areas of plant phe-
notyping. It has solved most of computer vision-based 
plant phenotyping problems which was thought to be 
impossible a few years back. Its accuracy and practi-
cality on multi-dimensional data (images and multi-
ple sensor data) has led to a recent surge in DL based 
HTP pipeline to derive useful information from big 
data culminating to novel insight in plant phenotyp-
ing. The level of automation and phenotypic informa-
tion extracted using DL models is colossal in acceler-
ating the throughput of current phenotyping systems.

In this paper we have identified not only DL appli-
cations in plant phenotyping but also elucidated the 
principle and unique architectural features associ-
ated with DL models as well as suggestions and best 
practices regarding selection criteria of DL models 
for task specific applications in HTP. We recommend 
using the latest model like F-RCNN over RCNN, 
ResNet over VGG, HsCNN + over HsCNN for serv-
ing benefits from the latest development in model 
architecture. Furthermore, datasets should also be 
captured in such a way that it accounts for variability 
in environmental conditions. This paradigm shift has 
made imaging and multiple sensor technology more 
inclusive to achieve the end goal of releaving data 
analysis bottleneck to achieve high-throughput  phe-
notyping. Application of DL based prediction of 
yield, biophysical and biochemical parameters from 
multidimensional data acquired from multiple sen-
sors (RGB, hyperspectral, thermal) and in real time 
on various phenotyping platforms (like UAV or 
greenhouse phenotyping facilities) need to be fur-
ther explored. GPU intensive stream data process-
ing pipelines need to be explored for near-real time 
applications.
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However, pace of adoption has continued to accel-
erate with the popularization of transfer learning due 
to less requirement of dataset size, training time and 
custom model architecture, which have made it more 
and more inclusive for everyone. These pretrained 
models can be easily deployed and transferred in any 
corner of the world enhancing the dissemination of 
DL based solutions in HTP. However, standardization 
and benchmarking of the model will ensure wider 
adaptability and uses. DL based plant phenotyping 
is also a gateway to DL based smart agriculture. It 
will also pave the way for DL based smart agricul-
ture solutions. The simultaneous development in DL 
driven computer vision, GPU computing, big data 
and plant phenotyping make it a very interesting time 
for further research in development in deployment 
of DL based solutions to achieve high throughput in 
plant phenotyping.
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