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Abstract Pepper yellow leaf curl disease caused by

begomoviruses has emerged as a major limitation to

the cultivation of pepper (Capsicum spp.) production

in a number of regions around the world. Although

begomovirus resistance has been reported in several

accessions, pepy-1 derived from BaPep-5 (C. annuum)

is the only begomovirus resistance gene cloned to

date. In this study, we evaluated the resistance of a C.

chinense accession GR1 against pepper yellow leaf

curl Indonesia virus (PepYLCIV), which is one of the

predominant begomovirus species infecting pepper

plants in Indonesia. Infection of PepYLCIV to

susceptible Habanero (C. chinense) plants induced

typical yellowing symptoms, whereas the GR1 plant

showed symptoms with very low severity. Moreover,

the accumulation of viral DNA was restricted in GR1

compared to Habanero. Phenotypic analyses of F1 and

F2 populations obtained by crossing Habanero with

GR1 inferred that the resistance is a dominant trait

controlled by multiple genes. Linkage analysis in the

F2 population using restriction site-associated DNA

sequencing data detected two significant quantitative

trait loci (QTLs), one on chromosome 4 and another

on chromosome 11, which explained 31.6 and 19.7%

of the phenotypic variation, respectively. Moreover,

QTL-seq conducted using F3 population partially

confirmed the result of F2 population, which detected

QTLs on chromosome 3 and 11, respectively. The

QTLs identified for PepYLCIV resistance in this

research are novel since no other resistance causing

QTLs have ever been reported in these genomic

regions. GR1 is a highly valuable genetic resource for

the breeding of begomovirus resistance in peppers.Supplementary Information The online version contains
supplementary material available at https://doi.org/10.1007/
s10681-022-02970-9.
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Introduction

Peppers (Capsicum spp.) consist of several wild

relatives and five domesticated species, which include

C. annuum, C. chinense, C. frutescens, C. baccatum,

and C. pubescens (Bosland and Votava, 2000). The

origin of Capsicum is postulated in an area along the

Andes of western to north-western South America,

and the expansion of the genus has followed a

clockwise direction around the Amazon basin, toward

central and south-eastern Brazil, then back to western

South America, and finally northwards to Central

America, where C. annuum originates (Kraft et al.

2014; Carrizo Garcı́a et al. 2016). Of the five

domesticated species, C. annuum is grown all over

the world with thousands of cultivars. The production

of peppers for use as spices and as vegetables has

consistently increased during the last 50 years. World

production was estimated at 6.8 million tonnes in

1970, and it has increased to 42.3 million tonnes in

2019, which is grown on more than 3.7 million ha

(FAOSTAT 2019). The largest producers of peppers

(total fresh and dried) include China, Mexico, Turkey,

Indonesia, and India, and together they produce

approximately 70% of the world’s supply.

Pepper yellow leaf curl disease (PepYLCD) caused

by genus Begomovirus of the Geminiviridae family

seriously affects pepper cultivation in a number of

regions around the world (Devendran et al. 2021). The

genus Begomovirus encompasses 445 virus species,

which is the largest number of species in plant

infecting viruses (ICTV 2020). Thus, this virus infects

various crops, including pepper, tomato, okra, cucur-

bit, common bean, papaya, cassava, and cotton,

causing devastating damage to production (Varma

and Malathi 2003; Rojas et al. 2018). The remarkable

emergence of begomoviruses has been driven by the

whitefly (Bemisia tabaci) supervector (Gilbertson

et al. 2015). Generally, diseases caused by bego-

moviruses are controlled using insecticides that target

the B. tabaci populations; however, intensive and

unregulated use of insecticides has led to insecticide

resistance in B. tabaci (Palumbo et al. 2001; Rojas

et al. 2018). An effective alternative to control

begomoviruses is the use of an integrated pest

management approach, which involves the develop-

ment of begomovirus resistant genotypes. Our under-

standing and breeding of begomovirus resistance are

most progressed in tomatoes (Solanum lycopersicum),

and six resistance loci (Ty-1–Ty-6) conferring resis-

tance to the monopartite tomato yellow leaf curl virus

(TYLCV) have been identified in wild tomato acces-

sions (Zamir et al. 1994; Agrama and Scott 2006;

Anbinder et al. 2009; Ji et al. 2009a, b; Hutton and

Scott 2014). However, the breeding resistance to

begomovirus is lesser advanced in peppers than in

tomatoes (Kenyon et al. 2014b). Although naturally

occurring begomovirus resistance has been reported in

several C. annuum and C. chinense accessions (Kumar

et al. 2006; Garcı́a-Neria and Rivera-Bustamante

2011; Kenyon et al. 2014a, Rai et al. 2014; Srivastava

et al. 2015, 2017; Singh et al. 2016; Adluri et al. 2017;

Retes-Manjarrez et al. 2019; Barchenger et al. 2019;

Thakur et al. 2019), the genes responsible for bego-

movirus resistance in these accessions have not been

identified. In our previous study, we cloned a bego-

movirus resistance gene pepy-1, which encodes the

messenger RNA surveillance factor Pelota, locating in

chromosome 5 of a C. annuum accession BaPep-5 for

the first time in peppers (Koeda et al. 2021).

Multiple begomovirus resistance loci (Ty-1–Ty-6)

have been identified in tomatoes and pyramiding of

multiple genes in a single plant is expected to gain

durable and broad-spectrum resistance (Yan et al.

2018, 2021). It is significantly important for the

control of PepYLCD to identify distinct begomovirus

resistance loci from pepy-1 which was identified from

C. annuum. GR1, a C. chinense accession, was

identified as a begomovirus-resistant genetic resource

in our preliminary analyses. In the present study, we

conducted genetic mapping to identify a novel bego-

movirus resistance gene in F2 and F3 populations

derived from a cross between a GR1 and the

begomovirus susceptible Habanero. The work pre-

sented here infers that resistance to pepper yellow leaf

Indonesia virus (PepYLCIV) in C. chinense is con-

trolled by quantitative trait loci (QTLs) located on

chromosome 3, 4, and 11.
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Materials and methods

Plant material

Two C. chinense accessions, GR1 and Habanero, were

used in this study. F1 populations were obtained by a

single cross between Habanero and GR1, the F2
population was used for restriction site-associated

DNA sequencing (RAD-seq), and the F3 population

was used for QTL-seq. Plants were grown in a growth

room with temperatures ranging from 23 to 30 �C
under a 13 h light/11 h dark photoperiod.

Inoculation of pepper plants with begomovirus

pepper yellow leaf curl Indonesia virus

A bipartite begomovirus, pepper yellow leaf curl

Indonesia virus (PepYLCIV) isolate BA_D1-1

(Accession number of GenBank for DNA A:

LC051114, DNA B: LC314794) (Koeda et al.

2016, 2018), originally isolated in Indonesia was used

in this study. The infectious clone of PepYLCIV

isolate BA_D1-1 was previously constructed by our

group through the transformation of pGreenII-p35S-

PepYLCIV-DNA-A?B into Agrobacterium tumefa-

ciens strain GV2260 (Koeda et al. 2018). Inoculation

experiments were conducted for graft transmission of

PepYLCIV into GR1, Habanero, F1, and F2 plants.

The begomovirus susceptible C. annuum accession

No.218 was agroinfiltrated with pGreenII-p35S-

PepYLCIV-DNA-A?B, as previously described

(Koeda et al. 2018, 2021). The agroinfiltrated

No.218 plants were used as scions, and uninoculated

GR1, Habanero, F1, and F2 plants were used as

rootstocks. PepYLCIV-infected scion plants were

grafted onto rootstocks approximately 30 days after

agroinfiltration, and the grafted plants were covered by

polybags to maintain high humidity. Plants were

acclimatized approximately 14 days after grafting, and

most of the scion was decapitated to stimulate lateral

branch growth of the rootstock. The newly developed

lateral branches of GR1, Habanero, F1, and F2 plants

were evaluated for disease symptoms, and young

upper leaves were collected and stored at - 80 �C
until needed for DNA extraction. The symptoms of

each plant were scored on a disease severity index

(DSI) ranging from 0 to 4, as follows: 0, no symptoms

or very mild symptoms; 1, mild symptoms; 2,

moderate symptoms; 3, heavy symptoms; 4, very

heavy symptoms. Statistical analysis of the average

DSI was performed using the Mann–Whitney U test

with Excel Toukei ver. 7.0 and a p-value less than 0.05

was considered as statistically significant.

The cotyledons of F3 plants (n = 1,082) were

agroinfiltrated with pGreenII-p35S-PepYLCIV-DNA-

A?B, and symptoms surveys were conducted at

approximately 95 dpi. Young upper leaves were

collected and stored at - 80 �C until needed for

DNA extraction. We used the further precise disease

severity index (DSI) ranging from 0 to 6, as follows: 0,

no symptoms or extremely slight symptoms; 1, very

slight symptoms; 2, very mild symptoms; 3, mild

symptoms; 4, moderate symptoms; 5, heavy symp-

toms; 6, very heavy symptoms.

Diagnosis of PepYLCIV infection

DNA was extracted from pepper leaves using the

Nucleon PhytoPure Kit (GE Healthcare, Little Chal-

font, Buckinghamshire, UK) or by a simple method, as

previously described (Koeda and Fujiwara 2019). The

DNA A component of PepYLCIV was detected using

PepYLCIV uni 2 F and uni R primers, which ampli-

fied 696-bp fragments (Koeda et al. 2018). A poly-

merase chain reaction (PCR) test was performed using

EmeraldAmp PCRMaster Mix (Takara Bio) under the

following conditions: initial denaturation at 94 �C for

2 min, followed by 35 cycles at 94 �C for 30 s,

63.2 �C for 30 s, and 72 �C for 1 min, and termination

with 3 min of extension at 72 �C. The amplified PCR

products were subjected to electrophoresis using 1.0%

(w/v) agarose gel. Primer sequences used for viral

DNA detection are listed in Supplementary Table S1.

Quantification of PepYLCIV titer by real-time

PCR

The PepYLCIV DNA was quantified using the CFX

Connect Real-Time PCR Detection System (Bio-Rad,

Hercules, CA, USA), as previously described (Koeda

et al. 2021). The DNA A component of PepYLCIV

was detected by quantitative PCR (qPCR) using

PepYLCIV A real 2 F and 2R primers, which ampli-

fied 114-bp fragments. Data from the total DNA

extracts were normalized relative to the 25 S riboso-

mal RNA gene (93 bp) amplified by qPCR using 25 S-

rRNA 2 F and 2R primers. The qPCR was performed

using SsoAdvanced Universal SYBR Green Supermix

123

Euphytica (2022) 218:20 Page 3 of 12 20



(Bio-Rad) under the following conditions: initial

denaturation at 95 8C for 2 min, followed by 40

cycles at 95 8C for 5 s, and 58 8C for 10 s. Statistical

analysis was performed using the Student’s t-test and a

p-value less than 0.05 was considered as statistically

significant. Primer sequences used for real-time PCR

are listed in Supplementary Table S1.

RAD-seq

DNAwas extracted from pepper leaves collected from

F2 individuals before grafting using the Nucleon

PhytoPure Kit (GE Healthcare). The RAD-seq

libraries of F2 individuals (n = 100) and their parents

were constructed as previously described (Koeda et al.

2019) and sequenced with HiSeq 2500 (Illumina,

Hercules, CA, USA). Three independent replicates of

parental RAD-seq libraries were constructed to min-

imize any bias due to PCR amplification. Trimming

and mapping of the sequence reads, followed by

variant calling were performed as described in Koeda

et al. (2021). The whole-genome sequence of C.

chinense PI159236 (Kim et al. 2017) was used as a

reference. Linkage analyses were conducted by com-

posite interval mapping (CIM) of R/qtl (Broman et al.

2003).

QTL-seq

The DSI score of the F3 population (n = 1,082) was

evaluated and plants with DSI of 0 (highly resistance)

and 6 (highly susceptible) were initially screened.

Accumulating PepYLCIV titar was measured for

further screening of the individuals, and ten plants

were pooled for each of the extreme bulks: R_bulk

(bulk with DSI score of 0) and S_bulk (bulk with DSI

score of 6). Equal amounts of DNA from each

individual were pooled into the bulks. The pooled

DNA bulks were converted into DNA libraries for

Illumina paired-end sequencing on the NovaSeq 6000

platform. QTLseq analysis was conducted according

to Takagi et al. (2013). Whole genome-sequence of

PI159236 (C. chinense) was used as a reference (Kim

et al. 2017), and sequence of Habanero was used as a

parent sequence data. The delta (D) SNP-index was

calculated by subtracting the SNP-indices of the

S_bulk from R_bulk at each locus, and candidate

QTL regions were identified by using a 2 Mb sliding

window with 100 kb step size.

Results

GR1 shows resistance against PepYLCIV

The transmission of PepYLCIV from symptomatic

No.218 scions to healthy GR1 or Habanero rootstocks

was evaluated approximately 75 days after grafting.

We confirmed by PCR-based diagnosis that the

successfully grafted plants were all infected by

PepYLCIV. The PepYLCIV-infected Habanero (n =

11) plants showed symptoms of typical yellowing in

the newly developed mature leaves with average DSI

of 3 (Fig. 1a, c). In contrast, the PepYLCIV-infected

GR1 plants (n = 17) showed symptoms with very low

severity (DSI = 0.4) (Fig. 1b, c). Moreover, plants

infected with begomovirus via graft-inoculation were

randomly selected for the quantification of PepYLCIV

DNA by qPCR using DNA extracted from young

upper leaves at approximately 50 and 65 days from

grafting. The accumulation of PepYLCIV DNA in

GR1 plants (n = 5) was consistently lower than that in

Habanero (n = 5), and at 65 days from grafting this

difference was statistically significant (Fig. 1d). These

results indicate GR1 is resistant against PepYLCIV.

Inheritance of PepYLCIV resistance to F1 and F2
progenies

To explore the inheritance of PepYLCIV resistance,

F1 and F2 populations obtained by crossing Habanero

with GR1 were graft-inoculated with PepYLCIV. We

confirmed by PCR-based diagnosis that the success-

fully grafted plants were all infected by PepYLCIV. F1
(n = 5) plants showed symptoms with very low

severity (DSI = 0.4), equivalent to the parental GR1

(Fig. 2). This result showed that PepYLCIV resistance

in GR1 is a dominant trait. At approximately 100 days

from grafting, the F2 individuals (n = 100) showed the

following phenotypic segregation: n = 8, no symptoms

or extremely slight symptoms (DSI = 0); n = 24, mild

symptoms (DSI = 1); n = 18, moderate symptoms (DSI

= 2); n = 28, heavy symptoms (DSI = 3); and n = 22,

very heavy symptoms (DSI = 4) (Fig. 2). The segre-

gation ratio of resistant individuals (DSI 0–1) to

susceptible individuals (DSI 2–4) did not fit the 3:1 for

F2 populations by the v2 test (v2 = 98.61, p = 3.1E-

23), indicating that PepYLCIV resistance is controlled

by multiple genes.
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RAD-seq based genetic mapping of PepYLCIV

resistance using an F2 population

Linkage analysis of PepYLCIV resistance in the F2
population was conducted using 279 SNPs obtained

from RAD-seq data. The linkage map consisted of 12

linkage groups, which was equivalent to the

chromosome number of pepper (C. chinense)

(Fig. 3). The overall size of the linkage map was

992.8 centimorgans (cM) (average marker distance

= 3.6 cM), with a maximum spacing of 23.5 cM on

chromosome 1. The CIM analysis of the Habanero

9 GR1 F2 population detected two significant QTLs,

one on chromosome 4 and another on chromosome 11,

accompanied by small peaks below the threshold on

chromosomes 6 and 12 (Fig. 4 a). The newly found
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Fig. 1 GR1 and Habanero plants with single inoculation of

pepper yellow leaf curl Indonesia virus

(PepYLCIV). a Habanero and b GR1 plants infected with

PepYLCIV approximately 75 days from grafting. c Disease

severity index (DSI) of Habanero and GR1 plants approximately

75 days from grafting. d Accumulation of PepYLCIV viral

DNA in PepYLCIV-infected Habanero (n = 5) and GR1 (n = 5)

plants at approximately 50 and 65 days post-grafting. Viral

DNA values were normalized relative to the 25 S rRNA gene.

Biological replicates are indicated on each bar. Data represent

mean ± standard deviation (SD). Asterisk indicates significant

differences and n.s. indicates not significant among means of

Habanero and GR1 by c Mann–Whitney U test (p\0.05) and

d Student’s t-test (p\0.05)

123

Euphytica (2022) 218:20 Page 5 of 12 20



QTLs in GR1 were denoted as Pepy-chr4 and Pepy-

chr11, respectively. The peaks and intervals of the

Pepy-chr4 QTL (logarithm of the odds [LOD] score

= 15.0), which explained 31.6% of the total pheno-

typic variation, was located at 39.1 cM on chromo-

some 4, and the Pepy-chr11 QTL (LOD score = 8.3),

which explained 19.7% of the total phenotypic

variation, was located at 14.9 cM on chromosome 11

(Table 1). Moreover, epistatic interaction between

Pepy-chr4 and Pepy-chr11 was detected (p = 0.0001)

(Fig. 4b). The effect of the GR1 allele at Pepy-chr11 to

increase resistance (i.e., decrease DSI score) was

observed in two genotype classes, homozygous for the

Habanero allele at the Pepy-chr4 locus and heterozy-

gous, but not in the class homozygous for the GR1

allele at the Pepy-chr4 locus (Fig. 4b). The intervals of

Pepy-chr4 and Pepy-chr11 comprised 114 and 572

genes, respectively, in a whole-genome sequence of

PI159236 (Table S2). In the intervals of Pepy-chr4 and

Pepy-chr11, six genes encoding leucine-rich repeat-

containing (LRR) proteins were predicted as candi-

dates. Also, a germin-like protein subfamily 1 member

17 (CC.CCv1.2.scaffold99.15) located in the interval

of Pepy-chr11 was predicted as a candidate.

QTL-seq based genetic mapping of PepYLCIV

resistance using an F3 population

To confirm the QTLs detected in F2 population, 40 F2
recombinants on target regions of chromosomes 4 and

11 were screened and self-pollinated to obtain the F3
population. At approximately 95 days from inocula-

tion, highly resistant F3 individuals with DSI of 0

(n = 74) and highly susceptible F3 individuals with

DSI of 6 (n = 100) were observed out of whole F3
individuals (n = 1,082). Ten F3 individuals deriving

from different F2 recombinants were pooled for each of

the extreme bulks: R_bulk (bulk with DSI score of 0)

and S_bulk (bulk with DSI score of 6). The accumu-

lation of PepYLCIV DNA in R_bulk plants was

significantly lower than that in S_bulk plants (Fig. 5a).

To identify QTL, the SNP index was calculated for

each bulk by aligning the sequences to the C. chinense

reference genome. After the (D) SNP index with a

statistical confidence of p \ 0.01 was calculated

between the two extreme phenotypic bulks, a 9.3-Mb

(224.3–233.6-Mb) genomic region on chromosome 3

and a 12.4-Mb (217.5–229.9-Mb) genomic region on

chromosome 11 were identified (Fig. 5b). We desig-

nated these QTLs as Pepy-chr3-qtlseq and Pepy-

chr11-qtlseq. Analysis of SNP-index of R_bulk and

S_bulk inferred that QTL Pepy-chr3-qtlseq derived

from Habanero and Pepy-chr11-qtlseq derived from

GR1 (Fig. S1). The intervals of Pepy-chr3-qtlseq and

Pepy-chr11-qtlseq comprised 152 and 108 genes,

respectively, in a whole-genome sequence of

PI159236 (Table S2). Candidate regions of QTL-seq

partially overlapped with the candidate region of

RAD-seq at 217.5–227.7-Mb genomic region on

chromosome 11. A germin-like protein subfamily 3

member 2 (CC.CCv1.2.scaffold279.31) was located in

the interval of Pepy-chr11-qtlseq.

Discussion

Begomoviruses, transmitted by whiteflies, have

emerged as major limitations to the cultivation of a

wide variety of crops worldwide (Navas-Castillo et al.

2011; Rojas et al. 2018), and PepYLCD seriously

affects pepper production in a number of regions

around the world (Devendran et al. 2021). Naturally

occurring begomovirus resistance has been reported in

several Capsicum accessions (Kumar et al. 2006;

Garcı́a-Neria and Rivera-Bustamante 2011; Kenyon

et al. 2014a; Rai et al. 2014; Srivastava et al.

2015, 2017; Singh et al. 2016; Adluri et al. 2017;

Retes-Manjarrez et al. 2019; Barchenger et al. 2019;
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Thakur et al. 2019), but pepy-1 derived from BaPep-5

(C. annuum) is the only begomovirus resistance gene

cloned to date in Capsicum (Koeda et al. 2021). In this

study, we analyzed the resistance of C. chinense

accession GR1 against one of the predominant bipar-

tite begomovirus PepYLCIV infecting pepper plants

in Indonesia (Koeda et al. 2016).

Most of the virus resistance genes in plants either

prevent viral replication or restrict viral replication to

the cells targeted by the virus to enter the host (Kang

et al. 2005). The Ty-1/Ty-3, Ty-2, ty-5 of tomato and

pepy-1 of pepper provide a level of virus tolerance

rather than immunity against begomovirus (Verlaan

et al. 2013; Lapidot et al. 2015; Yamaguchi et al. 2018;

Koeda et al. 2021). This is consistent with the

results of this study wherein PepYLCIV-infected

GR1 showed symptoms with very low severity

(DSI = 0.4) (Fig. 1B, C), and a low level of PepYLCIV

DNA accumulation was detected in systemic leaves

(Fig. 1d).

Analysis of F1 individuals indicated that the

resistance derived from GR1 seemed to be a dominant

trait, but the segregation ratio in the F2 population

did not fit the expected 3:1 by v2 test (v2 = 98.61,

p = 3.1E-23), which indicated that resistance is

controlled by multiple genes. This is consistent with

the linkage analysis results conducted by CIM using F2
population, which detected a major QTL Pepy-chr4 on

chromosome 4 and a minor QTL Pepy-chr11 on

chromosome 11, explaining 31.6% and 19.7% of the

phenotypic variation, respectively (Fig. 4 a; Table 1).

Further analysis using F3 population with QTL-seq

detected QTL Pepy-chr3-qtlseq on chromosome 3 and

a QTL Pepy-chr11-qtlseq on chromosome 11

(Fig. 5b). A major QTL located on chromosome 4

and a minor QTL located on chromosome 11 were

detected in the F2 population which all the segregating

individuals (n = 100) were phenotyped, and

epistatic interaction was detected between the QTLs

(p = 0.0001) (Fig. 4). On the other hand, a QTL

located on chromosome 11 was detected in the F3

1
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Fig. 3 Linkage map constructed from restriction site-associated DNA sequencing (RAD-seq)-derived 279 SNPs in 100 F2 individuals

123

Euphytica (2022) 218:20 Page 7 of 12 20



population, whereas the major QTL detected on

chromosome 4 in the F2 population was not detected

in the F3 population (Fig. 5b). Because a subset of

individuals (n = 20) was selected for QTL-seq analysis

in the F3 population, there might be some unexpected

bias for the genotype of Pepy-chr4 locus in F3
individuals which resulted in non-detection of QTL

in chromosome 4. Interestingly, we detected Pepy-

chr3-qtlseq on chromosome 3 in the F3 population,

which was assumed to be derived from susceptible

parent Habanero (Fig. 5b; Fig. S1). The effect of QTL

on chromosome 3 could have been masked in the F2
population by the larger effects of chromosomes 4 and

11 QTLs. PepYLCIV and PepYLCAV resistance gene
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Fig. 5 QTL-seq analysis of

PepYLCIV resistance in F3
population. a Accumulation

of PepYLCIV viral DNA in

PepYLCIV-infected S_bulk

(n = 10) and R_bulk (n = 10)

plants at approximately 105

days post-agroinfiltration.
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significant differences

among means by Student’s

t-test (p\0.05). b (D) SNP-
index plots of 12

pseudomolecules

representing the F3
populations used in the

analysis of Fig. 5a. A bulk
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individuals was analyzed, a

statistical confidence

interval under the null

hypothesis of no QTLs
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of the (D) SNP index
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size, 100 kb). The identified

QTL regions on

chromosome 3 and 11

(Pepy-chr3-qtlseq and Pepy-

chr11-qtlseq) are

highlighted
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pepy-1 of BaPep-5 (C. annuum) is located on

chromosome 5 (Koeda et al. 2021). Thakur et al.

(2019, 2020) reported that the chili leaf curl virus

disease resistance gene of a C. annuum accession

S-343 is linked to a DNA marker located on chromo-

some 6. These results indicate that the QTLs identified

for PepYLCIV resistance in this research are novel

since no other resistance causing QTLs have ever been

reported in these genomic regions.

To the best of our knowledge, tomato Ty-1/Ty-3/Ty-

3a (encoding RDR), Ty-2 (encoding an NB-LRR

protein), ty-5 (encoding Pelota), and pepper pepy-1

(encoding Pelota) are the only begomovirus resistance

genes that have been cloned to date (Verlaan et al.

2013; Lapidot et al. 2015; Yamaguchi et al. 2018;

Koeda et al. 2021). RDR and Pelota were not found

among the genes located in the candidate regions

(Table S2). In contrast, a total of six LRR proteins

were found in chromosomes 4 and 11, which are

candidate genes (Table S2). Resistance against bipar-

tite begomoviruses pepper huasteco yellow vein virus

(PHYVV) and pepper golden mosaic virus (PepGMV)

of a C. chinense accession BG-3821 is reported to be

controlled by two genes which have a duplicate

recessive epistatic relation (Garcı́a-Neria and Rivera-

Bustamante 2011). Transcriptomic studies with BG-

3821 identified a germin-like protein (CchGLP) gene

as involved in resistance to PHYVV and PepGMV

(Barrera-Pacheco et al. 2008). Furthermore, trans-

genic expression of CchGLP in begomovirus suscep-

tible tobacco (Nicotiana tabacum) cultivar provided

resistance against PHYVV and PepGMV, and virus-

induced gene silencing of CchGLP in BG-3821

increased susceptibility against PHYVV and

PepGMV (Guevara-Olvera et al. 2012; Mejı́a-

Teniente et al. 2015). BLASTN analysis identified

CC.CCv1.2.scaffold401.11 located in chromosome 3

(position: 260,061,510-260,062,139) in the genome

sequence of PI159236 (C. chinense), which is outside

the region of Pepy-chr3-qtlseq, with the highest

similarity (Identities 99%, E-value 0.0) to CchGLP

(DQ677335.2). However, because a germin-like pro-

tein subfamily 1 member 17 (CC.CCv1.2.scaf-

fold99.15) was found to locate in the candidate

region of Pepy-chr11, and a germin-like protein

subfamily 3 member 2 (CC.CCv1.2.scaffold279.31)

was located in the interval of Pepy-chr11-qtlseq, these

genes are candidates controlling the PepYLCIV

resistance (Table S2). A more saturated molecular

map and a larger mapping population are required for

the fine mapping and cloning of the resistance genes.

The most economically important species belong to

the Capsicum annuum complex (C. annuum, C.

chinense, and C. frutescens), two other species (C.

baccatum and C. pubescens) are cultivated predomi-

nantly in Latin America (Pickersgill, 1997). More-

over, interspecific hybridization between C. annuum

and C. chinense is reported to be relatively easy

compared to C. baccatum or C. pubescens (Bosland

and Votava 2000). Multiple begomovirus resistance

loci (Ty-1–Ty-6) have been identified in tomatoes and

pyramiding of multiple genes in a single plant is

expected to gain durable and broad-spectrum resis-

tance (Yan et al. 2018, 2021). Introgression of the

resistance genes from GR1 (C. chinense) into C.

annuum and pyramiding the resistance genes derived

from GR1 with pepy-1 will contribute to the control of

PepYLCD. Fine mapping using a larger mapping

population is currently underway. GR1 is a highly

valuable genetic resource with PepYLCIV resistance,

and the identification of resistance genes will greatly

facilitate marker-assisted breeding of begomovirus

resistance in pepper.
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