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Abstract The upland rice crop system located

within Brazilian savannas and Amazon Rainforest is

the largest rainfed rice growing area in Latin America.

To develop and release higher yield and adapted

cultivars for this large region, the upland rice breeders

need to conduct multiple-location trials aiming to

model the genotype 9 location (G 9 L) and evaluate

the germplasm yield adaptability. Here we hypothe-

size that regional patterns of G 9 L across this

extensive region can be modeled by integrating

factorial regression models with a geographic infor-

mation system (GIS). Two sets of advanced yield trials

from different germplasm pool were used in this study.

From GIS tools, we collect and process geographic

covariates and produce thematic maps of yield

adaptability. One advantage of the methodology is

that adaptability can be dissected into genotypic-

sensibility coefficients related to the reaction norm for

the geographic gradient. Then, breeders can discrim-

inate different types of adaptability over a region, such

as responsiveness for elevation, longitudinal or latitu-

dinal adaptation, identifying possible ideotypes to

solve current adaptation gaps for target regions. We

observed that about of 53–59% of the G 9 L effects

are due to predictable geographic-related factors.

However, the upland rice germplasm is better adapted

to higher elevations ([ 700 m), which may indicate

limitations in cultivar development because these

regions do not represent the current upland rice

growing region. We suggest to exploit geographic-

related factors by increasing breeding efforts for

northern and western Brazil environments located at

lower elevations (\ 300 m) and Equador’s near

latitudes (2� S–2� N).
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Introduction

Genotype-by-environment interaction (G 9 E) is a

biological and statistical phenomenon present in

breeding decision making on cultivar development

(Malosetti et al. 2013). Its effect is due to the

differential response of genotypes in relation to

environmental variations, thus integrating the eco-

physiological aspects resulting from each genotype

reaction to several environmental effects (e.g., eleva-

tion and air temperature). As genotypes have different

reaction norm, there are situations where G 9 E

interaction is manifested in different degrees of

impact, which in many cases result in a limitation

for decision making on cultivar recommendation over

multi-environment trial (MET) analysis. As regards

their effects, G 9 E interaction patterns may be non-

crossover (quantitative variations without changes in

genotype ranking), crossover (qualitative variations

with ranking of genotypes across environments) or

null G 9 E interaction, where only genetic (G) and

environmental (E) effects define the phenotypic mean

(Y), i.e., following the Wilhelm Johannsen’s additive

main effects model: Y = G ? E (Lynch and Walsh

1998).

In situations where G 9 E interaction is present, its

effect may result in depletion, e.g., negative effects

when G ? G9E\G; or capitalization, e.g., positive

effects, when G ? G9E[G. Thus, two fronts of

research for germplasm improvement and cultivar

development are desirable: (1) by searching for

strategies to diagnose the adaptability of genotypes

in order to identify situations where capitalization is

desirable (e.g., Yan et al., 2007); (2) identification of

regions or group of environments where there is a

predominance in the capitalization of G 9 E interac-

tion effects (e.g., Löffler et al., 2005; Chenu et al.,

2011). For these purposes, several statistical-based

methods have been used, such as regression models of

phenotypic means on an environmental index (Finlay

and Wilkinson 1963), mixed-effects factor analytic

models (Piepho 1998; Smith et al. 2014; Smith and

Cullis 2018), and linear-bilinear models, such as site-

regressionmodel on GGE-biplot analysis (see Yan and

Tinker 2006). The linear-bilinear models are useful for

biplot analysis, summarizing patterns of similarity

between genotypes or environments (Gabriel 1971).

However, biplot analysis is more descriptive and

explanatory, without not much predictive ability, and

it must be applied with caution once that it is

unsuitable for hypothesis testing and insufficient to

explain complex structures of G 9 E interaction

(Yang et al. 2009). Biplot analysis is also graphically

limited in represent genotypes spatial adaptive pat-

terns, which are restricted only to environments within

the available MET analysis.

Another perspective relies on the use of factorial

regression models (FR, Denis 1988) that incorporate

additional information into the MET analysis. FR

models consist in a linear regression focused on

dissect the non-additive effects of the G 9 E matrix

into predictable and unpredictable genotypic

responses. The predictable genotypic responses are

defined by the genotypic sensitivity to certain envi-

ronmental covariate (e.g., rainfall, air temperature,

solar radiation) or geographic position (e.g., latitude,

longitude and altitude) and have a biological meaning

that can understand the environmental drivers of the

G 9 E interaction patterns (e.g., Voltas et al. 1999;

Epinat-Le Signor et al. 2001; Ortiz et al. 2007;

Verhulst et al. 2011) or use them into an accurate

predictive model (Ly et al. 2018; Millet et al. 2019).

The analysis of G 9 E interaction based on FR

models has proven useful for cultivar testing analysis

in several crops worldwide, such as maize (Crossa

et al. 1999; Epinat-Le Signor et al. 2001; Magari et al.

1997; Romay et al. 2010; Millet et al. 2019; Crossa

et al. 1999; Epinat-Le Signor et al. 2001; Magari et al.

1997; Millet et al. 2019; Romay et al. 2010), potato

(Baril et al. 1995), tomato (Ortiz et al. 2007), wheat

(Baril 1992; Reynolds et al. 2004; Verhulst et al. 2011;

Heslot et al. 2014), melon (de Nunes 2011) and

sugarcane (Ramburan et al. 2011, 2012). In these

studies, the use of FR has contributed to a better

understanding of the ecophysiological drivers linked

to the G 9 E interaction. However, FR models can

also contribute to the prediction of phenotypes under

new environmental conditions (Ly et al. 2018; Millet

et al. 2019), especially integrated with whole-genome

regressions in genomics-assisted prediction-based

breeding platforms (Heslot et al. 2014; Jarquı́n et al.

2014; Morais Júnior et al. 2018).
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In this study, we applied FR models as spatial trend

interpolation integrated with a geographical informa-

tion system (GIS), aiming to provide geographic yield

adaptability diagnosis over the target region of the

upland rice breeding program in Brazil. GIS tools can

be useful for cultivar targeting because of the widely

available databases of environmental data and facil-

itate the implementation of thematic maps for several

purposes (Annicchiarico 2002; White et al. 2002;

Hyman et al. 2013; Xu 2016; Annicchiarico 2002;

Hyman et al. 2013; White et al. 2002; Xu 2016). As

upland rice breeding target population of environ-

ments (TPE) in Brazil is geographically extensive and

heterogeneous (Colombari Filho et al. 2013; Heine-

mann et al. 2015, 2019), this can be an alternative to

represent the spatial adaptation of the target

germplasm.

Upland rice in Brazil is grown in a large TPE, that

englobes sites with lower elevation (\ 100 m above

sea level), considerate hotter regions at lower equato-

rial latitudes (2� S to 1� N) and sites with higher

elevation ([ 700 m above sea level). In this TPE,

there are sites whose drought-stress typology is

limiting rice yields and also regions whose rainfall is

excessive, as in the Amazon basin (Heinemann et al.

2019). There is still enormous variation in the

physical-water and chemical properties of the soils

between these regions (Cooper et al. 2005; Buol

2010). It has been also observed that the modern type

cultivars have exhibit differential drought sensitive

responses, which can be one of the causes that higher

impact of genotype 9 location (G 9 L) interaction

patterns in the multi-environment trials (MET) in the

last 30-years (Colombari Filho et al. 2013; Heinemann

et al. 2019).

Front to these above discussed, there is also a

strategic gap related to cultivar development decisions

in upland rice breeding program. How breeders can

enhance adaptation diagnosis when they use a limited

sample of the TPE (e.g., the MET framework) and not

account regional variations in genotypic responses?

i.e., only within MET specific variations. Even that

breeders which adopted strategies as directing cultivar

recommendation by a single State (Colombari Filho

et al. 2013) or stratified the entire TPE by drought-

patterns (Heinemann and Sentelhas 2011; Heinemann

et al. 2015), the complex of geographic-related factors

implicating into regional-spatial patterns still resulted

in higher G 9 L effects. Thereby, this study aims to

provide a new strategy for adaptation analysis based

on a GIS linked to FR model in order to capitalize this

geographic-related factors into a single analysis. We

evaluated the merit of the use of the genotypic

coefficients obtained from the FR model using simple

geographic covariates (latitude, longitude and eleva-

tion) to describe the spatial region norm (or regional

adaptation, denoted here as Ad) of the genotypes for an

entire target region. Next, the predictive ability of the

adjusted models in replacing a single missing location

conditions were also evaluated in terms of accuracy

(correlation between true G ? G 9 L and predicted

Ad values) and selection coincidence (the rank coin-

cidence of the 5 top best genotypes by location). We

expect to provide a friendly-user framework that will

assist breeders in the diagnosis of adaptability of pre-

commercial cultivars, as well as to support their

decision making regarding the direction of research

efforts front to the regional patterns not commonly

visualized by the conventional statistical approaches

of MET analysis.

Materials and methods

Study region

This study focused into the main target population of

environments (TPE) from the national rice breeding

program of the Brazilian Agricultural Research Cor-

poration (Embrapa). The TPE region encompasses

90% of the upland rice production in Brazil (837,687

ton in 2017, IBGE—http://www.sidra.ibge.gov.br/

bda/), and represents two climates according to Kop-

pen–Geiger classification: Am equatorial and, As

tropical savannah climate with a monomodal rainfall

pattern (Alvares et al. 2013). Total precipitation ran-

ges from 1000 to 2500 mm per year. Elevation ranges

from 0 m to 1270 m. These multi-environment trial

(MET) framework covered diverse agro-ecologically

environments between 3� S and 16� S and 63� W to

42� W, involving seven Brazilian states: Goiás (GO),

Mato Grosso (MT), Tocantins (TO), Pará (PA), Piauı́

(PI), Maranhão (MA) and Rondônia (RO) (Fig. 1a;

Supplementary Table 1).
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Nationwide yield trials

As a proof-of-concept, we used two independent

datasets from upland rice breeding program, referred

here as MET1 and MET2 (Fig. 1b; Supplementary

Table 1). MET1 consists of 16 elite-lines and 4

cultivars (total of 20 genotypes) cultivated across 15

locations in rainfed season of 2004/2005 and MET2,

19 elite-lines and 4 cultivars (total of 23 genotypes)

cultivated across 14 locations in rainfed season of

2012/2013. For both datasets, the experimental design

was a randomized complete block with four replica-

tions. Each experimental plot consists of four rows of

5,0 m spaced of 0.3 m, with seeding density of 60

seeds m-1. Crop management are the same in both

datasets (MET1 and MET2): total of 100 kg/ha of

nitrogen, being 20% in the sowing, 40% 20 days after

sowing and 40% 45 after sowing; pos-emergent

herbicide for weeds and insecticide for caterpillar

and bug; A single-trial model was previously fitted to

provide a mean yield value for each genotype and

environment. Adjusted means for each genotype at

each trial (byi ¼ lþ bgi) were obtained from ordinary

least squares (OLS) following: yik ¼ lþ bkþgi þ eik,

where yik is the vector of observed grain yield values

for the genotype i-th (i = 1, 2,.., p) at block k-th (k = 1,

2, 3 and 4); gi is the vector of genotype effects, and eik
is the vector of residuals of the single-trial analysis,

with eik �N 0; Ir2ð Þ. Only trials with experimental

quality merit were inserted into the following analysis.

Then, a joint analysis involving all locations was

conducted to assess the magnitude and significance of

the genotype by location (G 9 L) interaction for each

dataset, following:

yij ¼ lþ gi þ lij þ glij þ eij ð1Þ

where yij is the vector of adjusted grain yield values for

the genotype i-th (i = 1, 2,…, p) at location j-th (j = 1,

2,…, q); gi is the vector of genotype effects, lij is the

vector of location effects, glij is the vector of

genotype 9 location interaction (G 9 L); and eij is

the vector of residuals of the joint analysis, with

eij �N 0; Ir2ð Þ. From Eq. 1, the G 9 L effects were

estimated by ordinary least squares (OLS):

ðbglÞij ¼ Yij � Yi: � Y :j þ Y ::, where: Yij is the mean

of the i-th genotype for the j-th location; Yi: is the mean

of the i-th genotype for any location; Y :j is the mean of

the j-th location for any genotype; and Y :: is the overall

mean. The residual variance was tested using

Bartlett’s test (1937) and the degrees of freedom

associated with residual variances and G 9 L

Fig. 1 Geographic distribution of the field trial locations in

Brazil, South America. a target region involving seven Brazilian
states and different elevation levels above see; b geographic

coordinates of the evaluated locals within the target region for

MET1 andMET2 datasets (see Supplementary Table 1 for more

details)
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interaction was adjusted following Cochran (1954),

due to the heterogeneity detected between the mean

square errors computed in our previous statistical

analysis.

Factorial regression (FR)

Factorial regression (FR) is a technique applied to

dissect G 9 E interaction effects into pre-

dictable genotypic responses and residual (unpre-

dictable) effects (van Eeuwijk et al. 1996). The

predictable responses are given by the estimative of

genotypic sensitivity to certain environmental (e.g.,

rainfall, air temperature, solar radiation) or geographic

position (e.g., latitude, longitude and elevation). For

this reason, FR models are a technique to link

envirotyping (environmental ? typing Xu (2016))

approaches to adaptability models unrevealing the

main environmental drivers of the G 9 E for a target

germplasm over a target region. FR-based analysis

combines predictive power and exploratory analytical

tools, which is useful to guide cultivar development

strategies. Here, we applied FR models as a spatial

trend interpolation in GIS framework and as explora-

tory tool helping to visualize regional adaptation

trends in two sources of the upland rice germplasm

(MET1 and MET2). From the G 9 L interaction

matrix obtained in Eq. 1, we applied the FR using

environmental covariates as showed below:

glij ¼
X
v

k¼1

bikzjk þ uij ð2Þ

where bik is the coefficient of regression that describes

the particular sensitivity of the i-th genotype to the

k-th environmental covariate (k = 1, 2,… v); zkj is the

scaled value for mean = 0 and variance = 1 associated

with k-th environmental covariate in the j-th location;

uij is the residual effects not captured by the variables

selected in G 9 L interaction modeling. Thus, the

complete model (Eq. 1), in its original version and

after decomposition (Eq. 2), becomes:

yij � y�j ¼ gi þ
X
v

k¼1

bkzjk þ uij ð3Þ

where yij � y:j can be viewed as the relative yield

adaptability for the i-th genotype at the j-th location

free of local-specific unpredictable environmental

effects yij � ðy:j þ uijÞ. Assuming that is expected to

model predictable genotypic effects and responses to

an environmental gradient, the expected yield adapt-

ability (or regional adaptation, Adij) for a specific

location is now obtained (adapted from Martins 2004

master’s degree thesis):

Adij ¼ yij � ðy:j þ uijÞ ¼ gi þ
X
v

k¼1

bikzjk ð4Þ

The model presented in (Eq. 4) can be assumed as

the reaction norm model environmental-centered, and

modeling the expected cultivar adaptability for any

new location. In other words, it is a spatial interpo-

lation obtained from (Eq 1.) enriched by geographic

information. From now on in this study, we call the

genotypic value gi which is also known as the mean

genotypic value (MGV) assuming a position of a

genotypic-specific intercept.

FR with geographic information systems (GIS)

The FR model was incorporated into GIS tools as a

global spatial trend interpolator of yield adaptability.

Thus, predictions are made for different points in a

spatial grid for a target region, resulting in the

possibility of producing adaptability maps. In this

study, we used latitude, longitude and elevation

information as geographic covariates in order to

model spatial trends of phenotypic plasticity among

the genotypes. The elevation data were obtained by the

SRTM file (available in: https://lta.cr.usgs.gov/

SRTM) consisting of a grid of 0.16� 9 0.16�, based
on datum WGS84. The reference coordinates were

assumed as the observed at the evaluation trials loca-

tion. The measurements of the covariables given were

centered on the mean, with variance 1 and mean 0, that

is, z�N 0; 1ð Þ. The Eq. 4 is then updated as:

Adij ¼ MGVi þ bbi1zj1 þ bbi2zj2 þ bbi3zj3 ð5Þ

where bb1, bb2 and bb3 are de genotypic sensibility

coefficients of the i-th genotypes for the effects of

latitude (kg ha-1 unit of latitude degree-1), longitude

(kg ha-1 unit of longitude degree-1) and elevation

(kg ha-1 m-1 above sea level), assuming each unit of

latitude degree equal of unit of longitude

degree = 0.16� = ud.
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Mapping consistence statistics

A cross-validation scheme was used to verify the FR-

model predictive ability to reproduce spatial trends

within MET and for new locations. The scheme used a

bootstrap approached based on 10,000 random sam-

plings, which generated a training population by

resampling 10% of the genotypes (* 2 genotypes)

and leaving one environment (location) out. Then, we

can verify the model consistence by using the training

population set to predict the genotypes and environ-

ments removed from the analysis. At each boot were

computed the genotypic sensibility coefficients, the

MGV and the contribution of each geographic

covariable to the sum of squares of each regression

(by genotype). The predictive ability was estimated by

the Pearson’s moment correlation (r) between the

observed (gi þ glij) and predicted (AdijÞ values.
We also compared the consistency of the FR-model

in reproducing the selection performed in each trial as

a criterion for recommending new cultivars per state.

For this, we compared the selection coincidence of the

top 5 pre-commercial cultivars, in each test, for each

boot, based on the magnitude of the observed and

predicted effects for each location within each state.

Yield adaptability maps

Finally, yield adaptability maps were generated using

the genotypic sensitivity coefficients obtained by the

mean of the coefficients computed in the aforemen-

tioned 1000-time bootstrap stage. Each prediction was

performed under the pixel of 0.16� 9 0.16�, approx-
imately an area of 17 km 9 17 km, a total of 21,1147

pixels (* 21 M pixels) and 6,682,160 km2 area. The

expected values of yield adaptability E(Adij) for each

pixel were grouped in classes of 500 kg ha-1 empir-

ically delimited and colored with warm (negative

adaptability) and cold (positive adaptability) colors.

This approach was designed to facilitate genotypic

discrimination through visual interplay. In fact, for a

new cultivar to be released, the breeding programmust

specify which state the new cultivar is adapted to the

Brazilian Ministry of Agriculture, Cattle and Supply-

ing (MAPA). Therefore, diagnostic procedures for

cultivar targeting and the spatial interpolator consis-

tency were computed following the territorial limits of

each state in the target region.

Software and data availability

All statistical process and GIS tools, in this study, were

carried out using the R platform 3.5.0 (R Core Team,

2018). In this study, the R-codes and dataset applied

were compiled into a new R package named frGIS.

The R package and the database is freely available at

GitHub at https://github.com/gcostaneto/frGIS.

Results

Predictable spatial patterns

For both datasets the genotype 9 location (G 9 L)

interaction effects were highly significant (see

Table 1, as * significance at 5% for F-test). The

largest variation in the main effects was due to

location, accounting for 61% (MET1) and 76% of the

sum of squares—SS (MET2, 2012/2013). However,

G 9 L interaction were also an important source of

variation, accounted for 32% (MET1, 2004/2005) and

18% of the SS (MET2, 2012/2013), being more than

four (9 4) and three (9 3) times, the variance

explained by the genotypic main effects in MET1

(7%) and MET2 (6%), respectively.

Table 1 shown the mean values for SS and mean

squares (MS) obtained from 1000-bootstrap. This

approach enabled to calculate the theoretical paramet-

ric mean fraction of contribution of each geographic

covariate for the G ? G9L SS under different mul-

tiple-environment arrangements. For simulated con-

dition, a high variation of the G ? G 9 L fraction

explained by the geographic covariates was observed.

For MET1, the fraction of the G ? G 9 L variance

explained by latitude (11 ± 10%), longitude

(10 ± 12%) and elevation (32 ± 12%) allowed to

identify up to 53% of repeatable spatial patterns. In

MET2, this value reached up to 59%, but with

different covariates contribution, being latitude

(26 ± 13%) and longitude (16 ± 8%) showed higher

contribution than elevation (17 ± 15%).

The observed G ? G 9 L effects and the captured

regional patterns are showed in Fig. 2a, b, respec-

tively, for each dataset (MET1 and MET2). As

expected for an extensive and environmentally com-

plex region, the relative positioning of the genotypes

summarized over locations changes considerably. The

observed lower correlation between trials in both
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datasets indicates that crossover patterns of G 9 L

interaction are predominant in the upland rice growing

region (Supplementary Figure 1). This phenomenon

implicates into an unpredictable biological response

and an obstacle for cultivar targeting (Annicchiarico

2002; Kang 2002), especially for extensive regions

such as upland rice in Brazil. In these Fig. 2a, b, the

genotypes were ordered vertically in descending order

of magnitude G ? G 9 L and Ad. It is possible to

observe that a great part of the genotype ordering is

due to the spatial patterns, since the same arrangement

in Fig. 2a, b has been maintained.

Spatial trends consistence

The predictive ability and the selection coincidence

were measures applied to verify the consistency of the

spatial interpolation in predicting the ordering of

genotypes in environments within the MET structure

and in new sites by state (Fig. 3). Predictive ability

values were computed by the Pearson moment corre-

lation (r, given in percent %) between the values of

G ? G 9 L and Ad for scenarios within the MET and

new locations (Fig. 3a). Then, were observed a mean

(± standard deviation) r values for MET1 and MET2

equal to 50 ± 10 and 67 ± 10%, in the within MET

scenario; and- 10 ± 17; and 23 ± 1% for prediction

of new sites not included in the MET structure.

The r values depended on the State, dataset, and

scenario. For MET conditions, the highest r values

was achieved in Goiás (GO) in MET2 (97 ± 1%),

Tocantins (TO) in MET1 (75 ± 1%), Piauı́ (PI) in

MET2 (75 ± 1%) and Pará (PA) inMET2 (75 ± 1%),

respectively. We found that the breeding nursery

(Santo Antonio de Goiás, STG) has a low correlation

with most sites in the experimental rice test network

(see Supplementary Figure 1). For this reason, the

removal of the STG assays, the only assay in the state

of Goiás in MET2, did not significantly impair the

predictive capacity of the models. However, the

Table 1 Joint analysis of

variance involving datasets

MET1 and MET2 with

sequential decomposition of

G ? G 9 L effects in

linear effects of latitude,

longitude and elevation

*Significance at 5% for

F-test
aError in level of treatment

mean (average number of

repetitions equal to 3.964)
bThe degrees of freedom of

GE interaction and the

mean error was adjusted by

the method of Cochran

(1954), due to

heteroscedasticity between

trials (Bartlett’s test,

p\ 0.001)
cFractions in relation to

G ? L?GL (Joint analysis)

and G ? GL (Factorial

Regression)
dSum of squares and
eMean squares

Joint-analysis DFb SSc MSd Fractionc (G ? L?G 9 L)

MET1

Location (L) 14 178,975,523 12,783,966* 0.61

Genotype (G) 19 21,458,667 1,129,404* 0.07

G 9 L 197 93,012,871 349,667* 0.32

Error/ra 880 592,031,836 108,548 –

MET2

Location (L) 13 1,581,700,166 121,669,244* 0.76

Genotype (G) 22 131,076,146 5,958,007* 0.06

G 9 L 286 364,974,112 1,2761,33* 0.18

Error/ra 1146 729,771,323 636,799 –

Factorial regression DF SS MS Fraction (G ? G9L)

MET1

G ? G9L 266 114,471,538 6,024,818 –

Latitude 19 12,591,869 662,730 0.11 ± 0.10

Longitude 19 11,447,154 602,482 0.10 ± 0.07

Elevation 19 36,630,892 1,927,942 0.32 ± 0.12

Residual G ? G 9 L 209 36,630,892 2,831,664 0.47 ± 0.12

MET2

G ? G9L 286 496,050,258 22,547,739 –

Latitude 22 128,973,067 5,862,412 0.26 ± 0.13

Longitude 22 79,368,041 3,607,638 0.16 ± 0.08

Elevation 22 84,328,544 3,833,116 0.17 ± 0.15

Residual G ? G 9 L 220 203,380,605 9,244,573 0.41 ± 0.11
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forecast of new locations within the states did not

follow the same trend. For new sites, the r values

ranged from - 21 ± 28% (Pará State at MET1) to

57 ± 1% (Goiás Sate at MET2). In MET1, in addition

to the r State with negative values, we also observed an

inability to predict new sites inMA, GO, TO and PI. In

MET1, this cause may be due to the greater adaptation

of the genotypes to the warmer and lower latitude

regions, such as PA and Northern MT. However, in

MET2 the lowest r values were observed in Rondônia

(RO) with 13 ± 29%, MA (14 ± 1%) and PI

(16 ± 1%).In this case, the current germplasm is

more adapted to regions of higher elevation and

latitude, such as those found in the nursery of the

upland rice breeding program located in STG.

The selection coincidence (SC, %) of the top-5 best

genotypes per location was applied as a criterion of

consistency in the prediction of the higher yield

cultivars by State (Fig. 3b). SC values varied from

13 ± 15% (PI, MET1) to 89 ± 9% (GO,MET2), with

an overall mean of 49 ± 15% for conditions within

MET; and 2 ± 5% (PI, MET2) up to 51 ± 17% (MT,

MET1), with an overall mean of 23 ± 14% when

predicting new locations. The most consistent state

based on SC criterion wasMato Grosso (MT), with SC

values equal to 62 ± 18% (within MET) and

Fig. 2 Graphical summary of adjusted means of each genotype

(Y-axis) at each location (X-axis), expressed in kg ha-1,for

datasets MET1 and MET2. a full observed genotype plus

genotype by location interaction effects (G ? G 9 L) patterns

from the ordinary least squares (OLS) estimations; b regional

adaptation trends captured by factorial regression with geo-

graphic covariates related to latitude, longitude and elevation.

The values were ordered on the X and Y axis
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50 ± 18% (new locations) in MET1; and 51 ± 10%

(within MET) and 43 ± 20% (new locations) in

MET2. The state of Pará (PA), which has a large

territorial extension asMT, showed values of SC equal

to 64 ± 11% (within MET) and 42 ± 16% (new

locations) in MET2.

Geographic drivers of yield adaptability

The impact of geographic effects on the adaptability of

cultivars in terms of genotypic responsiveness (geno-

type sensitivity coefficients, bbk) and their participation

in the sum of square of the G 9 L interaction plus

genetic effect (G) are summarized in Figs. 4a and 4b.

Differently from regression coefficients, such as that

of Finlay and Wilkinson (1963), the plasticity of the

cultivars was detailed in responsiveness to latitude

(bb1), longitude (bb2Þ and elevation (bb3Þ plus a mean

genetic effect (MVG, kg ha-1). For MET1, there is a

high effect of elevation for most genotypes, which

tended to respond positively to the increase in

elevation (from 3.2 kg ha-1 m-1 above sea level for

genotype G04 and to 0 kg ha-1 m-1 for G12 geno-

type). The fraction of the G ? G9L variance

explained by this effect reached up to 54% in G13

and 61% in G08. However, some genotypes showed a

greater response to other effects, such as latitude (35%

in G01, with a coefficient equal to- 101.7 kg ha-1 ud
-1) and longitude (41% in G12, with coefficient equal

to - 43.7 kg ha-1 ud-1).

Fig. 3 Statistics of spatial interpolation consistency by State.

a predictive ability based on the Pearson’s correlation between

observed G ? G9L and predicted Ad values; b percentage of

selection coincidence between the field trial phenotypic

selection using magnitude values of G ? G9L and Ad. The

bars represent average values of 1000-boots, with their

respective standard deviations. Acronyms GO, MA, MT, PA,

PI, RO and TO refers to the States of Goiás, Maranhão, Mato

Grosso, Pará, Piauı́, Rondônia and Tocantins
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Yield adaptability maps for cultivar development

support

In the yield adaptability maps (Fig. 5) for the MET1

and MET2 datasets, negative values in red represents

the genotype not adapted to the target pixel region.

Examples of the performance of the genotypes for

each dataset were highlighted in Figs. 5a (MET1) and

5b (MET2) and the others not-selected are showed in

the Supplementary Fig. 2. Adaptability has been

identified point to point and is quantified as mean

values, e.g., ? 500 kg ha-1 is equivalent to affirming

that the genotype will capture ? 500 kg ha-1 above

the average of the evaluated germplasm at the same

MET conditions. For example, genotype G01 has

adaptability to the northern region of Brazil (Pará

state, PA), but is not adapted to the central region

(Goiás state, GO). The genotype G26 has adaptation to

the environments of the Goiás and southern Tocantins

sates, but showed little adapted to the northern regions

(northwest of Mato Grosso and Pará).

Fig. 4 Impact of the geographic effects on the upland rice yield

adaptability for datasets MET1 and MET2. a Genotypic

sensibility coefficients for geographic covariates and mean

genotypic effect (MGV) obtained from 1000-boos; b fraction of

the G ? GL SS explained by the geographic covariates for each

genotype
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Yield stability can also be viewed spatially by the

adaptability variability classes over the target region.

Genotypes G02 and G14, for example, are highly

stable because they have the same adaptability

throughout the region. This can also be characterized

as a broad regional adaptability. However, the G25,

G26 and G28 genotypes are highly adapted to the

higher latitude regions in the state of Goiás, such

adaptability is not repeatable throughout the target

region, resulting in non-adaptation to the northern

region, characterized by lower elevations (from 0 to

100 m a.s.l) and higher latitudes (from 0� to 5� S).

Therefore, they are fewer stable genotypes to an

extensive target region, but with specific adaptability

to conditions of higher elevation (from 500 to 800 m

a.s.l) and lower latitudes (from 13� S to 20� S). These
concepts can be associated with the type I stability

(Lin and Binns 1991). The ideotype sought is that one

occupying the wider area, has higher performance

(adaptability) and lower variation in the adaptability

classes (agronomic stability). Based on the criteria

listed above, the ideal genotypes are G14 (broad ?

high average adaptation in the northern region) and

G28 (wide adaptation in the western ? medium–high

regions).

Discussion

Factorial regression with GIS as a complementary

model in advanced yield tests

FR model is currently used to associate non-genetic

additional information from environmental variables

(e.g., elevation) with phenotypic observations or

G 9 E interaction effects from MET analysis (Denis

1988). Traditionally, this approach focused in explora-

tory analysis for recovery some useful biological or

agronomic pattern which can explain G 9 E interac-

tion drivers. More details about the different FR

models and their association with traditional linear-

bilinear models (e.g., AMMI) can be found in van

Eeuwijk et al. (1996). Martins (2004) provide the first

report of using FR models to visualize spatial patterns

of G 9 E interaction. In this study, we focus on the

potential of using this methodology, associated with

the computational resampling techniques (e.g., boot-

straping) and geographic information systems (GIS),

aiming not only to understand the patterns but also to

explore regional yield plasticity trends for cultivar

adaptability diagnosis purposes.

The use of GIS for spatial diagnostic mapping of the

G 9 L interaction can contribute to the cultivar

Fig. 5 Geographic representation of adaptability expressed in kg ha-1 for highlighted performance types in datasets MET1 (a) and
MET2 (b) in the target upland rice cropping region in Brazil
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targeting and spatial diagnosis of agroecological zones

(Hyman et al. 2013). However, the integration with FR

models facilitates both the diagnosis of adaptation

zones of the genotypes and a better understanding of

the spatial causes of phenotypic plasticity. Here we

seek to expand the interpretation concept of the G 9 E

interaction via FR not testing the significance of the

covariables but rather verifying the participation of the

same explaining the variance of the effects G ? G 9

L, i.e., the effects that denote the genetic responsive-

ness to the environmental variation. Thereby, we use

here a concept of reaction norm applied to the

explanation of regional adaptation.

Nevertheless, the methodology was also efficient as

an exploratory method, especially when we sought

some biological meaning for the environmental

covariates in explaining the G 9 L interaction. In

the past we see that the search for the identification of

effect covariates has sought an empirical understand-

ing of the causes of G 9 E interaction in diverse crops

(Epinat-Le Signor et al. 2001; Ortiz et al. 2007; de

Nunes 2011; Verhulst et al. 2011). A central question

when using FR models is the choice of covariables for

description of G 9 E interaction. Thermal-related co-

variates, such as accumulated degree-days in diverse

development stages, or simple co-variates such as

average air temperature were used with success in the

past (Baril et al. 1995; Magari et al. 1997; Voltas et al.

2005; Ortiz et al. 2007). These covariates, in combi-

nation with hydrological factors (e.g., evapotranspi-

ration, accumulated precipitation) explained from

44% up to 91% of G 9 E interaction SS. Here, we

were able to explain up to 59% of G ? G 9 L SS

using only the three simple geographic co-variates,

latitude, longitude and elevation.

Ecophysiological interpretation of the G 9 L

interaction spatial trends

As the first step in developing a future high-density

GIS-based envirotyping framework to support cultivar

testing, we evaluate here the merit of the use of simple

geographic covariates (latitude, longitude and eleva-

tion) in representing latent regional-specific environ-

mental patterns and how the genotypes capitalize the

consequent G 9 E interaction effects from these

patterns. Thus, we were able to find exploitable eco-

physiological interpretations from these geographic

effects. The geographic covariates studied here

represented the spatial variability present in a target

population of environments (TPE), such as local-

specific factors (e.g., soil type variations across

locations) and possible biotic relations, such as the

differential response of crops in growth and develop-

ment and also their interaction into pathosystems

differentially respond to geographic variation.

Latitude and longitude showed statistical impor-

tance as spatial modulators in modeling G 9 L

patterns, as observed by Hyman et al. (2013). Latitude

is a covariate related to the radiation balance in the

atmosphere, as well as day length and heat intensity

received in the canopy (Allen et al. 1998). Elevation is

a covariable inversely related to the air temperature

and atmospheric pressure (Allen et al. 1998). Regions

with higher altitudes tend to have lower temperatures

and higher daily range in air temperature. For these

conditions, there are reports of increased susceptibility

to blast disease (Magnaporthe grisea), considered the

main disease in rice worldwide (Raboin et al. 2016).

This is due to the formation of dew and mild

temperatures, favorable conditions for the develop-

ment of the fungus (Kato 1974; Kim, 1994; dos Santos

et al. 2011). For upland rice in Brazil, the pathogen

races are very region-specific, exhibit higher diversity

of races according to the regional climate, soil and

management practices (da Silva et al. 2012). There-

fore, latitude and longitude variations may also

express the regional diversity of the breed of these

pathogens (Filippi et al. 2002), among others, resulting

in differential pathogen-host interactions throughout a

state or region.

Regional variations in soil properties can also be

observed (Cooper et al. 2005; Buol 2010). Lower

regions close to rivers tend to have soils of lower depth

of A-horizon, having higher levels of sand than of clay

and higher elevation regions are characterized by the

predominance of Oxisols (Cooper et al. 2005; Heine-

mann et al. 2019). Therefore, the geographic variables

are indirect descriptors of geo-spatial conditions of

relief implying in the dynamics of the agricultural

systems. Drought-stress is one of the most important

yield-limiting factors of rainfed crops such as upland

rice (Heinemann et al. 2015). There is a spatial

variation among drought-stress in Brazil, which com-

bined with the lower resilience of the modern type

cultivars (Heinemann et al. 2019) have resulted into

differential patterns of G 9 L interaction among

states. In this context, in our study, the combined
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effect of latitude, longitude and elevation may repre-

sent the latent effect of regional drought typologies

among states.

Regional trends reveal germplasm adaptation

shifts

Although genotypes of the two datasets are from to

distinct phases of the upland rice breeding program

(Colombari Filho et al. 2013), it is possible to observe

similar trends in their regional crop adaptation for

some covariates. We observed that in MET1 the

genotypes responded positively to the increase of

elevation and negatively to the increase of longitude

and latitude. Therefore, there are indications that

genotypes were more adaptable to regions with higher

elevations and lower latitudes and longitudes, such as

those presented near the nursery of the breeding

program in Goiás state (see STG location in Fig. 1).

However, for MET2, the increase in elevation is also

beneficial to capitalize G 9 L interactions, but the

genotypes tended to present better performance in

regions with higher longitudes, such as western

regions of the state of Mato Grosso.

There are also indications of the existence of

significant differences related to the G 9 L interaction

patterns due to latitude effects. In a study conducted

using data from 30-year yield trials, Colombari Filho

et al. (2013) observed that there are notable differences

in G 9 L interaction patterns between and within

states. We can conclude that regional differences

within the states may be associated with the differen-

tial response of cultivars to variations such as altitude,

longitude and elevation, especially in states with a

large territorial area, such as Mato Grosso and Pará.

Considering that the two datasets are from different

time of the breeding program, it is possible to infer that

these differences may be related to the selection

process directed to specific environments, as in

northern and western of Mato Grosso state. From the

last 15-years, the breeding program strategy to select

genotypes have been changed. In this context, it’s

possible that shift variations among datasets may

reveal the impact of this breeding strategies into

upland rice adaptation. Heinemann et al. (2019) using

a long-term diagnosis demonstrated that drought-

resilience has been decreased in the last 30 years.

However, this study was based only in 3 representative

genotypes, which their agronomy performances were

highly distinct among them. Here we used an entire set

of the elite-germplasm, which allows us to visualize

more accurately the plastic shifts between (years) and

within (G 9 L interactions) the two sets. Further

studies involving more years of MET are needed to

prove this hypothesis.

Adaptability Island around breeding program

nursery

The geographic representation of yield adaptability

highlights the existence of an ‘‘adaptability island’’

around to the breeding program nursery (located Santo

Antonio de Goiás, GO State, latitude: 16.47 S;

longitude: 49.28 W; elevation: 800 m a.s.l.). On the

other hand, there is a difficulty to select better-adapted

genotypes for the northern states (e.g., Pará, Mar-

anhão, and Piauı́). Similar trends in upland rice

cropping area in Brazil were achieved by Heinemann

et al. (2019) using cropping modelling system (CMS)

and GIS tools. These authors, based on CMS

approaches identified shifts in germplasm adaptation

for drought stress in the last 30 years. However, they

observed that regions near to the breeding program

nursery has different drought-stress patterns than the

rest of the entire TPE. For this reason, the modern type

cultivars developed by the breeding focused on higher

yield tend to be less resilient than the cultivars of the

80 s and 90 s. Here, we observed a quantitative

increased in yield adaptability for the Goiás states

from the years of 2004/2005 (MET1) to 2012/2013

(MET2) (Fig. 5).

In MET1, the maximum Ad values observe were

equal to ? 2000 kg ha-1. However, in MET2, it was

observed values reaching ? 3000 kg ha-1, denoting

that selection gains for grain yield were achieved for

higher elevations such as at breeding nursery condi-

tions. Thereby, we also observed an increased in not

adapted regions (red colors in the map) at equatorial

and lower elevation regions when compared the

germplasms from 2004/2005 to 2012/2013. By com-

bining this information with our results, we hypoth-

esize that the breeding strategies may lead to increased

yield and adaptation to higher elevations of ‘Cerrado’

biome, which represents a fewer proportion of the

entire TPE. To improve adaptation for equatorial

Amazon regions, which has lower elevations, efforts

in evaluating and selecting for grain yield must be
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direct to the regions at northern Mato Grosso State,

Rondônia and Pará States.

Perspectives of GIS-based virtual screening

for yield adaptability

Our results suggests a step-forward in cultivar testing

over extensive regions, highlighting that geographic

coordinates can be used to indicate some

exploitable spatial trends related to G 9 L interaction.

For early yield performance evaluations conducted at

regional multiple-environment trials (with higher

number of genotypes and lower number of locations),

the FR-models using other environmental covariates

can accommodate also molecular markers or pedigree

information, exploiting relationship patterns of reac-

tion norm (Heslot et al. 2014; Ly et al. 2018; Millet

et al. 2019). However, when these models are

embedded with GIS databases, the methodology

present here can be used to predict and exploit the

latent spatial trends of yield adaptability. In addition,

there is also a possibility that incorporate several GIS

databases (e.g., WorlClim, http://www.worldclim.org

or NASA Power, http://power.larc.nasa.gov/) in order

to provide a high-density envirotyping framework

both for cultivar testing that germplasm adaptation

diagnosis.

The GIS-based FR model approach can improve an

in silico screening for yield adaptability, enabled an

optimized effort in further MET trials of advanced

phases of breeding programs. Similar approaches are

also in current application, such as the use of CMS

(Messina et al. 2018), single covariate effects incor-

porated into whole-genome regressions (Ly et al.

2018) and genomic-based FR approaches combining

genotype-specific index (Millet et al. 2019). Here, we

demonstrated similar evidence of increased predictive

ability and capability to screen target germplasm for

an entire breeding region. We also demonstrated that

shifts in breeding strategies may promote differential

sensibility responses, as observed from the germplasm

of 2004/2005 (MET1) to the germplasm of 2012/2013

(MET2), when the effects of latitude have been

changed and the specific adaptation for higher eleva-

tions remains the main gap for improving wide

adaptation genotypes. We suggest that early efforts

in crossing, selecting and evaluating genotypes are

conducted at MET framework, and if possible, to

incorporate some environmental and genomic

information in order to allow the training of FR

models for spatial prediction as an in silico early

screening for adaptation.
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interação genótipos x ambientes em meloeiro. Rev Bras

Fruttic 33:1194–1199. https://doi.org/10.1590/S0100-

29452011000400018

Denis JB (1988) Two way analysis using covarites. Statistics

(Ber) 19:123–132

dos Santos GR, Chagas JFR, Tavares AT et al (2011) Danos
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