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Abstract To fully exploit the diversity in African

rice germplasm and to broaden the gene pool reliable

information on the population genetic diversity and

phenotypic characteristics is a prerequisite. In this

paper, the population structure and genetic diversity of

42 cultivated African rice (Oryza spp.) accessions

originating from West Africa (Benin, Mali and

Nigeria, Liberia etc.) were investigated using 20

simple sequence repeats (SSR) and 77 amplified

fragment length polymorphisms (AFLP). Addition-

ally, field trials were set up to gain insight into

phenotypic characteristics that differentiate the

genetic populations among rice accessions. The

analysis revealed considerably high polymorphisms

for SSR markers (PIC mean = 0.78) in the germplasm

studied. A significant association was found between

AFLP markers and geographic origin of rice acces-

sions (R = 0.72). Germplasm structure showed that

Oryza sativa accessions were not totally isolated from

Oryza glaberrima accessions. The results allowed

identification of five O. glaberrima accessions which

grouped together with O. sativa accessions, sharing

common alleles of 18 loci out of the 20 SSR markers

analyzed. Population structure analysis revealed exis-

tence of a gene flow between O. sativa and O.

glaberrima rice accessions which can be used to

combine several interesting traits in breeding pro-

grams. Further studies are needed to clarify the

contributions of this gene flow to valuable traits such
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(BIORAVE), Université d’Abomey, Abomey-Calavi,

Benin

D. Silue

AfricaRice Center, 01, B.P.O. 2031, Cotonou, Benin

Present Address:

D. Silue

AfricaRice Center, 01, B.P.O. 2551, Bouake 01, Côte d’Ivoire
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as abiotic and biotic stresses including disease

resistance.

Keywords Amplified fragment length

polymorphism � Genetic diversity � Gene flow � Rice �
Simple sequence repeats

Introduction

Rice (Oryza spp.) is one of the world’s most important

self-pollinating diploid food crops that provides a

significant part of staple food for millions of people

(Chang 1976; Kubo and Purevdoj 2004). The genus

Oryza is composed of two domesticated (Oryza sativa

L. and Oryza glaberrima Steud.) and 22 wild species

representing ten rice genome types (Vaughan 1994;

Ge et al. 2001; Ammiraju et al. 2010; USDA-ARS

2013). Six out of the ten known genome types are

present on the African continent and show that Africa

has a very rich gene pool adapted to the African

growing conditions (Sanchez et al. 2013; Wambugu

et al. 2013). Both domesticated species (O. glaberrima

and O. sativa) are grown in West Africa (Nuijten et al.

2009) with O. glaberrima being native from Africa

(Portères 1956; Angladette 1966). Many O. glaber-

rima and O. sativa cultivars have been collected (over

20,000 rice accessions) and are conserved in the

AfricaRice Genebank, a Consultative Group for

International Agricultural Research (CGIAR) (Sié

et al. 2012). However, because of the lack of

knowledge on their genetic characteristics, they are

still limitedly used for breeding and sustainable

production (Roy Choudhury et al. 2014). Particularly

O. glaberrima is underutilized since farmers replace it

with O. sativa because of the higher grain yield of the

latter species (Linares 2002; National Research Coun-

cil 1996). Teeken et al. (2012) reported that the

majority of O. glaberrima cultivars are entirely the

farmers’ outcome from maintenance of diversity since

only limited research has been conducted to improve

this species. In contrast, more attention was paid to O.

sativa species. Given the known O. glaberrima

potential to adapt to a wide range of adverse environ-

ments (Pham 1992; Jones et al. 1997; Futakuchi and

Sié 2009; Sié et al. 2010; Mokuwa et al. 2013),

strategies for a better valorization of its cultivars must

be encouraged. Recently, we have initiated the

screening of a number of rice accessions (345 O.

glaberrima and five O. sativa accessions) for their

resistance to blast in upland conditions in Benin

(Yelome et al. 2018). The relationship between

genetic diversity based on AFLP markers and disease

tolerance was evidenced. The present work was

undertaken to further examine genetic structure

diversity and relationships among the African rice

germplasm. There is limited knowledge on these

African rice germplasm resources as few studies

describing the diversity based on both molecular (of

genetic) and phenotypic characterization have been

published. The characterization of genetic diversity

can serve as a basis to formulate strategies to expand

the diversity among cultivars and to broaden the

genepool by making thought-out crosses (Nisar et al.

2008, Salem and Sallam 2016). Furthermore, both the

relationship between the genetic structure and geo-

graphic distribution and the level of gene flow among

rice accessions will be examined in the present study

for efficient germplasm management. Knowledge on

the genetic structure is very important for breeding and

conservation. It can help by guiding the choice of

genetically distant genotypes to incorporate a higher

variation into segregating populations (Sié et al.

2012). Gene flow investigation may also serve to

introduce potentially adaptive alleles to populations,

and increase genetic diversity, which natural selection

can act upon to provide an evolutionary response

(North et al. 2011; Sexton et al. 2011). Molecular

SSRs and AFLPs markers (Vos et al. 1995; Vieira

et al. 2016) have been widely used to screen,

characterize and evaluate genetic diversity in rice. A

number of key distinctive traits will also be investi-

gated to provide a better understanding of genetic

diversity structure, which will facilitate an efficient

management and valorization of assembled African

rice germplasm.

The objectives of this study are to (1) assess the

genetic diversity and phylogenetic relationship of a

selection of African rice accessions originating from

Benin, Mali, Nigeria, Ivory Coast, Liberia and Guinea;

(2) examine the relationship between genetic diversity

and geographic origin of rice accessions; (3) deter-

mine the genetic structure and the level of gene flow in

the germplasm. This information is important in

searching strategies for the selection of high-yielding

accessions with resistance to blast disease.
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Materials and methods

The germplasm of Oryza spp. included in this study is

a subset of 42 rice accessions (fiveO. sativa accessions

and 37 O. glaberrima accessions) originating from six

West African countries (Suppl. Table 1). This repre-

sentative subset has been derived from the entire

African collection of 350 rice accessions based on

geographical origins, pairwise genetic distance (re-

vealed by 77 AFLP markers) and differential reactions

of the accessions to blast disease. The average

Polymorphic Information Content (PIC) was

24 ± 4% and Jaccard’s genetic dissimilarity coeffi-

cients ranged from 0.03 to 0.98 for the collection of

350 accessions. (Yelome et al. 2018). Among the

selected germplasm, we have identified several field

blast resistance patterns: 26 highly resistant acces-

sions; 9 moderately resistant, 3 moderately susceptible

and 4 susceptible.

DNA extraction

Genomic DNA extraction from each accession was

done according to the CetylTrimethyl Ammonium

Bromide (CTAB) method described by Saghai-Ma-

roof et al. (1984). Five seeds from each of the 42 rice

samples were grown in a growth chamber at 27 �C.
Approximately 200 mg of leaf samples were har-

vested on 21 days-old seedlings and ground in liquid

nitrogen in 2 mL of CTAB using a pestle and mortar.

Then, 500 lL of each of the obtained suspensions were

transferred to centrifuge tubes and incubated in a water

bath for 30 min at 60 �C. An equal volume of

chloroform:isoamyl alcohol (24:1, v/v) was added to

each tube. The suspension was gently mixed by

inverting the tubes. Tubes were centrifuged at

12,000 rpm for 10 min and the supernatant recovered

and mixed with an equal volume of ice-cold iso-

propanol. DNA was recovered as a pellet by centrifu-

gation at 12,000 rpm for 5 min, washed with 100 lL
of 70% ethanol, dried under vacuum and dissolved in

30 lL of TE buffer. Two microliter of RNase (10 g/

mL) were added to the DNA and incubated for 1 h.

DNA concentrations were measured using the Quan-

tusTM Fluorometer (Promega).

AFLP analysis method

AFLP polymorphic markers used in this study were

selected on the basis of the polymorphism they had

revealed in 350 rice accessions in our previous work

(Yelome et al. 2018). Genomic DNA was completely

digested with 5 U of each MseI and EcoRI restriction

enzymes and ligated to 5 pmol EcoRI and 25 pmol

MseI adapters. Pre-amplification of ligation products

was done with specific EcoRI and MseI primers

without additive nucleotides and over 20 cycles of

94 �C during 30 s, 56 �C during 60 s, and 72 �C
during 60 s were run in a thermal cycler. Concentra-

tion of the amplified DNA was checked on a 1.5%

agarose gel. Next, DNA was diluted 25 times in TE

buffer. For selective amplification, three primer com-

binations with three selective bases at the end

(EcoRI ? ACC/MseI ? CTC, EcoRI ? ACC/

MseI ? CTA, EcoRI ? ACC/MseI ? CAT) were

used to reveal a maximum number of polymorphic

markers in the rice samples. Based on the entire

collection of 350 accession, the primer combination

EcorI ? ACC/Mse ? CAT appeared to be most

informative with 79% polymorphic bands, followed

by EcorI ? ACC/Mse ? CTC and Ecor I ? ACC/

Mse ? CTA, with 69% and 66% polymorphic bands,

respectively (Yelome et al. 2018). The EcoRI primer

was end-labeled with NED fluorescent dye. Amplified

products were mixed with GeneScan-500 ROX size

standard (Applied Biosystems Inc., USA) and deion-

ized formamide. Finally, they were loaded on an

Applied Biosystems electrophoresis instrument 3130

for electrophoretic size separation with performance

optimized polymer (POP 4).

SSR analysis method

A total of 20 polymorphic SSR markers distributing

across the 12 chromosomes in rice was used for

genotyping rice accessions (Suppl. Table 2). These

markers were selected from a panel of 30 standard

SSR markers developed by the Generation Challenge

Program for rice diversity analysis (http://gramene.

org/markers/microsat/50_ssr.html) and from other

scientific works (Temnykh et al. 2000; McCouch et al.

2002; Dramé et al. 2011) according to their level of

polymorphism in rice. The forward primers were

labeled at the 50 end of the oligonucleotide either with
the fluorescent dyes 6-FAMTM (Blue) or 5-TETTM
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(Green) and supplied by Applied Biosystems Inc.

(USA). We tested them first for amplification and

polymorphism on a subset of 11 DNA samples. Then,

individual polymerase chain reaction (PCR) amplifi-

cations with each marker were carried out in a total

volume of 10 lL containing 2 lL of genomic DNA

(5 ng), 0.125 lL of each of the forward and reverse

primers (diluted to a 5 lM concentration), 0.4 lL of

the dNTPs mix (100 mM), 2 lL PCR buffer (Pro-

mega), 0.6 lL of Mgcl2 and 0.0625 lL of Taq DNA

polymerase (5u/lL, Promega). PCR runs were per-

formed according to the following program: initial

denaturation at 95 �C during 2 min, followed by 30

cycles of 30 s at 95 �C, the annealing temperature

during 1 min, elongation 72 �C during 1 min and a

final elongation step at 72 �C during 5 min. After the

PCR reaction, PCR products were migrated on agarose

gel (2%) to check the amplification. Of the PCR pro-

duct, a master mix of 10 lL was prepared into optical

96-well MicroAmp plates using non-overlapping

markers of two different dyes (FAM and TET) with

reference to the allele sizes published on Gramene

website. The master mix was composed of 1 lL of

each of the fluorescent dyes (FAM: Blue and TET:

Green), 7.7 lL of deionized formamide and 0.3 lL
GeneScan-500 ROX size standard (Applied Biosys-

tems Inc., USA). Products were denatured by heating

during 3 min at 90� C and then loaded on an Applied

Biosystems electrophoresis instrument 3130 for elec-

trophoretic size separation with performance opti-

mized polymer (POP 4).

Phenotypic description

Morphological characterization (phenotypic descrip-

tion of rice accessions) was conducted at AfricaRice’s

experimental site in Cotonou, Benin in upland ecol-

ogy. The experimental layout was an augmented

randomized complete block design with three refer-

ence controls (WAB0006881 (O. sativa),

WAB0006871 (O. glaberrima) and WAB0007880

(O. glaberrima)) (Suppl. Table 1). Such a design does

not require to repeat the accessions and is convenient

for accessions with limited seed as it was the case in

this study. A total of 9 blocks with 5 plots consisting of

42 rice accessions appearing exactly with the three

reference controls replicated 9 times (once in each

block of the design). Each single rice accession was

sown in a plot of 5 m2 with 20 cm spacing within rows

and lines. Thinning of seedlings was done at 14 days

after sowing to leave one plant 20 cm apart. Morpho-

logical data were collected using 17 morphological

traits described in the Standard Evaluation System for

Rice (http://www.knowledgebank.irri.org/ses/SES.

htm). NPK (15-15-15) was applied at planting

(200 kg/ha) and two urea applications performed at

top-dressed stage (35 kg/ha) and panicle initiation

stage (65 kg/ha), respectively.

Statistical analysis

AFLP/SSR electropherograms were analyzed by

GeneMapper Software Version 4.0. Genotype marker

results were automatically compiled in a standard

Excel format. Statistical parameters defining the

diversity, the polymorphism Information Content

(PIC) (Botstein et al. 1980), the Shannon’s diversity

index, allele number, frequency of major alleles, and

heterozygosis were calculated using GenAlEx

V6.502. The population structure was investigated

by using the Bayesian model-based software program

in STRUCTURE V2.3.4 (Pritchard et al. 2000). The

number of resumed populations (K) was set from 1 to

10 with the 50,000 lengths of burnin period and

200,000 MCMC (Markov Chain Monte Carlo) repeats

after burnin and 10 independent runs for each K

number. The python script structureHarvester.py

v0.6.92 (Earl and vonHoldt 2012) was used to

summarize STRUCTURE output. This script gener-

ates DK values using the method described by Evanno

et al. (2005). The optimal number of populations was

determined by plotting the K number against the

calculatedDK (log probability for the rate of change of

the data) and the sharp peak from STRUCTURE runs

was considered. The run with maximum likelihood

was then used to assign each accession into popula-

tions. Accessions with affiliation probabilities (in-

ferred ancestry) C 80% were assigned to a distinct

population, and those\ 80% were treated as admix-

ture, i.e. these accessions seem to have a mixed

ancestry from identified parents that belong to differ-

ent gene pools or geographical origins. Using

DARwin V6.0.8, genetic dissimilarity coefficients

(Jaccard’s distance) were calculated to determine the

genetic relationship between accessions and dendro-

grams were constructed according to the unweighted

pair-group mean arithmetic method (UPGMA). An

analysis of molecular variance (AMOVA) was used to
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estimate Fst (fixation) values and the partitioning of

the molecular variance of rice accessions. Mantel test

was used to investigate the correlation of genetic

distances with geographical and phenotypical dis-

tances (Mantel 1967). and Principal coordinate anal-

ysis (PCo) was performed to show the associations

between genetic populations.

Results

Genetic variability for AFLP and SSR markers

among subset of 42 rice accessions

A total of 1232 fragments were identified in the subset

of 42 rice accessions by 77 polymorphic AFLP

markers with an average of 25.67 loci for each of the

three primer combinations used (Table 1). The Shan-

non’s information index (I) and the Polymorphism

Information Content (PIC) averaged 0.46 and 0.35

ranging between 0.42–0.49 and 0.33–0.37, respec-

tively. Jaccard’s distance coefficients varied from 0.15

to 0.96 across all the tested samples.

Twenty SSR markers were used to generate 223

different alleles in total rice germplasm with an

average of 11.15 alleles per locus (Table 2). Nearly

half (49.32%) of the detected alleles was rare with a

frequency\ 0.05. Major allele frequency ranged from

0.16 to 0.56 averaging at 0.35. Three loci (RM162,

RM287, RM316) revealed abundant alleles (fre-

quency C 50%) across all the tested samples. The

highest number of different alleles was observed with

marker RM5851 (19 alleles) followed by RM219 (18

alleles) and RM1236 (17 alleles), whereas a lower

number (5 alleles) was found at RM125, RM162 and

RM171 loci. The Shannon’s information index (I) var-

ied from 1.01 (RM162) to 2.68 (RM5851) with an

average value of 1.88. PIC values ranged from 0.58

(RM162) to 0.91 (RM5851 and RM219) with an

average of 0.78. Markers RM55, RM162 and RM1075

revealed more than 40% heterozygous individuals,

whereas RM125 was homozygous. Jaccard’s distance

coefficients varied from 0.1 to 1 among the subset

germplasm.

Population structure and genetic variation

among subset of 42 rice accessions

The Bayesian based analysis of population structure

using SSR markers showed that the log likelihood at

K = 3 was optimal to group the subset of 42 rice

accessions into three genetically distinct populations

(Suppl. Fig. 1). Estimated affiliation probability values

(inferred ancestry) C 80% at K = 3 indicated that 9, 6

and 26 rice accessions were classified into population 1

(red color), population 2 (green color) and population 3

(blue color), respectively with more than 96% ancestry

(Fig. 1). Accession WAB0006684 (O. sativa) from

Benin shared ancestry with rice accessions in popula-

tion 1 (77%) and population 2 (23%). Population 1

contained all remaining O. sativa accessions included

in this study. The cluster analysis based on the UPGMA

method using the 20 SSR markers also partitioned the

total germplasm into three genetic groups (Fig. 2a).

Accessions in each group corresponded to the three

populations identified by STRUCTURE except for the

admixture WAB0006684 (O. sativa). AMOVA results

(Table 3) revealed higher levels of variation between

rice accessions (80%) than within accessions (18%),

whereas only 2% of variation were due to difference

between the three populations. The overall Fixation

(Fst) value was equal to 0.018 across populations. Fst

values were low between all pairwise populations, but

significant (P\ 0.05) for genetic population structure

Table 1 Polymorphism levels detected by number of loci and bands per primer combination, Shannon’s information index (I) and

Polymorphism Information Content (PIC) for the AFLP markers

Primer combinations Number of loci detected Number of total bands I PIC

ACC ? CAT 31.00 478.00 0.46 0.37

ACC ? CTC 24.00 341.00 0.42 0.33

ACC ? CTA 22.00 413.00 0.49 0.35

Mean 25.67 410.67 0.46 0.35

Total 77.00 1232.00
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differentiation. A comparable level of population

genetic differentiation (Fst) was observed between

population 1 and population 2 (0.032) and between

population 2 and population 3 (0.032), whereas a much

lower Fst (0.016) was found between population 1 and

population 3. The average number of different alleles

and private alleles per locus was higher in population 3

(6.60 and 3.95) than in population 1 (5.65 and 3.25) and

population 2 (2.50 and 0.80). The number of common

alleles observed in 50% of individuals in the three

populations was null. The Shannon’s Information Index

(I) and expected heterozygosity (He) were lower in

population 2 (0.58 and 0.32) and population 3 (1.34 and

0.63) than in population 1 (1.43 and 0.68) (Table 4).

Minimum Nei genetic distance of 1.5 was found

between population 1 and 3, whereas population 2

and 3 were the most divergent populations (2.12).

Table 2 Polymorphism levels detected by major allele fre-

quency, number of different alleles (Na), number of effective

alleles (Ne), Shannon’s information index (I), observed

heterozygosity (Ho) and Polymorphism Information Content

(PIC) for 20 SSR markers on 11 chromosomes (Chr.)

Locus Chr. Frequency Missing (%) Na Ne I Ho PIC Allele size (bp)

RM19 12 0.40 0.00 10.00 4.48 1.84 0.10 0.78 204–246

RM55 3 0.17 2.38 15.00 9.01 2.37 0.46 0.89 217–238

RM162 6 0.50 2.38 5.00 2.36 1.01 0.59 0.58 191–209

RM171 10 0.41 2.38 5.00 3.70 1.45 0.05 0.73 327–344

RM219 9 0.16 2.38 18.00 10.92 2.59 0.29 0.91 190–230

RM234 7 0.21 0.00 10.00 7.19 2.10 0.07 0.88 130–159

RM237 1 0.31 4.76 8.00 5.46 1.87 0.10 0.82 122–131

RM287 11 0.50 0.00 9.00 3.25 1.57 0.10 0.69 93–111

RM316 9 0.56 2.38 6.00 2.65 1.23 0.02 0.63 174–206

RM1075 2 0.23 0.00 13.00 7.52 2.23 0.45 0.87 181–210

RM1235 8 0.43 2.38 11.00 3.36 1.66 0.05 0.70 100–119

RM1236 10 0.43 2.38 17.00 4.41 2.01 0.29 0.77 119–198

RM3317 4 0.42 0.00 10.00 4.33 1.81 0.17 0.79 126–145

RM3483 12 0.48 0.00 11.00 3.51 1.64 0.12 0.72 144–207

RM3740 1 0.33 0.00 12.00 5.34 2.00 0.02 0.81 114–146

RM5851 12 0.17 0.00 19.00 11.68 2.68 0.05 0.91 204–270

RM125 7 0.34 2.38 5.00 3.81 1.42 0.00 0.74 118–122

RM133 6 0.37 0.00 11.00 5.04 1.94 0.36 0.81 216–226

RM223 8 0.21 0.00 15.00 7.98 2.35 0.26 0.88 137–160

RM280 4 0.43 0.00 13.00 4.27 1.91 0.02 0.77 147–180

Mean 0.35 1.19 11.15 5.51 1.88 0.18 0.78

Min 0.16 0.00 5.00 2.36 1.01 0.00 0.58

Max 0.56 4.76 19.00 11.68 2.68 0.59 0.91

Fig. 1 Population structure

of 42 rice accessions at

k = 3 using 20 SSR markers
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Based on AFLP data, STRUCTURE analysis

revealed that no populations could be distinguished

across the subset of 42 rice accessions. UPGMA

analysis showed two genetic clusters, cluster 1 (blue

color) and cluster 2 (black color) comprised of 26 and

16 rice accessions, respectively (Fig. 2b). Cluster 1

corresponded to Pop 3, whereas cluster 2 corre-

sponded to both Pop 1 and Pop 2. Mantel-test results

(Suppl. Fig. 1) showed a significant correlation

between genetic distances based on AFLP markers

and genetic distances based on SSR markers

(R = 0.76, P = 0.01). AMOVA results (Table 3)

pointed to significant variations between clusters

(52%) and within clusters (48%). The Nei genetic

distance between cluster 1 and cluster 2 was estimated

at 0.29. Both clusters showed an equal value of

Shannon’s Information Index (I) (0.33) and expected

heterozygosity (He) (0.22), whereas the number of

total bands detected in cluster 1 (772) was much higher

than in cluster 2 (460) (Table 4).

Geographic pattern and genetic relationship

among subset of 42 rice accessions

Mantel-test revealed no correlation between genetic

distances estimated by pairwise Fst using SSR markers

and geographic distances for Benin, Liberia, Mali and

Nigeria (R = 0.13, P = 0.37). Samples from Guinea

and Ivory Coast, containing one sample each, were not

included in the analysis (Fig. 3). Jaccard’s genetic

dissimilarity coefficients ranged from 0.48 to 9 in

population 1. The highest similarity was found between

Beninese accessionsWAB0035055 andWAB0035059,

whereas a large divergence was found between

WAB0026176 (Mali) and WAB0035038 (Benin). In

population 2, accessions WAB0032495 (Liberia) and

WAB0032298 (Mali) shared 10% of genetic similarity,

whereas WAB0023837 (Mali) and WAB0008956

(Liberia) were more divergent (40% dissimilarity). In

population 3 he highest genetic similarity (20%) was

found between Nigerian accessions WAB0029315 and

bFig. 2 UPGMA dendrogram of the subset of 42 rice accessions

based on Jaccard’s distance from a SSR markers and b AFLP

markers; colors indicates identified clusters

Table 3 AMOVA analysis for genetic groups differentiation by AFLP and SSR markers in the subset of 42 rice accessions

Source of variation df SS MS Estimated variance Percentage of total variance Probability (P)

AFLP markers

Among clusters 1 203.48 203.48 9.81 52 \ 0.001

Within clusters 40 366.38 9.16 9.16 48

Total 41 569.86 18.97 100

SSR marker

Among Pops 2 43.13 21.56 0.18 2 \ 0.001

Among Ind. 38 672.21 17.69 7.96 80

Within Ind. 41 73.00 1.78 1.78 18

Total 81 788.34 9.91 100

Table 4 Polymorphism

levels estimated among

accessions groups identified

by AFLP and SSR markers

Genetic groups Number of samples Total of alleles I He

AFLP markers

Cluster 1 26 (glaberrima) 772 0.33 0.22

Cluster 2 16 (5 sativa, 11 glaberrima) 460 0.33 0.22

SSR markers

Pop 1 9 (5 glaberrima, 4 sativa) 5.65 1.43 0.68

Pop 2 6 (glaberrima) 2.50 0.58 0.32

Pop 3 26 (glaberrima) 6.60 1.34 0.63
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WAB0020505, whereas WAB0020477 (Nigeria) and

WAB0032848 (Mali) were the most divergent (88% of

dissimilarity) rice accessions.

Based on AFLPs, geographic distances were signif-

icantly associated with genetic distances (R = 0.72,

P = 0.02). The graphics showed a continuous and

linear decrease of genetic similarity when geographic

distance increased (Fig. 3). High genetic distance was

found between Benin and Nigeria (0.41), whereas Mali

was closer to Benin (0.01). Cluster 1 was predominated

by accessions from Mali and Nigeria, whereas all

accessions from Benin were classified in cluster 2 with

2 accessions out of the three from Liberia. High genetic

similarity of 15% was found between Malian acces-

sions (WAB0032345 and WAB0024105) in cluster 1,

whereas Nigerian accessions WAB0029333 and

WAB0009280 were divergent at 80% (20% of genetic

similarity). The most similar (82%) accessions in

cluster 2 were WAB0015043 (Ivory Coast) and

WAB0008956 (Liberia), whereas WAB0030263

(Nigeria) and WAB0023837 (Mali) were most diver-

gent (80% dissimilarity).

Phenotypic discrimination and gene flow

between O. sativa and O. glaberrima rice

accessions

Mantel’s statistical test revealed a significant associ-

ation of AFLP markers with the 17 morphological

traits evaluated (R = 0.60, P = 0.01). A number of

characteristics differentiated cluster 1 from cluster 2.

Accessions in cluster 1 were discriminated by the

presence of anthocyanin coloration on basal leaf

sheath, opened culm habit and spreading attitude of

panicle branches whereas accessions in cluster 2

showed relatively opened culm habit and semi-com-

pact panicle type. Secondary branching was particu-

larly sparse in cluster 1, whereas cluster 2 had a dense

panicle type. Cluster 1 showed truncate ligule shape

and erect panicle form, whereas cluster 2 had cleft

ligule shape and drooping panicle. Based on these
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morphological distinctive traits, accessions in cluster 1

were found very similar to the two O. glaberrima

(WAB0006871 andWAB0007880) reference controls

included, whereas cluster 2 resembled O. sativa

(WAB0006881) control. UPGMA tree using 77 AFP

markers classifiedWAB0006881 (O. sativa control) in

cluster 2, whereas the two O. glaberrima

(WAB0006871 and WAB0007880) controls were

grouped together in cluster 1 (Suppl. Fig. 3).

Based on SSR markers, allelic pattern, was inves-

tigated between the 5 O. sativa rice accessions and 37

O. glaberrima accessions involved in the three iden-

tified populations. On average, in both population 1

and 2, O. glaberrima accessions showed a similar

pattern of diversity indexes with O. sativa accessions,

whereas O. glaberrima accessions in population 3

performed a specific different pattern (Fig. 4). Princi-

pal coordinates analysis (PCoA) based on Nei’s

genetic distance (Suppl. Fig. 4) showed that O.

glaberrima accessions in population 1 were closer

related to O. sativa accessions and more isolated from

the other accessions. The lowest fixation index

(Fst = 0.001, P = 0.48) was observed between O.

glaberrima accessions in population 1 and O. sativa

accessions. Fst estimates for each of the 20 SSR

markers analyzed were non-significant at 18 loci

(P[ 0.05) between O. glaberrima accessions in

population 1 and O. sativa accessions.

Discussion

Mean PIC value (0.35) revealed by AFLPs in the

currently evaluated germplasm is higher than that

observed (0.24) previously among the entire germ-

plasm of 350 accessions (Yelome et al. 2018),

indicating higher genetic diversity levels among

studied rice collection of 42 rice accessions. Similar

results have been reported by Roy Choudhury et al.

(2014). These authors used SNP markers to assess

genetic diversity and population structure of 6984 rice

accessions by selecting a core set of 701 accessions.

Agrama et al. (2009) showed that the genetic diversity

level increases with elimination of genetically similar

accessions during core set development. UPGMA

cluster analysis using AFLPs identified two geneti-

cally different clusters, which were influenced by

geographic distribution of assembled rice accessions.

The highest similarity was recorded between Malian

rice accessions (cluster 1) and between rice accessions

originating from Ivory Coast and Liberia (cluster 2).

Historically, it has been demonstrated that O. glaber-

rima, which is derived from the wild ancestor O.

barthii A. Chev. (syn. O. breviligulata A.Chev. &

Roehr.), was first domesticated in the Niger river delta

(Mali), and subsequently evolved to two secondary

centers: (1) through the Guinea highlands to Niger,

crossing along the border of Benin and diffusing to

Nigeria; and (2) through the Guinea forest (between

Sierra Leone and the western Ivory Coast) to Liberia

(Portéres 1962; Second 1982; Sarla and Swamy 2005;

Wang et al. 2014). The domestication history of O.

sativa is more recent, although recent research find-

ings suggest that both species were domesticated

independently (Wang et al. 2014). Genetic similarity

decreased when geographic distance increased show-

ing a clinal variation of AFLPs markers over the

geographical origin of current germplasm studied

(Diniz-Filho et al. 2013).

Although AFLPs generated the largest number of

total alleles (1232 bands), higher ranges of Shannon’s

diversity index (1.01–2.68) and PIC (0.58–0.91) were
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estimated by SSR markers indicating more effective-

ness in detecting genetic variation in the selected rice

accessions. Comparing the two marker systems,

microsatellites have revealed the highest polymor-

phism levels in soybean (Powell et al. 1996), lentil

(Idrissi et al. 2015) and rice germplasm (Tarang and

Gashti 2016). Vieira et al. (2016) explained that there

are some advantages of using SSR markers to detect

polymorphism because they are of multi-allelic and

codominant in nature. SSR markers have the potential

to detect high degrees of polymorphism compared

other marker systems (Wu and Tanksley 1993; Saghai-

Maroof et al. 1996; Powell et al. 1996; Morgante et al.

2002). AFLP-based methods are not always straight-

forward, as potential individual bands may actually be

composed of multiple fragments (Shan et al. 1999). In

a comparative study for estimating the amount of

genetic diversity, when using a small set of molecular

markers, the background analysis may sometimes

overestimate the true genetic diversity levels and,

therefore, the use of whole genome sequencing

approaches would be a better choice for assessing

rice cultivars under the current study. But, the

evaluation of genetic diversity subjected to the whole

genome sequencing is time-consuming and more

expensive. In the present study, mean PIC value

(0.78) is comparable to that reported by Ming et al.

(2010) who have studied genetic diversity of 32 O.

sativa and 4 O. glaberrima rice accessions. They

reported PIC average of 0.716 using 54 SSR markers.

Higher polymorphism levels were revealed in the

present study than in previous studies on African rice

(Semon et al. 2005; Dramé et al. 2011; Chen et al.

2017). Possible reasons could be that the germplasm

used is a subset collection and the markers chosen

were particularly informative. The major reason could

be attributed to the large number of different alleles

and heterozygosity detected (Kalinowski 2002). The

most informative SSR markers were RM219 and

RM5851 (PIC value of 0.91), which produced 18 and

19 alleles, respectively. These results are partially

supported by Dramé et al. (2011) who observed

maximum PIC value of 0.90 at RM219 locus with 17

alleles detected. But, the average number of different

alleles per locus (11.15) detected in this study was

higher than the numbers reported by Dramé et al.

(2011) and Chen et al. (2017) (8.4 and 6, respectively).

Out of the 20 tested SSR markers, only RM125 was

found homozygous, whereas Dramé et al. (2011) have

recorded the greatest proportion of heterozygous

individuals (0.86) at the same locus, RM125. Marker

RM125 might thus be very specific to the accessions

studied in our work.

The presence of three different populations was

revealed by SSR markers, whereas there was no

geographic structuring across the three populations.

Average Fixation (Fst) value (0.018) was less than

0.05, but significant, suggesting little genetic distinc-

tiveness between these populations (Balloux and

Moulin 2002). Germplasm structure showed that O.

sativa accessions were not totally isolated from O.

glaberrima accessions. Four out of the five O. sativa

accessions were grouped together with five O. glaber-

rima accessions in population 1. The O. sativa

accession WAB0006684 shared ancestry with popu-

lation 1 and population 2. No morphological differ-

ence in ligule shape, panicle form and secondary

branching was found between O. glaberrima acces-

sions in population 1 and all O. sativa accessions (five

O. sativa accessions from Benin and control

WAB0006881) studied. These morphological traits

were reported in taxonomic identification of O. sativa

species (Bezançon and Diallo 2006; Linares 2002).

The low range of fixation indexes (Fst) across the three

populations suggests a gene flow between both

cultivated species. Fst value (0.001) was particularly

lower between O. glaberrima accessions present in

population 1 and all O. sativa accessions than those in

population 2 and population 3. According to Slatkin

(1985) gene flow strongly influences the spatial scale

over which genetic differentiation will be observed.

Higher amount of gene flow occurred between O.

glaberrima accessions in population 1 and O. sativa

accessions since Fst and gene flow are inversely

related (Wright 1951). The movement of pollen is

usually from O. sativa to O. glaberrima (Sano 1989).

The occurrence of gene flow in the germplasm studied

could be attributed to the evolutionary history of these

populations, out-crossing between rice accessions

from different species or effects of spontaneous

mutations (Ko et al. 1994; Jusu 1999; Nuijten et al.

2009). Spontaneous interspecific hybridization is not

uncommon in the rice gene pool (Second 1982;

National Research Council 1996; Barry et al. 2007;

Nuijten et al. 2009). The observed gene flowmay have

implications for rice breeding by introgression of O.

glaberrima accessions (population 1) as male parents

to increase genetic diversity and introduce new
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potentially adaptive alleles into population 2 and

population 3 (North et al. 2011; Sexton et al. 2011).

Should these introgressed O. glaberrima still be

considered as belonging to this species or as intra-

specific accessions? What is the contribution of this

geneflow into valuable traits such as biotic and abiotic

stresses such as disease resistance? Further studies are

needed to answer these questions.

In general, the present study showed that the subset

of 42 rice accessions (O. glaberrima andO. sativa) can

be classified according to the country of origin by

AFLP markers. Highest polymorphism levels were

detected by SSR markers. Fst values indicate a low

proportion of genetic variation between the three

populations identified by SSR markers. Both AFLPs

and SSR markers reveal the presence of gene flow

between O. glaberrima and O. sativa rice accessions

that can be used to expand genetic diversity for rice

improvement.
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Dramé KN, Sanni KA, Toulou B, Glele RK (2010) Eval-

uation of intra and interspecific rice varieties adapted to

valley bottom conditions in Burkina Faso. Afr J Plant Sci

4:308–318
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