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Abstract The present study was conducted to study

the genetic architecture of grain micronutrients (Zn,

Fe and b-carotene contents), grain protein content and
four yield traits in a spring wheat reference set

comprising 246 genotypes. Phenotypic data on these

traits recorded at two locations and the genotyping

data for 17,937 SNP markers (obtained through

outsourcing) were used for genome wide association

study, which gave following results after Bonferroni

correction using four methods: (1) single locus single

trait analysis gave 136 marker-trait associations; (2)

multi-locus mixed model gave 587 MTAs; (3) multi-

trait mixed model gave 28 MTAs and (4) matrix-

variate linear mixed model gave 33 MTAs. As many

as 73 epistatic interactions were also detected. Keep-

ing all the results in mind, nine most important MTAs

were selected for biofortification. These markers were

associated with three traits (GPC, GFeC and GYPP).

These MTAs can be used in wheat improvement

programs either using marker-assisted recurrent selec-

tion or pseudo-backcrossing method.
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Introduction

Bread wheat is the third most important food crop

globally (after rice and maize) in terms of production

and consumption. It is consumed by more than 40%

world population as a staple food and is the primary

source of calories for millions of people world-wide.

However, the crop is deficient for major micronutri-

ents like Fe, Zn and b-carotenoid, which are present

only as minor constituents of wheat grain. Over three

billion people, including one third of the children in

developing countries suffer from micronutrient mal-

nutrition or hidden hunger (Chattha et al. 2017).

Deficiency of these micronutrients is also witnessed in

the form of metabolic disorders like anaemia (due to

Fe deficiency), night blindness and xerophthalmea,

cardiovascular diseases and a variety of cancers and

neurological disorders (due to b-carotenoid defi-

ciency; Colasuonno et al. 2017). There are also reports

of poor pregnancy outcomes like impaired or stunted

growth in children due to Zn deficiency. It is estimated

that[ 60% of the world population suffers from Fe

deficiency and [ 30% population suffers from Zn

deficiency (White and Broadley 2009). Similarly, 190

million pre-school-children and 19.1 million pregnant

women around the world suffer from b-carotenoid
deficiency (WHO 2016).

Grain protein content (GPC) is another important

trait, which has an impact on the nutritional value of

the grain and also on the technological property of the

flour. Protein content and essential amino acids also

affect the key functions of the human body including

development and maintenance of muscles. Protein

energy malnutrition (PEM) has been noticed among

161 million children globally (http://www.

worldhunger.org/2015-world-hunger-and-poverty-

facts-and-statistics/).

Biofortification through genetic manipulations is

known to be one of the best options for nutritional

improvement of crops (Welch and Graham 2004;

Ortiz-Monasterio et al. 2007). The most important

work on genetic improvement for micronutrients

contents (biofortification) in staple food crops (rice,

wheat, maize, cassava, sweet-potato, pearl-millet and

bean) has been conducted under HarvestPlus project

launched in 2004 by International Agricultural

Research Consortium (IARC) of CGIAR. During

HarvestPlus Phase I (2003–2008) involving screening

of 3000 wheat accessions, contents of Zn and Fe were

found to be in the range of 20–115 ppm and

23–88 ppm, respectively, with the highest levels

found in landraces (https://biofortconf.ifpri.info). In

recent years, biofortified varieties in some crops have

also been released in * 30 countries including India

in respect of various micronutrients (http://www.

harvestplus.org).

The variability for micronutrients (including Fe, Zn

and provitamin A) in wheat is largely genetic in nature

with a complex polygenic control (Shi et al. 2008;

Joshi et al. 2010; Velu et al. 2012; Srinivasa et al.

2014). This makes the improvement in these traits

difficult through conventional breeding (Velu et al.

2012). Marker-assisted backcrossing (MABC) and

marker-assisted recurrent selection (MARS) are good

options. These methods would require determination

of marker-trait associations through linkage-based

interval mapping and LD-based genome wide associ-

ation studies (GWAS). This will also help in under-

standing the details of genetic architecture of the traits

(Tiwari et al. 2009). A number of interval mapping

studies have already been conducted to identify QTLs

for micronutrients in wheat (Pozniak et al. 2007; Peleg

et al. 2009; Tiwari et al. 2009; Xu et al. 2012;

Roshanzamir et al. 2013; Zhao et al. 2013; Tiwari et al.

2016; Sharma et al. 2018). GWAS has also been

conducted for micronutrients in different crops like

rice (Norton et al. 2014), pea (Diapari et al. 2015),

maize (Suwarno et al. 2015), barley (Leplat et al.

2016), chickpea (Diapari et al. 2014) and cassava

(Esuma et al. 2016; Rabbi et al. 2017). Some reports

involving GWAS for Zn, Fe and carotenoid contents

are also available in wheat (Gorafi et al. 2016;

Manickavelu et al. 2017; Colasuonno et al. 2017).

However, a majority of GWA studies conducted so far

are based on the study of single locus and single trait,

which gives information of limited utility. Often

epistasis is also ignored during GWAS, although there

are few GWA studies, where epistasis was examined

(Jaiswal et al. 2016; Sehgal et al. 2017). Recently,

MLMM and MTMM have become available for

GWAS, which overcome the above limitations of

genetic analysis (Segura et al. 2012; Korte et al. 2012;

Jaiswal et al. 2016; Thoen et al. 2017). mvLMM has
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also been used so that more than two correlated traits

may be examined in multi-trait analysis (Zhou and

Stephens 2012; Furlotte and Eskin 2015).

SNPs are the most abundant class of markers

associated with sequence variability in the genome

and thus have the potential to provide the highest map

resolution. Therefore, SNPs have become the markers

of choice for GWAS (Jones et al. 2007). In the present

study, GWAS was conducted for micronutrients and

other yield-related quantitative traits in a set of wheat

genotypes. The study involved single locus single

trait, MLMM,MTMMandmvLMM; where both main

effects and epistatic MTAs were also identified. The

results of this study should prove useful for developing

wheat cultivars with improved nutritional value using

MAS/MARS.

Materials and methods

Association mapping panel and genotyping

The association mapping panel comprised 246 wheat

genotypes of a spring wheat reference set (SWRS)

procured from CIMMYT gene bank, Mexico. A set of

17,937 SNP markers generated using DArT-seq, at

Diversity Array Technology Pvt. Ltd. Australia under

the ‘‘Seed for Discovery’’ project of CIMMYT

Mexico, was used for genotyping of all the 246

accessions of bread wheat (Table S1). The markers

were mapped on all the 21 chromosomes using DArT

PL’s consensus map of wheat based on[ 100 crosses.

The map (version 4) has 110,000 markers including

* 5000 original DArT markers, the remaining being

DArTseq markers. Only 8637 SNPs could be placed

on genetic map involving all the 21 chromosomes;

2973 belonged to A sub-genome, 4505 belonged to the

B sub-genome and 1159 belonged to the D sub-

genome.

Field trials and experimental data

The above association panel was raised in a simple

lattice design with two replications at two different

locations, during rabi season of 2013–2014 at Pow-

erkheda (Location coordinates: 22�40050.01N
77�44059.18E), Madhya Pradesh, India and during

2014–2015 at Meerut (Location coordinates:

28.9845�N, 77.7064�E), Uttar Pradesh, India, using

normal field management practices (i.e., 200 kg/ha

fertilizer; N:P:K = 8:8:8). Each genotype was raised

in a plot of 3 rows of 1.5 m each, with a row to row

distance of 0.25 m. Phenotypic data were recorded for

four nutritional and four yield-related traits. The

nutritional traits included the following: grain protein

content (GPC) as per cent of grain weight, (2) grain b-
carotenoid content (GBCC; lg/g), (3) grain iron

content (GFeC; ppm), and (4) grain zinc content

(GZnC; ppm). Similarly, the yield traits included the

following: (1) tiller number per plant (TNPP), (2)

grain number per spike (GNPS), (3) thousand grain

weight (TGW) in g, (4) grain yield per plot (GYPP) in

kg/ha.

For GPC and GBCC, 50–60 g of seed of each

sample was used. GPC (%) was adjusted to 12%

moisture content using the following formula and the

value obtained was used for further analysis.

AdjustedGPC %ð Þvalue¼ 100�BaseM:C:ð12%Þ
100�ActualM:C:ð%Þ
�MeasuredGPC %ð Þ value

where M.C. is moisture content.

For estimating Zn and Fe content, 10–12 g (90–100

kernels) seed of each genotype was used. GPC and

GBCC data was recorded using Infratec (1241) Grain

Analyzer available at CCSU, Meerut. Data on Zn and

Fe contents were recorded using X-ray Fluorescence

(EDXRF spectrometer X-Supreme 8000; Paltridge

et al. 2012) available at Department of Genetics and

Plant Breeding of Banaras Hindu University (BHU),

The data on yield-related traits was recorded using the

traditional methods. For each trait, the data was

recorded for all replications. Only means of data over

replications were used for further analysis.

Statistical analysis (Descriptive statistics,

Pearson’s correlation coefficients, analysis

of variance (ANOVA) and heritability)

The estimates of descriptive statistics including mean,

range, standard error, coefficient of variation (CV as

%), Pearson’s correlation coefficients were obtained

using SPSS v. 17.0. ANOVA was conducted using

additive main effects and multiplicative interac-

tions (AMMI) model through Agricolae package of

R program. Broad sense heritability (H2) estimates

were calculated from phenotypic variance (r2p) and
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the genotypic variance (rg
2) according to Allard (1999)

using MS Excel 2010.

Population structure analysis

Model-based cluster analysis of association mapping

panel was conducted to infer the level of population

structure in the association panel using the software

STRUCTURE version 2.2 (Pritchard et al. 2000),

which was performed using 42 SNPs, one from each of

the 42 chromosome arms.

The number of assumed sub-populations (K) was

set from 2 to 20, and the process was repeated three to

five times. For each run, burn-in and Markov Chain

Monte Carlo (MCMC) iterations were set to 50,000

and 100,000, respectively and a model ‘‘without

admixture and correlated allele frequencies’’ was

used. The number of sub-populations was determined

following delta K (DK) method (Evanno et al. 2005).

Assignment of genotypes to sub-populations was done

on the basis of their affiliation probabilities. A

genotype was assigned to a specific sub-population,

with which it has C 80% affiliation probability;

genotypes with B 80% affiliation probability with

each sub-population were treated as ‘‘admixtures’’.

Linkage disequilibrium (LD) analysis

LD (in terms of r2) analysis was performed for each of

the 21 wheat chromosomes with associated mapped

SNPs using window size 50 with the help of software

TASSEL v. 5.0. Genome wide threshold LD was

calculated using unlinked markers following Bre-

seghello and Sorrells 2006.

Marker-trait associations (MTAs)

Phenotypic data for the micronutrient contents, GPC,

and yield related traits for 246 genotypes of each

location and the corresponding genotypic data of SNP

markers were used for single locus single traits

analysis to identify MTAs. TASSEL v. 3.0 was used

for this purpose using both General Linear Model

(GLM) and Mixed Linear Model (MLM). For GLM,

population structure (the Q model) without familial

relatedness (the K model) was used, whereas for

MLM, both population structure and the familial

relatedness (Q ? K model) were used (Yu et al.

2006). Familial relatedness (kinship matrix) was

calculated using the genotypic data for all the 17,937

markers.

GWA analysis was also conducted using MLMM,

MTMM and mvLMM. The MLMM, MTMM and

mvLMM analyses were performed using relevant R

packages (Segura et al. 2012; Korte et al. 2012;

Furlotte and Eskin 2015). For MLMM, background

genome was considered as cofactors (as in composite

interval mapping) using stepwise mixed-model regres-

sion with forward inclusion and backward elimination

(Segura et al. 2012; Jaiswal et al. 2016). For MTMM,

all pairs of phenotypic traits showing significant

correlation were used. Similarly, for mvLMM, more

than two phenotypic traits showing significant corre-

lation with each other were used. In all cases,

P value B 0.001 was considered for identification of

significant MTAs. Stringent criteria of P B 0.001 was

used to deal with the problem of multiple testing. Each

significant MTA was subjected to Bonferroni multiple

correction (using additional aGWASB 0.05, thus

naking the overall significant threshold to be P

B 0.00005) for eliminating false positives in case of

single locus single trait and MTMM. However, for

MLMM and mvLMM, Bonferroni correction was not

needed, since the packages used already had a

provision for Bonferroni correction.

Analysis of epistasis

Analysis for epistatic interactions was carried out

using SNPassoc package (González et al. 2007) of R

program, where the function interactionPval was

executed for computing the statistical significance

(P value) of SNP–SNP interaction.

Results

Phenotypic data and correlations

The eight different phenotypic traits were placed in the

following two groups for presentation of results: (1)

nutritional traits, and (2) yield-related traits; Violin

plots representing the frequency distributions of data

for all the eight traits on each of the two locations are

presented in Fig. 1a, b; the data for each trait gave a

good fit to normal distribution. The results of descrip-

tive statistics; the range of mean values were as

follows: GPC, 9.99–18.87 (%); GBCC, 2.94–6.555
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(mg/kg); GFeC, 24.50–44.30 (ppm); GZnC,

17.75–49.70 (ppm); TNPP, 3.00–14.67; GNPS,

10.50–58.00; TGW, 12.43–59.36 g; GYPP,

42.50–520.00 kg/ha. The details of descriptive statis-

tics and CV are presented in Table S2.

Correlations in majority of the pairs of traits at both

the locations were highly significant at P B 0.01

(Table 1). As many as 14 of the possible 28 pairs of

traits, each having a correlation above 0.25, were

selected for MTMM analysis; four of these correla-

tions were consistent at both the locations. Of the

remaining ten correlations, seven were available in

data fromMeerut and only three were available in data

from Powerkheda. Correlations involving more than

two traits were also available (e.g. GZnC and GYPP);

in such cases, mvLMM approach was also used for

determining MTAs involving more than two corre-

lated traits.

ANOVA and heritability

The combined ANOVA revealed highly significant

variation for each trait with the following sources of

variation: genotypes, environments and G 9 E inter-

action. Estimates of broad sense heritability (H2) of

nutritional traits ranged from 6.65% (GPC) to 62.05%

(GFeC) and that for yield traits ranged from 52%

(TNPP) to 89.66% (GYPP; Table 2).

Population structure and LD analysis

Model-based cluster analysis revealed that the AM

panel used in the present study is structured and

comprised four subpopulations viz. G1, G2 G3 and

G4. The four sub-populations included 30 (G1), 42

(G2), 49 (G3) and 125 (G4; admixture) genotypes,

respectively (Fig. 2). The information generated by

Fig. 1 a, bViolin plots showing the frequency distribution of 4

nutritional and 4 yield-related traits at two locations. Shaded

regions of the violin plots represent the frequency distribution of

data, in each case, the vertical solid bar indicates range of

average values, and median is shown as a minute white circle

within the solid bar, with a horizontal bar, depicting the lower,

medium and upper quartile
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population structure was used for analysing marker-

trait associations to reduce the number of false

positives.

LD between pairs of markers was estimated for

each of the 21 chromosomes. The measures of LD

decay for all the 21 chromosomes are summarized in

Figs. S1. The number of SNP pairs with significant LD

(P B 0.01) on individual chromosome ranged from

328 (on chromosome 4D) to 6955 (on chromosome

1A). Genome-wide threshold LD was r2 = 0.21 and

the genome-wide mean genetic distance showing no

LD decay was 3.0 cM. The genetic distance showing

LD ranged from a a minimum of 2 cM in certain

regions of chromosomes 2B, 3A, 3B and 6B to a

maximum of 20 cM in a region on chromosome 3D

(Fig. S1).

MTAs identified using single locus single trait

and MLMM

MTAs for two groups of traits including nutritional

traits and yield-related traits are described separately.

Results of MTMM and mvLMM are described for

both the groups together, since the analyses involved

two and more than two traits, sometime belonging to

both the groups. The most important MTAs are

depicted in Fig. 3.

Nutritional traits

Using SLST, a total of 584 significant MTAs for four

nutritional traits at two locations were identified; only

Table 1 Estimates of Pearson correlation coefficients for different traits of the association panel at two locations

*, **correlations are significant at the 0.05 and 0.01 level, respectively

Upper panel indicates correlation values for different traits recorded in 2014–15 at Meerut

Lower panel indicates correlation values for different traits recorded in 2013–14 at Powerkheda

Table 2 Analysis of variance (ANOVA) and heritability (H2) of yield traits, GPC and micronutrient contents in SWRS genotypes

tested for 2 years/environments and four replications (two in each environment)

Source of variations df Mean square

Nutritional traits Yield traits

GPC GBCC GFeC GZnC TNPP GNPS TGW GYPP

Env 1 772.87* 611.18** 204 9082.1* 3554.1*** 21382.5** 941.53 1511148**

Rep within Env 2 21.03 1.77** 12.68* 269.1 1.3 26.6 134.56* 9901***

Genotypes 245 11.80* 1.57*** 30.12*** 153.6*** 8*** 211.1*** 390.89*** 26243***

Env 9 Gen 245 10.93 1.38*** 22.88*** 139.1** 6.7*** 131.1*** 237.72*** 21083***

Heritability % 6.65 43.91 62.05 11.63 52 66.83 71.9 89.66

***0.1% level of significance; **1% level of significance; *5% level of significance
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10 of these MTAs passed Bonferroni correction, of

which one belonged to sub-genome A, six belonged to

sub-genome B, and none belonged to D genome; the

associated markers for the remaining three MTAs

were not assigned to chromosomes (Table S3, S4 and

Fig. S2). The above 10 MTAs all belonged to Meerut

location only.

Using MLMM, 271 MTAs (after Bonferroni cor-

rection) were identified for the same four nutritional

traits. The 164 MTAs belonged to Powerkheda, 106

belonged to Meerut and only one belonged to both the

locations (Table S3). Of these only 144 MTAs were

mapped on chromosomes, with 58 for sub-genome A,

66 for sub-genome B and 20 for sub-genome D

(Table S3, S5 and Fig. S2).

Yield-related traits

For the four yield-related traits, SLST gave a total of

3251 MTAs involving both the locations (P\ 0.001).

But only 126 of these MTAs passed Bonferroni

correction, of which 96 MTAs were detected at

Powerkheda, 8 were detected at Meerut and 22 at

both the locations (Table S3, S4 and Fig. S2).

Similarly, using MLMM, 316 MTAs (Bonferroni

correction passed) were identified for these traits

(149 MTAs at Powerkheda, 161 at Meerut and 6 at

both the locations). Of the 316 associated markers,

only 209 markers were mapped on different chromo-

somes, with 101 on sub-genome A, 92 for sub-genome

B and 16 for sub-genomeD (Table S3, S5 and Fig. S2).

MTAs/QTLs identified using MTMM

and mvLMM

Using MTMM, 1253 MTAs were identified for 14

pairs of correlated traits at both the locations (no MTA

was available for GPC/GBCC, TGW/GPC and TGW/

GBCC), but only 28 of these MTAs (6 for GPC/GFeC,

Powerkheda and Meerut; 1 for GYPP/TGW, Meerut;

21 for GPC/GZnC, Meerut) for three pairs of traits

qualified after Bonferroni correction. Only 18 MTAs

could be mapped on A and B sub-genomes (3 belong

to sub-genome A; 15 belong to sub-genome B), none

was found on sub-genomeD (Table S6 and S7; Fig. 2).

Using mvLMM, 33 MTAs were identified at both

the locations for eight pairs of correlated traits. Seven

MTAs for three pairs of traits were identified for

Fig. 2 AM panel showing structuring of four subpopulations in different colours, viz. G1 (red colour, 30 genotypes), G2 (green colour,

42 genotypes), G3 (blue colour, 49 genotypes) and G4 (a single bar with two or more colours, admixture of 125 genotypes)
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Powerkheda location; five of these seven MTAs were

mapped, one on sub-genome A (3A) and four on sub-

genome B (one each on 2B, 3B and two on 6B). The

remaining 26 MTAs involving five pairs of traits were

identified at Meerut location; of these, 4 MTAs

belonged to sub-genome A; 11 belonged to sub-

genome B and only 2 belonged to sub-genome D. The

remaining nine MTAs involved SNPs that were not

mapped (Table 3).

There were also MTAs that were identified each by

more than one approaches. There were also MTAs,

which were common for more than one traits. There

were 22 MTAs, involving three yield traits, each

identified by both SLST and MLMM (13 MTAs for

GYPP, 6 for GNPS and 3 for TGW). There were

another 12 MTAs involving three pairs of correlated

traits (with 5 traits) that were detected by bothMTMM

and MLMM, thus placing a higher level of confidence

in these markers (Table S8). Similarly, mvLMM

detected oneMTA (involvingmarkerM5415) that was

associated with a combination of four traits (GYPP/

GNPS/TGW/GZnC); this marker was also detected by

MLMM for GYPP. Thus, there were more several

individual MTAs, each involving more than one trait;

these MTAs may or may not represent pleiotropic

genes/QTLs. These MTAs included the following: (1)

1 MTA detected using SLST was common between

two traits; (2) 32 MTAs detected using MLMM

involved 8 traits (Table S8). All these markers are

depicted in Fig. 3.

MTAs involved in epistatic interactions

For six of the eight traits (excluding GFeC and TNPP),

73 epistatic interactions involving 146 markers

{spread over 18 of the 21 chromosomes (except 4D,

5D and 6D)} were identified (43 at Powerkheda and 30

at Meerut). The interactions for individual traits

ranged from only one interaction for TGW to a

maximum of 27 interactions for GYPP (Table S9).

Relative importance of MTAs

The MTAs identified by all the methods were

subjected to scrutiny in order to identify the most

important MTAs, which could be recommended for

bFig. 3 Distribution of significant MTAs on different chromo-

somes identified using SLST, MLMM and MTMM. Different

colour shaded star symbols indicate different traits associated

with SNPs identified using SLST (GNPS- , GYPP- , GPC- ,

GBCC- , GZnC- ). Similarly, different coloured marker

names indicate the MTAs identified using MLMM

(TNPP, TGW, GPC, and GBCC) and different combinations

of coloured squares, like indicate MTAs identified using

MTMM (GPC/GFeC- ). MTAs indicated with #,@ and &

indicate those detected in both the environments using SLST,

MLMM and MTMM, respectively. MTAs indicated with R are

those which were reported earlier

Fig. 3 continued

123

Euphytica (2018) 214:219 Page 9 of 17 219



Table 3 A summary of significant (P B 0.001) MTAs detected using mvLMM at Powerkheda and Meerut

Locations Trait combinations and

associated markers

SNP SNP ID Ch. Pos. (cM) P value

Powerkheda (2013–14) GYPP/GNPS/TGW/GZnC

M10256 G/A 1138343 UM UM 1.42E-03

M5415 G/A 978845 6B 60.43 1.50E-03

M5016 T/C 1093566 3B 94.94 1.50E-03

GNPS/TGW/GZnC

M13584 A/C 1062637 2B 95.62 1.30E-03

M351 A/G 980758 3A 226.1 1.98E-03

TGW/GBCC/GZnC

M15649 A/G 1009430 UM UM 6.49E-04

M11982 A/T 1084107 6B 67.32 7.30E-04

Meerut (2014–15) TNPP/GYPP/GNPS

M11281 T/C 1139497 5D 247.21 1.84E-03

M11637 G/A 1116608 6B 88.27 3.50E-04

M11833 T/C 1055031 UM UM 1.05E-04

M12137 G/A 1094422 2B 174.97 5.73E-04

M13595 C/G 1026516 UM UM 1.22E-03

M14642 T/C 1188947 1B 18.27 7.74E-04

M14899 T/A 1068875 3B 23.96 1.59E-04

M3882 G/A 1126196 2B 132.6 6.50E-04

M4208 A/G 987806 5B 56.46 9.74E-04

M6254 T/C 1003907 UM UM 2.78E-04

M7061 G/C 3034003 UM UM 7.10E-05

GYPP/GNPS/TGW/GPC/GBCC/GZnC

M5558 T/C 1079853 UM UM 9.01E-04

GNPS/TGW/GPC/GBCC/GZnC

M11941 A/G 1107464 3B 116.09 1.92E-03

M12005 G/A 996862 UM UM 1.85E-03

M14642 T/C 1188947 1B 18.27 1.06E-03

TGW/GPC/GBCC/GZnC

M11941 A/G 1107464 3B 116.09 7.62E-04

M12005 G/A 996862 UM UM 9.15E-04

M15741 T/G 1109943 6A 189.77 1.16E-03

GPC/GBCC/GFeC/GZnC

M10312 A/G 1203021 2B 148.07 1.62E-03

M11941 A/G 1107464 3B 116.09 1.05E-03

M12005 G/A 996862 UM UM 1.79E-03

M13996 G/A 1228227 6A 46.4 1.79E-03

M15741 T/G 1109943 6A 189.77 5.21E-04

M184 A/G 1206653 7A 285.84 3.36E-04

M2678 C/G 1211630 7D 51.51 4.77E-04

M9672 A/G 1092948 UM UM 1.46E-04
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marker-assisted selection (MAS). The criteria used for

this purpose included the following: (1) lowest

P value, (2) credibility (if identified by more than

one method) and (3) whether or not the same marker

was detected in earlier studies (including both interval

mapping and GWAS) on the same chromosome. The

MTAs and QTL detected at only one of the two

locations were due to environmental effect (G 9 E)

and were treated as location specific (see Table S3, S4,

S5 and S6). The following 6 MTAs fulfilled the last

two criteria: M3205, M802, M10371, M1673 &

M4208 (all five for Fe and protein content) and

M14494 (for grain yield). One MTA (M15816; for Fe

and protein content) was found to be novel, being

reported for the first time and fulfilled the criteria (ii)

and the remaining last MTA (M15616; for GYPP)

fulfilled the first criteria. There were also markers,

which were highly significant (lowest P value), some

of these confirming the markers identified in earlier

studies (Table 4 and Fig. 3). A solitary MTA (M5415

for GYPP using MLMM and for GYPP/GNPS/TGW/

GZnC using mvLMM; Table 3) fulfilled the only

single (ii) criterion, this MTA is not included in

Table 4.

Discussion

An improvement in the content of major micronutri-

ents in cereal grains, popularly described as bioforti-

fication, is an important area of research in order to

address the problem of nutritional security (Neeraja

et al. 2017). This requires an understanding of the

genetic architecture that is associated with the content

of each micronutrient and protein. The same is true for

yield-related traits. Also, since screening a large

segregating population for contents of individual

micronutrients in a breeding program can be labour

intensive and cost-ineffective, marker-assisted selec-

tion (MAS) is a desirable option, if information about

marker-trait associations (MTAs) is available (Lo-

ladze 2014; Myers et al. 2014).

Results of the present study support earlier reports

that adequate variability for different micronutrients

(Zn, Fe and b-carotene), protein content and yield-

traits is available in the global wheat germplasm

(Tiwari et al. 2009; Srinivasa et al. 2014; Li et al.

2016). However, these traits are quantitative in nature,

making generation of knowledge about genetic archi-

tecture for improvement of these traits relatively

difficult (Shi et al. 2008; Srinivasa et al. 2014). The

variability in the concentration of Fe

(24.50–44.30 ppm), Zn (17.75- 49 ppm) and beta-

carotene (0.5–6.5 mg/kg) in the material used in the

present study is apparently adequate. However, there

were clear location effects, with plants accumulating

more Fe and Zn in wheat grain at Powerkheda than at

Meerut (Table S2), although the experiments were

conducted with uniform nutrient management prac-

tices at both the locations. In contrast, the micronu-

trient concentration in some land races of wheat is

relatively high particularly in Afghan landraces (Fe:

55.14–122.2 ppm and Zn: 15.56–87.29 ppm; White

and Broadley 2009; Ortiz-Monasterio et al. 2007;

Manickavelu et al. 2017). A diverse collection of 132

wheat cultivars that are available at CIMMYT also has

a wide range of micronutrient concentration (Fe:

28.8–56.50 ppm; Zn: 25.2–53.3 ppm; Graham et al.

1999; Xu et al. 2011). The variability of concentration

of b-carotene was also adequate in the association

Table 4 Summary of most important QTLs

Traits QTLs SNP ID SLST MLMM MTMM Ch. Pos. (cM) Bonf. P value References

GYPP M15616 1080778 ? - - 3D 280.77 0.004 Gupta et al. (2007)

M14494 1694762 ? ? - 6B 65.03 0.01 Marza et al. (2006)

GPC/GFeC M3205 1126883 - ? ? 5B 256.49 0.01 Tadesse et al. (2015)

M802 1001832 - ? ? 5A 167.78 0.02 Wang et al. (2012)

M10371 1001902 - ? ? 5B 55.28 0.04 Tadesse et al. (2015)

M1673 1012837 - ? ? 5B 55.76 0.02 Tadesse et al. (2015)

M4208 987806 - ? ? 5B 56.46 0.01 Tadesse et al. (2015)

M15816 1135339 - ? ? 1B 142.36 0.01 -

Ch, chromosome; Pos, position; Bonf, Bonferroni; ?, present; -, not present
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panel used, although concentration up to 14 mg/kg

have been reported in einkorn wheat, which can be

used as a good source for improvement of b-carotene
concentration in the current high yielding wheat

varieties (Hentschel et al. 2002; Hidalgo et al. 2006;

Zhou et al. 2005; Leenhardt et al. 2006).

The present study is an effort firstly to evaluate the

different methods available for GWAS, secondly to

supplement the knowledge about the genetic architec-

ture of micronutrient contents and some yield-related

traits and finally to provide MTAs for these traits for

MAS. The study was based on an association panel of

246 genotypes with large range of variation, in

contrast to limited variation sampled in biparental

mapping populations, which have been more fre-

quently used for QTL analysis.

For conducting GWAS analysis, mixed linear

model is generally used, which involves use of

information about population structure (Q matrix)

and familial relatedness/kinship (K matrix). In the

present study, population structure was examined

using 42 markers, located on 42 different arms of 21

wheat chromosomes. Such markers showing no link-

age are generally used in GWAS studies to avoid the

confounding due to linkage between markers. A

similar strategy was also followed in two earlier

independent studies, where 40 markers (Ogbonnaya

et al. 2017) and 49 markers (Mulki et al. 2013)

showing no linkage and covering the entire wheat

genome were used for population structure. In order to

find out the adequacy of 42 markers for population

structure, we also conducted population structure

analysis using 84 markers; the results of population

structure based on 84 markers were no different from

the results obtained using 42 markers suggesting that

42 markers were adequate for determining the popu-

lation structure.

Similarly, familial relatedness or kinship analysis

accounts for relationship among genotypes that are

used for GWAS, since the results of GWAS may be

confounded if familial relationsgip that may arise due

to selection and/or genetic drift is not taken into

account (Bernardo et al. 1996; Yu et al. 2006; Zhang

et al. 2007). It has been shown that the use of kinship

estimates in mixed models markedly reduces the

number of false positive associations (Korte and

Farlow 2013). In the present study, all available

17,937 SNP markers were used for estimating familial

relatedness.

MTAs using different approaches (SLST, MLMM,

MTMM & mvLMM)

Although single locus single trait (SLST) analysis has

several limitations that have been widely discussed

(Gupta et al. 2014; Jaiswal et al. 2016), this analysis

was conducted in the present study mainly for the

purpose of comparing its results with those of several

other recently developed and improved approaches

that were used in parallel during the present study.

These new approaches included MLMM, MTMM and

mvLMM that were proposed during recent years

(Segura et al. 2012; Korte et al. 2012; Zhou and

Stephens 2014; Furlotte and Eskin 2015; Jaiswal et al.

2016; Thoen et al. 2017) and were used in several

recent studies including the present study. These three

newer approaches for GWAS used in the present study

take into consideration the genetic background and

epistatic interaction (addressed in MLMM) and

pleiotropy involving QTL/genes, which may each

influence more than one traits (addressed in MTMM

and mvLMM).

For identification of significant MTAs using dif-

ferent approaches, one of the major problem is

multiple testing, which results in a large number of

false positives. In order to overcome this problem, we

used twomeasures, one is the use of a stringentP value

B 0.001 (instead of P value of 0.05 or 0.01), and the

other was application of Bonferroni correction, which

has bee specially designed for this purpose, These

criteria (including a P value B 0.001) were also used

in several earlier studies to identify significant MTAs

in wheat (Ain et al. 2015; Wang et al. 2017) and other

crops (Mogga et al. 2018). The problem of B 0.001

has been further addressed through Bonferroni cor-

rection (aGWAS B 0.05), which is the most conser-

vative approach (overall P B 0.00005) to deal with

the problem of multiple testing, so that one does not

expect any false positives after application of Bon-

erroni correction, although this may lead to some false

negatives, which is not as serious a problem as the

problem of false positives. In MLMM and mvLMM,

which are the other two methods used in the present

study Bonferroni correction is built-in within the

software used, so that no Bonferroni correction is

applied on MTAs obtained.

In the present study, 3835 MTAs were obtained

using SLST and 990 MTAs were obtained using

MTMM. However, only 136MTAs from SLST and 28
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MTAs from MTMM qualified after Bonferroni cor-

rection. MLMM and mvLMM gave 587 and 33 MTAs

respectively (Bonferroni corrections were inherent in

these approaches). However, it is widely recognized

that Bonferroni correction is a method, which leads to

overcorrection giving many false negatives and is

therefore a trade-off; consequently, many true and

genuine MTAs must have been lost due to Bonferroni

correction, in each of the approaches used during the

present study. However, additional MTAs identified

using epistatic interactions and a comparison with the

results of earlier studies may partially address the

problem of false negatives. In SLST results, there were

a number of MTAs, which did not qualify Bonferroni,

but were perhaps genuine MTAs, because they

actually confirmed earlier reports (5 for GZnC to 7

for GPC), thus vindicating our conclusion that Bon-

ferroni correction really leads to overcorrection,

resulting in many false negatives. For instance, after

application of Bonferroni correction to the SLST

results, no MTAs were available for two traits (TNPP,

GFeC), although six MTAs for TNPP were reported in

two earlier studies, and eight MTAs for GFeC were

reported in three earlier studies. The identification of

35 MTAs for TNPP and 33 for GFeC through MLMM

also suggests that SLST results are confounded due to

genetic background that was ignored. Similar results

with respect to Bonferroni were also available using

MTMM involving 11 pairs of correlated traits, where

Bonferroni correction reduced the number of MTAs

from 1253 to 28MTAs and that too for only 3 of the 11

pairs of correlated tarits, once again suggesting

overcorrection leading to false negatives due to

Bonferroni correction. Similarly, a total of 97 MTAs

were detected using epistatic interaction for 6 traits

(GNPS; 18, TGW; 2, GYPP; 31, GPC; 16, GBCC; 17,

GZnC; 13); these MTAs were not detected using

MLMM (Table S5 and S9). Similarly, 666MTAs were

also detected using epistasis for eight trait combina-

tions (GYPP/GNPS/TGW/GZnC; 126, GNPS; 56,

TGW/GBCC/GZnC; 42, GYPP/GNPS/TGW/GPC/

GBCC/GZnC; 146, GNPS/TGW/GPC/GBCC/GZnC;

92, TGW/GPC/GBCC/GZnC; 58 and GPC/GBCC/

GFeC/GZnC; 58). These MTAs were also not detected

using mvLMM for the same traits combinations.

Similarly, 666 additional MTAs which were also

detected using epistasis but for different trait combi-

nations were also perhaps false negatives and hence

were not detected for the same trait combinations

when analysed using mvLMM. We can thus conclude

that the commonly used SLST approach with or

without Bonferroni correction is a very inefficient

approach for GWAS. In SLST, MTMM and mvLMM,

the results are also confounded due to the genetic

background. This issue is addressed in MLMM and

therefore, MLMM is certainly an improvement over

SLST.

MTAs each controlling two or more than two

correlated traits also deserve attention, although it is

not easy to find out whether such multi-trait MTAs are

due to pleiotropism or due to close linkage. Never-

theless, identification of such MTAs will help not only

in the study of genetic architecture of correlated traits,

but also in simultaneous improvement of more than

two correlated traits using these MTAs for correlated

traits for MAS.

Although MTMM gives useful information involv-

ing identification of common MTAs for pairs of

correlated traits, its major limitation is that MTAs can

be identified for only two correlated traits at a time, so

that mvLMM approach was developed to overcome

this limitation and to allow multi-trait analysis

involving more than two correlated traits. MTAs

detected using mvLMM involved 33 SNPs associated

with eight combinations of traits (Table 3). The results

of MTMM and mvLMM together suggest wide

occurrence of pleiotropy or close linkage. TheMTMM

approach for identification of multi-trait MTAs using

GWAS has also been used in two earlier studies in

plants, one in wheat (Jaiswal et al. 2016) and the other

in Arabidopsis (Thoen et al. 2017). It has, however,

been utilized in several studies in animal systems

including humans and cattle (Heid and Winkler 2017;

Bolormaa et al. 2014; Crispim et al. 2015; Pausch et al.

2016). For mvLMM, the present study is perhaps the

first study in plants, although it was earlier used in

mouse (Zhou and Stephens 2014) and humans (Fur-

lotte and Eskin 2015).

MTAs identified using more than one approaches,

i.e. SLST and MLMM or MLMM and MTMM or

SLST and MTMM can be accepted with a higher level

of confidence. During the present study, 22 MTAs

involving three traits (GNPS, TGW and GYPP) were

common between SLST and MLMM, 12 MTAs

involving three pairs of traits (TGW/GNPS, GPC/

GZnC and GYPP/TGW) were common between

MLMM and MTMM (Table S8). These MTAs can

be used for MAS with a higher level of confidence.
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Some novel MTAs

A large number of MTAs identified using three

different methods of analysis during the present study

were novel. As many as 222 novel MTAs were

identified using SLST and MLMM taken together; of

these 70 MTAs were for nutritional traits identified

using MLMM only (none thorugh SLST) and 152 for

yield-related traits were identified using SLST and

MLMM (Tables S4, S5). This suggests that many

MTAs remain to be identified. These MTAs are new

additions to the already available MTAs for a variety

of traits in wheat (Tables S4, S5 and S7).

Epistasis is often overlooked in GWAS

Knowledge of epistasis is also necessary to understand

the genetic architecture of a trait (Boone et al. 2007;

Phillips 2008; Jaiswal et al. 2016). If this information

is not available, it may lead to under-utilization of

genomic information for crop improvement (Wang

et al. 2011; Jaiswal et al. 2016). However, such

epistatic interactions have been seldom examined

during GWAS despite their wide-spread occurrence

(Reif et al. 2011; Kao et al. 1999; Langer et al. 2014;

Jaiswal et al. 2016). In the present study, 73 important

epistatic interactions were detected for six traits. Six of

these epistatic interactions (one for each of 6 different

traits) were highly significant (on the basis of lowest

P value) and included the following: (1) M3424-

7A 9 M15107-3B) for GNPs, (2) (M519-6B 9 M71-

6B) for TGW, (3) (M10613-2A 9 M12763-3B) for

GYPP, (4) (M61-5A 9 M3743-7B) for GPC, (5)

(M2908-2A 9 M5863-3B) for GBCC and (6) GZnC

(M8512-7A 9 M9308-1D) for GZnC (Table S9).

Epistatic interactions in wheat using GWAS have

been reported in several earlier studies for flower time

(Reif et al. 2011; Langer et al. 2014) and stem rust

resistance (Yu et al. 2011). In a recent study from our

own laboratory also, 63 epistatic interactions involv-

ing 13 different traits in wheat were reported using

GWAS (Jaiswal et al. 2016). Interval mapping

involving biparental populations have also been used

for detection of epistatic interactions (Li et al. 2011;

Xu et al. 2012). Pairs of markers involved in each of

the reported epistatic interactions including those

detected in the present study may be useful for

molecular breeding in wheat.

G 9 E interactions

In analysis of variance (ANOVA) G 9 E interactione

were found to be significant for all traits except GPC

(Table 2), However, specific QTL 9 E interaction

effects were not estimated. However, the location and

year effects were apparent from the availability of

QTL that were location/year-specific. Such location-

specific QTLs can be used for breeding varieties for

specific location. Also since one of the two locations

(i.e. Powerkheda) used in the present study is known to

experience drought and high temperature, the QTL

identified at Powerkheda (absent at Meerut) may be

useful, while breeding for tolerance against abiotic

stresses (drought and high temperature).

Markers for marker-assisted selection (MAS):

biofortification

For the purpose of selection of superior individual

plants for enhanced micronutrient content in a segre-

gating population is time-consuming and labour-

intensive. Keeping this in view, the goal of the present

study was to find markers to be used for MAS or

MARS for improvement of not only the nutrition traits

but also the yield-related traits. Although a large

number of MTAs were detected in the present study,

nine major MTAs for three traits were considered to be

the most important (using criteria mentioned in

Results). Three of these nine markers can be used

for GYPP, and other six markers can be used each for

selecting two traits together (GPC and GFeC; see

Tables 3, 4 for details). For other traits, M14605 is

important for GZnC; M167 and M3471 for GBCC;

M401 and M4501 for TGW; M13270 for GNPS and

M15558 for TNPP (Table S4, S5 and Fig. 3).

Conclusions

Molecular breeding involvingMAS has now become a

component of conventional plant breeding, particu-

larly for improvement of complex quantitative traits

(QTs). A prerequisite for molecular breeding is the

availability of markers associated with the targeted

QTs. The two approaches, which have been exten-

sively used for this purpose, include interval mapping

and association mapping (GWAS), both having their

merits and demerits. While markers detected through
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interval mapping have already been put to use in many

crops including wheat, we don’t have many docu-

mented examples of the use of the results of GWAS for

this purpose. One classical example is the improve-

ment of provitamin A in maize (Suwarno et al. 2015).

However, interval mapping has a serious limitation of

using limited genetic variability, available between

two parents of a biparental population. This limitations

is addressed in GWAS through the utilization of

almost complete genetic variability, although it does

have other limitations, which are being addressed

(Gupta et al. 2014). The present GWA study made use

of an association panel including diverse global spring

wheat germplasm, with a particular emphasis on the

study of genetics of the contents of micronutrients like

Fe, Zn and b-carotene. A large number of MTAs were

detected, which can be used by wheat breeders, after

due prioritization and validation. The present study is

one of the first few studies, where four different

approaches were used for GWAS. The analysis has

been undertaken, resulting in more reliable and useful

information. The results of the present study also

demonstrated that GWAS is a powerful tool for

genetic dissection of complex traits, if newer

approaches are utilized. The results obtained in this

study should prove useful not only in molecular

breeding, but also for further studies thus giving

direction to future research in the field of association

mapping.
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