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Abstract Plant height determines plant biomass
yield, harvest index and economic yield. We analyzed
quantitative trait loci (QTL) and gene action control-
ling plant height. We generated the maternal and
paternal testcrossing (TC/M and TC/P) populations
based on a recombinant inbred line population. Data
for plant height at 71, 12, 3, 4 or t5 stages were
collected over 2 years from 3 TC/M field trials and 2
TC/P field trials. At single-locus level, 32 QTLs at five
stages and 24 conditional QTLs at four intervals were
detected, and 14 QTLs shared in different years or
populations or stages. Plant height displayed dynamic
characteristics through expression of QTLs. A total of
21 novel QTLs were detected and 11 QTLs validated
the previous results. And 19 QTLs explained over 10%
of phenotypic variation, such as gPH-Chr9-2, qPH-
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Chr19-4 and gPH-Chr22-4. The region of NAU5330-
NAU1269 on chromosome 19 may be a desired target
for genetic improvement of plant height in Upland
cotton. In addition, five and eight heterotic loci were
identified in TC/M and TC/P populations, respec-
tively. Additive, partial dominance and overdomi-
nance effects were observed in both TC populations.
We also identified 43 epistatic QTLs and QTLs by
environment interactions by inclusive composite
interval mapping method. Taken together, additive,
partial dominance and overdominance effects together
with epistasis explained the genetic basis of plant
height in Upland cotton.

Keywords Dynamic plant height - Heterosis - QTL
mapping - Testcrossing population - Gossypium
hirsutum L.

Introduction

Hybrid has superior performance over its parents with
diverse genetic basis in growth speed, stress resis-
tance, fitness, quality improvement and yield poten-
tial, this phenomenon is termed as heterosis or hybrid
vigor. Heterosis was exploited in many crops in
agriculture, while the mechanism of heterosis is vague
up till now. Three hypotheses tried to explain the
phenomenon, including dominance, over-dominance
and epistasis (Chen 2013; Li et al. 2015). The
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dominance hypothesis describes that the better per-
formance of F; over both of its parents was contributed
by dominant alleles masking deleterious recessive
alleles (Bruce 1910; Jones 1917; Xiao et al. 1995). The
over-dominance hypothesis illustrated the superiority
of heterozygote with interaction between dominant
allele and recessive allele (Krieger et al. 2010). The
pseudo-overdominance referred to obvious overdom-
inance effect, which wasn’t accurate in single locus
due to linked loci located in repulsion phase (Jones
1917; Li et al. 2015). The epistasis hypothesis
assumed that interactions among non-allelic QTLs or
genes contributed to heterosis (Yu et al. 1997; Hua
et al. 2002, 2003).

Plant height refers to the sum of internode lengths
above ground, reflecting the status of vegetative
growth in crop plants (Shang et al. 2016a). It directly
affects planting density in crop production, which
plays an essential role in determining plant architec-
ture, the resistance to lodging, and key technological
links for machine harvesting. The Green Evolution, in
association with chemical fertilizers, pesticides, con-
trolled irrigation and new methods of cultivation,
including mechanization, was accomplished by pro-
jecting plant height using the high-yielding semi-
dwarf rice variety (Farmer 1986; Sasaki et al. 2002).
More than 1300 QTLs were detected underlying plant
height in rice, maize, soybean, triticale, cotton and so
on  (http://www.gramene.org/qtl; http://www?2.
cottonqtldb.org:8081/index). A total of 15 QTLs
with partial dominance effect were detected for plant
height for 15 varied chromosome segment substitution
lines (CSSLs) in rice; and interactions of addi-
tive x additive (AA) and additive x dominance
(AD) were observed by segregating at the four major
QTLs with the largest effects on plant height (Shen
et al. 2014). These researches demonstrated that
dominance and epistasis were the major genetic basis
of plant height.

Previous studied detected plant height for heterosis
differed in several crops, such as 42.0% of mid-parent
heterosis (MPH) in maize (Lariepe et al. 2012), 35.9%
inrice (Shen et al. 2014), 20.6% in wheat (Zhang et al.
2007) and 8.5% in Upland cotton (Shang et al. 2016a).
Nine heterotic loci for plant height were identified
from 203 single segment substitution lines (SSSLs),
resulting that QTLs with over-dominance effect were
main contributors to heterosis for plant-related traits at
the single-locus level in maize (Wei et al. 2015).
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Another study discovered that heterosis on plant
height generated by pseudo-overdominance using a
recombinant inbred line (RIL, hereinafter same)
population in sorghum by dissecting different height
components of the known auxin transporter Dw3 gene
(Li et al. 2015). Recently, the heterozygosity for plant
height increased gibberellins (GA) levels yields by
genome-wide association studies (GWAS) using BC;-
derived doubled haploid lines in maize (Hu et al.
2017), consistent with result that GA were up-
regulated in wheat hybrids (Zhang et al. 2007). A
total of 14 environmentally common QTLs with
overdominance effect were identified for plant height
and ear height using a RIL based design III population
in an elite maize hybrid (Li et al. 2017).

The ‘immortalized’ testcross (TC) populations
based on a RIL population allowed repeated experi-
ments and analyses by creating heterozygotes, as the
immortalized F, population (Hua et al. 2002; Mei et al.
2005). Previous studies underlying heterosis were
reported by the permanent BC populations in rice
(Xiao et al. 1995; Li et al. 2001, 2008), maize
(Frascaroli et al. 2007), rapeseed (Radoev et al. 2008)
and cotton (Shang et al. 2015, 2016a, b, c¢). However,
few reports on QTL analysis controlling dynamic
plant height were performed in Upland cotton. QTLs
controlling plant height were differently expressed at
developing stages; and the genetic basis of quantita-
tive traits only at final maturity is not representative in
Upland cotton (Shang et al. 2015). Another dynamic
analysis for plant height in our lab demonstrated that
QTLs mainly showed partial dominance effect at the
early stage and mostly displayed overdominance
effect at the later stage (Shang et al. 2016a). Plant
height is a representative dynamic trait related to
heterosis, which is an accurate measured trait to
explore heterosis. But no study reported on dynamic
QTLs and heterotic loci for plant height using two
corresponding parental TC populations in cotton and
other crops. In the present study, both maternal TC
population (TC/M population) and paternal TC pop-
ulation (TC/P population) were simultaneously devel-
oped based on one RIL population to explore dynamic
QTLs and dynamic heterotic loci controlling plant
height at multiple developmental stages in Upland
cotton.
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Materials and methods
Plant materials

The RIL population was developed by single seed
descent method derived from an Upland cotton hybrid
‘Xinza 1’ (GX1135 x GX100-2) in previous work
(Shang et al. 2015, 2016a, b, c¢). Two experimental
populations were developed based on RIL population
consisting of 177 lines of Fy4 generations: (1) the
maternal testcrossing population (hereafter TC/M
population): 177 hybrids originated from 177 F4
RILs testcrossed by original female parent GX1135,
respectively; (2) the paternal testcrossing population
(hereafter TC/P population): 177 hybrids originated
from 177 F4 RILs testcrossed by original male parent
GX100-2, respectively. The inbred seeds of 177 RI
lines seeds and 354 hybrid accession seeds were
obtained in Sanya, Hainan in 2015 and 2016. The
control set was planted for four repeats in every field
trial as: GX1135, ‘Xinza 1°, GX100-2, and a local
commercial hybrid as a competition control. The
commercial hybrid ‘Ruiza 816 was regarded as the
competition control in Yellow River Region (E1 and
E2, see details below), and ‘Ezamian 10’ in Yangtze
River Region (E3, see details below).

Field trials and trait evaluation

A total of five field trials were sown in 2015El,
2015E3, 2016E1 and 2016E2 following randomized
complete block design with two replications. Two TC/
M trials were conducted at first at final stage in 2015E1
and 2015E3, containing RIL population (hereafter
RIL-M population), corresponding TC/M population,
GX1135 as a common testcrossing male parent, and
the control set. Then, the third TC/M trial was
arranged for plant height trait at five development
stages in 2016E2. Two TC/P field trials were per-
formed including RIL population (hereafter RIL-P
population), TC/P population, GX100-2 as another
common testcrossing male parent, and the control set
at five development stages in 2016E1 and 2016E2.
Three locations mentioned above see details in Ma
et al. (2017). Each BC,F 4 progeny was inter-planted
in the middle of its female parent and its common
testing-male parent GX 1135 (original female parent of
‘Xinza 1”) or GX100-2 (original male parent of ‘Xinza
1’) for one replication. Totally, 904 plots with two

rows per plot (18 plants each) were planted including
four control sets in every trial. The field management
was performed by the local routine method.

Data for plant height were recorded by measuring
the main-stem height of individuals before the cotton
plants were removed the shoot apex (Li et al. 2015;
Shang et al. 2015, 2016a). The height measuring unit
was centimeter (cm). Eight scored plants without the
marginal effect were chosen to evaluate in every plot.
The data were collected over the period of 2 years. A
total of 4520 plots in five field trials were evaluated at
multiple stages. The TC/M trial in 2015E1 was
measured at the final stage (t5: September 1); and
the TC/M trial in 2015E3 was measured at ¢5 stage in
September 6. Plant height in both TC/M and TC/P
trials in 2016E2 were measured for five stages at
intervals of 12 days from June 9 to July 27, respec-
tively (¢1: June 9, r2: June 21, £3: July 3, #4: July 15 and
t5: July 27). Plant height in TC/P trial in 2016E1 was
measured just at two early development stages, f1:
June 9, and £2: June 21, with three sets of missing data
due to the hailstone disaster. The data at a certain stage
were used to map QTL and the incremental values
during four intervals were used to map conditional
QTL.

Genetic map and data analysis

The genetic map of simple sequence repeats (SSR)
markers based on the RIL population and the genotype
data of TC/M population have been published before
(Shang et al. 2016b). A total of 623 loci were
distributed on 31 linkage groups, which anchored on
26 chromosomes. The map covered 3889.9 cM
(88.20%) of Upland cotton genome with interval of
6.2 cM on average. The genotype data of TC/P
population were deduced by that of RIL population
based on genetic mating designs (See Table S7).
Mid-parent heterosis value (MPH, hereinafter
same) of each TC progeny was deduced by phenotypic
values of its parents planting both sides of the hybrid.
Heterotic loci referred to QTL detected by MPH
datasets (Hua et al. 2003; Mei et al. 2005), which
defined as follows: a = (P;P; — P,P,)/2; MPH =
d = [F; — (P\P; + P,Py)/2];Fy = (a + d) (P; and P,
alleles from female and male parents of F,, respec-
tively). Datasets in single environment and the best
linear unbiased estimates (BLUEs) across the envi-
ronments assuming fixed effects for the genotype were
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used to map QTLs. The statistical analyses were
performed using R package of Ismeans (version, 2.27-
61; Russell 2016; Liu et al. 2016) assuming a full
random model as follows: Y = genotype + environ-
ment + genotype X environment + block,  where
block involved two replicates in each environment.
At single locus level, we mapped single-locus QTLs in
the confidence interval of 95% and estimated genetic
effects by the software QTL Cartographer (Version
2.5) (Zeng 1994; Wang et al. 2007). The composite
interval mapping (CIM) method was used for QTL
mapping for multiple datasets. Estimating by 1000
permutation times, the threshold of LOD declared a
significant QTL at significant level of P < 0.05,
whereas the QTL with at least LOD 2.0 was consid-
ered as a common QTL in another environment or
population (Shang et al. 2016b). The degree of
dominance was estimated for common QTLs derived
from different populations or datasets (Radoev et al.
2008). Three types of genetic effect for single-locus
QTLs were defined: additive effect loci just detected in
TC population, complete or partial dominant effect
loci with d/a < 1, over-dominant effect loci with d/
a > 1 or QTLs just detected by MPH data (Luo et al.
2009; Shang et al. 2016a). The QTL was identified by
a set of phenotypic values at one development stage
t(n); The conditional QTL was identified by increment
dataset during a period from stage t#(n) to stage
t(n + 1) (Shang et al. 2016a). Common QTLs were
defined QTLs flanking the position linked and shared
common marker(s) in different populations or stages
(Shao et al. 2014).

At two-locus level, the software of QTL IciMap-
ping 4.1 (www.isbreeding.net) had proved to be more
efficient for controlling background by detection of
QTL x environment interaction (Meng et al. 2015;
Shang et al. 2016a). Thus, we conducted the two-locus
analysis using inclusive composite interval mapping
(ICIM) method. A threshold LOD 2.5 and 5 scores
were used to declare significant main effect QTLs and
QTL x environments (M-QTLs and QEs), and epi-
static QTLs and QTL x environments (E-QTLs and
QQESs) (Shang et al. 2016a).

@ Springer

Results

Phenotypic performance for plant height
at multiple stages

Table 1 presented phenotypic performance for plant
height in RIL, TC/M, TC/P, MPH-M and MPH-P
datasets at five stages in three environments. The
original female parent GX1135 displayed higher plant
height than the original male parent GX100-2 on
average. At t5 stage, the average plant height was
greater in 2015E3 in Yangtze River Region than that in
2015E1 in Yellow River Region in RIL-M and TC/M
populations. It was attributed to different plant archi-
tectures at the two locations because of different local
photo-thermal conditions and cultivation strategies.
Plant height showed hybrid vigor with wide ranges
from — 13.54 to 19.54% on MPH datasets, similar to
the tendency in rice from — 7.40 to 14.40% of MPH
(Shen et al. 2014). The increment of growth rate was
larger at early stages (At1-2, Ar2-3 and At3-4) than
that at the last development interval (A4-5). The mid-
parent heterosis (MPH) showed a dynamic character
from ¢1 to #5 in both TC populations (Shang et al.
2015). In the same environment (Hejian, 2016E2),
mean values in TC/M population were superior to that
in RIL-M population. On the contrary, the plant height
heterosis on TC/P progenies decreased rather than
RIL-P population due to inferior performance of the
current male parent GX100-2 with recessive homozy-
gotes. Mean values of MPH datasets increased by two
or three times in TC/M population than that in TC/P
population. The results indicated that average perfor-
mance of two parents determined the performance of
their hybrid.

Variance analysis was performed for replicates
across multiple environments or at multiple stages or
intervals for RIL, TC and MPH datasets in TC/M and
TC/P trials (Table 2). For the majority of plant height
datasets, genotype and environment variances showed
significant difference at 0.01 or 0.001 significance
levels. On the contrary, genotype x environment and
environment X replicate variation of the majority of
datasets showed non-significant except in TC/M trials
at 15 stages. The correlation presented in Table S1
between RIL, TC and MPH datasets in two TC trials.
Highly positive correlations were observed between
RIL and TC performance at five stages in TC/M and
TC/P trials. Similarly, correlations showed highly


http://www.isbreeding.net

Page 5 of 17 167

Euphytica (2018) 214:167

(W) I91WNUdd Ul U,

SWES JOJJEUIRISH 'S[ONU0d uonnadwiod [edo] s uonod pueldp) Jo SpLGAY ‘¢ Ul [ UeIWeZd, ‘TH Pue [H Ul 9§ BZINY,,

(%) s1soreray Juared-pIAL,

1esesep sisoxdjey Juared-prw ayy pue uone[ndod ssoxdysa) ‘uonendod soul| parqul JUBRUIQUIOdAI Y} 0 PALIBJAI T PUB HAIN Dl

ueynp ¢ ‘noyzsue) ‘gg ‘uepuey ([H VUSWUOIAUL,

€9°€ 901 IL's 08'C 0S8 SL91 €€’ 91’8 oL 0SL— L0 —  6L91 68°0 $6'9 SV
¥T'9T v1°01 9p'€e 19°L2 sree 181 1891 ¥L'6T SI's 1L — 900 €00y  OI'El  98'8CT v ¢V
0T'1T 09T — 91'TC €0CC 10°€C 608C  TrOl S9'61 199  9¢¥ — 9¢'0 189C €LTI  TTOT €TV
95'¥T 0£C—  68%C LY'veT 89T 6V'8C  8TEIl 61°CC S6'S €0°S — LY'0 0S'L  6SSI SSTc TV
05801 €V LOSTT 80701 09°0CI 00671  €9°€L P8S0I 80Vl SYEl —  SHO SO6IT  LLEL  89°€01 ¢
L8¥01 0SC 9€'601 8T'101 01'CIT  CO6IT  SET9 YL'L6 €PCl SSII— 8610 69111 0979  8L96 v
¥9'8L ¥S0—  06'SL LYEL S6'8L S1'98 [4S4% S6'L9 STol 8€6 — 88°0 186, 0S'IS  T6'L9 €
vh'LS 600 —  PLES v9'1S ¥6°SS €V'8S  60%E 0E'sy 018 €CL — 50 €0°SS  vESE  OLLP U
88°C¢ 681 88T LT'LT 9’6  TEEE  TE8I 19t LTS LTS — 500 98'6C  900C  SI'ST I TH910T
LY'LT 991 91'91 68°C1 6L 71 6L°61 6C'8 €8¢l 619 LTy — €70 S0'61 69'8 96°€l [ tiv
1°6€ v¥'6 L9°SE TT0E L6YE  0SOF  99°1C P8I€E L 019 — 690 LL'8E LSYT  9L1E (]
vLIT €0y zs61 €LY 61°0C V'€ 9LTI S0'sT €'y 6LE — 90 LI oSyl I8LI I 1d910T
L d/OL
€6'S LLOT voL 08y 61°L 86'81 9Ll — SS°6 8€'L LO6 — L60— €191 STe 658 SV
66'S1 v¥'8 90°LT (AR 6L'9C 6Ty el €TLT 99 8¢'L — 170 — 650y L6Vl  ¥ELT  vEIV
vELL €Tl ze61 8691 S8'LI 69T  80°11 66'L1 10°S 8SY — 6€°0 199 6601 6881 €TV
76°0C Y6 v1 0TSt 0S'1T SeTeT 869C TSI €9°1¢C €L 0V — 99°0 8C8C  6L°L1  8LTT TV
76'96 L6'9 €1°801 0L'€6 L¥'80T  SE€'STI 1889 8,01  8I'61 10T — TS'1 G8'8TI 8878  ¥I'LOI 9]
66'06 609 68°001 06'88 6C101  ¥6'9I1  I€V9 TTE6  TEST T60l —  6¥T 16'611  OF'SL  SS'86 v
00°CL 9T's €8°¢L 8L'S9 0SvL  ¥S°T8 €9°S¥ 0099  OI'cl  8L§— 0L'C 91'€s €709  ITIL €
99°'%S 66'C 1S'%S 0z'6v 996 8S°LS  TEIE 1087 LE6 1€°9 — LTT SL'09 erey  TETS 4
vLEE Vs —  1€°6C 0L'LT 0€¥€ 8y€e 1L°91 8€°9C 88'8 ¥9'€ — 19'1 LY'SE  0v'TT  SS6C I} Td910C
98'C6 SI'e— 688 S6€6 9€'88  00°LC1  6T18 S666 0SS vYSEL—  TEL—  6TIIL  EVYS  ¥6'L6 ¢/ €dS10e
6L°69 S8'L 9%°0L 09'89 LOT9 9898  0S'8F Y269  ¥S6l  8¥'6 — 144 §T98 v0'9S  L611L ¢/ 1dS10C
11 W/OL
T-00IXD  SEIIXD XeN N URSN XBN UIN UBIN XN CUIN UBIA]
1D (%BHIN 9 Juareq it HdIN QL 9%eig ¢ AUH

s[e d/DL Pue JA/DL Ul s19seiep Iy pue HAIN ‘DL ul y3toy jue(d orweukp uo sisAfeue [eonsnels aanduosoq [ dqel

pringer

s



167 Page 6 of 17

Euphytica (2018) 214:167

Table 2 ANQVA for plant Trial Stage Source of variation® MSP
height in multiple
populations in TC/M and TC/M® TC MPH RIL
TC/P trials
15 G 115.89 46.89 216.70%**
E 117,182.50%* 1153.00%** 115,603.50%:*
G xE 96.54 46.92 108.07
E x R 465.00%* 190.00%** 682.00%**
error 95.58 48.12 95.37
:***C* af;d TC/P 1l G 6.61%* 6324+ 18.95%
“k#k’Correlation was )
significant at 0.05, 0.01 and E 9543.007 6.99 11,492.00%**
0.001 probability levels, G x E 3.95 3.81 6.29
respectively E x R 147.00%%* 4.12 117.00
*G, genotype; E, error 4.89 4.07 521
environment; G x E, 173 G 21,245 14.53* 51.65%#*
%eiogpe X environment; E 44,932.00% 4.65 47,992.00%
environment X replication G x E 12.50 11.62 15.74
®Mean standard deviation E xR 92.50%%** 6.90 46.50*
among datasets in more error 13.08 11.25 14.86
than one environment o1 G 0. 1g## 708 14,125
“Phenotypes of TC/M, . .
MPH-M and RIL-M E 13,079.00 0.33 12,512.00
datasets in TC/M trial and G xE 6.69 7.66 175
phenotypes of TC/P, MPH- E xR 6.50 0.84 18.00
P and RIL-P datasets in TC/ error 5.70 6.49 673

P trials, respectively

positive between TC and MPH performance, consis-
tent with the previous study (Shang et al. 2016a). In
both TC trials, negative or non-significant relation-
ships were observed between RIL and MPH datasets at
all of development stages for plant height.

QTLs, conditional QTLs and heterotic loci
at single locus level

In the present study, a total of 42 QTLs and conditional
QTLs were identified from TC/P, TC/M, RIL, MPH-P
and MPH-M datasets (Tables 3, 4).

A total of 32 QTLs were detected at five develop-
ment stages of ¢1, 12, 13, t4 and 5 (Table 3). Overall,
11, 14, nine, nine and 13 QTLs were detected at ¢1, 12,
13, t4 and 15 stages, respectively. Sixteen common
QTLs verified each other at multiple stages, environ-
ments or populations. In TC/P trials, 12 QTLs were
identified in TC/P population including three common
QTLs of gPH-Chri-1, gPH-Chr2-1 and gPH-Chrl9-
5. From MPH-P datasets, 7 heterotic loci were
detected including three common QTLs of ¢PH-
Chrl-1, gPH-Chri2-1 and qPH-Chr9-2. The qPH-

@ Springer

Chrl-1 shared in TC/P and MPH-P datasets, which
was also resolved at £3, #4 and 5 stages at the same
time (Fig. 1). Two common heterotic loci named
gPH-Chrl-1 and gPH-Chr9-2 were detected simulta-
neously at 3, #4 and ¢5 stages using MPH-P datasets.
The qPH-Chri-1 was also detected in TC/P dataset.
However, over-dominant gPH-Chri-1 displayed neg-
ative genetic effect and the over-dominant gPH-Chr9-
2 showed positive genetic effect. The detected gPH-
Chr19-5 in TC/P population showed additive effect at
t1, 12, t4 and 15 stages. A total of 14 additive QTLs, 3
partial dominant QTLs and 11 over-dominant QTLs
were estimated in TC/P trials (Table 5). In TC/M
trials, six and four QTLs were observed using TC/M
and MPH-M datasets, respectively (Fig. 1). In both
datasets, four, four, four, three and seven QTLs were
detected at stages f1, 12, 13, 4 and 15, respectively.
Both gPH-Chri19-2 and gPH-Chr19-4) were detected
at the early development stages (¢1, 2 and £3). The
qPH-Chr19-2 showed partial dominant effect in the
three stages in TC/M population, explaining 12.30%
of PV on average. The QTL gPH-Chri9-4 explained
11.72-20.93% of phenotypic variation (PV), and
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Table 3 QTLs controlling dynamic plant height in TC, MPH and RIL datasets in TC/M and TC/P trials at single-locus level

QTL® Env. Stage Flanking markers TC MPH RIL
LOD Effect Var%® LOD Effect Var% LOD Effect Var%
value® value value
qPH- 2016E2 13 SWUI11191 BNL2827b 357 —1.08 7.35
Chrl-1
t4 NAU2218 SWUI11191 431 —3.53 1466 261 —141 7.61
15 NAU2218 SWUI11191 341 —1.89 1236
qPH- 2015E3 é‘i SWU11887 SWUI11976 340 —2.02 6.23
Chr2-1
2016E2 11 SWU11887 SWUI11976 365 —0.81 631
[2] SWU11887 SWUI11976 281 —1.11 5.08
t1 SWU11887 SWU11976 421 —0.53 797
2 SWU11887 SWUI11976 423 — 091 8.06
3 SWU11887 SWUI11976 4.00 - 1.75 10.49
5 SWU11887 SWUI11976 326 — 256 17.68
qPH- 2015E1 5 SWU18881 NAU2701 3.35 1.69 7.08
Chrd4-1
qPH- 2016E2 13 SWUI12672 HAU1332 2.50 091 5.00
Chr4-2
qPH- 2016E2 15 SWU21415 BNL530 283 —136 6.01
Chr4-3
qPH- 2016E1 t1 SWU20913 Gh260 3.69 0.53 7.81
Chr5-1
2 SWU20913 Gh260 3.30 0.79 5.65
2016E2 13 SWU20913 Gh260 2.70 1.51 5.32
qPH- 2016E1 12 HAU1603  PGML4457 4.35 0.97 8.64
Chr5-2
qPH- 2016E2 11 DPL0022 SWU17787 2.60 0.57  6.07
Chr5-3
qPH- 2016E2 t4 ICR00143  CGR5108 2.53 2.14 525
Chré6-1
qPH- 2016E2 13 CGR5001 CGR6586 286 —124 937
Chr7-1
4 CGR5001 CGR6586 380 —1.92 12.98
qPH- 2016E2 12 PGML2830 CGR6876 3.26 0.84 6.86 3.68 1.23 649
Chr9-1
qPH- 2016E2 3 SWUI15157 SWU14934 3.46 1.29 10.11
Chr9-2
t4 SWUI15157 SWU14934 3.07 1.66 9.46
5 SWUI15157 SWU14934 3.57 1.99 10.81
qPH- 2016E2 t1 HAUI1316 NAU3519 485 —0.69 14.36
Chrl2-
1
2 HAU1316  NAU3519 570 —1.15 17.00
qPH- 2016E2 4 SWU22309 SWU22324 346 —341 9.01
Chrl3-
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Table 3 continued

QTL® Env. Stage Flanking markers TC MPH RIL
LOD Effect Var%® LOD Effect Var% LOD Effect Var%
value® value value
qPH- 2016E1 12 Gh157 BNL1495 335 —0.67 646
Chrl3-
2
qPH- 2016E1 12 NAU2960 ICR12130 375 —0.73 7.84
Chrl4-
1
2015E1 5 NAU2960 ICR12130 3.04 —158 6.04
qPH- 2016E1 t1 NAU5330  Gh72 7.13 0.74 15.17
Chrl9-
1
2 NAU5330  Gh72 8.22 1.34 16.48
2016E2 ¢l NAUS5330  Gh72 9.17 1.36  19.77
2 NAUS5330  Gh72 2.53 0.77 5.68
qPH- 2016E2 11 Gh616 CIR139 441 0.77 8.83 8.79 131 16.07
Chrl9-
2
22 Gh616 CIR139 8.23 136 1647 7.90 194 15.12
13 Gh616 CIR139 2.61 116 542 5.60 231 11.88
t1 Gh616 CIR139 3.69 0.50 6.92
2 Gh616 CIR139 9.44 2.06 17.75
3 Gh616 CIR139 5.68 2.24 11.53
qPH- 2016E1 ¢l NAUS833a  NAUI1269 5.24 0.60 991
Chrl9-
3
qPH- 2016E1 12 NAU1042 NAU3437 5.67 1.16 12.12
Chrl9-
4
2016E2 t1 NAU1042 NAU3437 6.04 1.10 12.83
2 NAU1042 NAU3437 6.03 1.77 13.08
tl NAU1042  NAU3437 4.15 1.14 12.38
2 NAU1042 NAU3437 5.96 228 2093
13 NAU1042  NAU3437 3.70 229 11.72
qPH- 2016E2 ¢l TMBO0107  NAU3217 435 —0.58 942
Chrl9-
5
2 CGR5539 TMB0107 3.18 —0.79 599
t4 SWU17897 CGR5539 402 —3.00 8.96
5 CGR5539 TMBO0107 339 —258 7.06
qPH- 2016E2 12 SWU20675 SWU20649 3.67 092 691 355 095 7.74
Chr20-
1
qPH- 2016E1 t1 CERO167 SWU20064 372 053 1534 275 —042 488
Chr20-
2
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Table 3 continued

QTLS Env. Stage Flanking markers TC MPH RIL
LOD Effect Var%® LOD Effect Var% LOD Effect Var%
value® value value
qPH- 2016E2 15 DPL0562 CAUO161 2.72 5.73 34.84
Chr22-
1
qPH- 2016E2 4 PGMLO0695 SWU20813 354 2.88 7.42
Chr22-
2
5 PGMLO0695 SWU20813 2770 2.46 5.57
qPH- 2016E1 12 HAU2504 SWUI13736 254 —0.64 5.77
Chr24-
1
2016E2 12 SWU13745 Gh273 282 —075 547
qPH- 2016E2 13 SWU19848 CGR6864  3.00 144 8.60
Chr25-
1
t4 SWU19848 CGR6864  3.13 262 942
5 SWU19848 CGR6864  2.65 259 7.90
qPH- 2016E1 11 SWU19763 SWUI19129 2.93 0.34  6.09
Chr25-
2
t1 SWU19129 PGML2858 2.89 043 5.15
2 SWU19129 PGML2858 2.58 0.69 4.33
qPH- 2015E1 15 SWU17467 SWU17419 271 121 6.02
Chr26-
1
5 SWU17432 SWU17395 4.92 2.13 11.28
2015E3 15 SWU17467 SWU17419 441 235 8.54
qPH- 2015E1 15 NAU2175 SWU17336 4.17 2.11 10.94
Chr26-
2
qPH- 2015E1 15 CGR5452 SWU17233 336 —1.66 7.07
Chr26-
3
qPH- 2016E2 t4 SWU18681 SWU0598 372 — 170 11.00
Chr26-
4

“The phenotypic effect value of a single QTL or a heterotic QTL, it referred to additive effect in RIL population, the total effect in TC

population, and the dominance effect in MPH dataset

*The phenotypic variation explained by a single QTL

“QTL with bold figures indicated stable QTL verified in more than one environment, stage, population, or same to conditional QTL in

Table 4

9Data with underline in each cell indicated QTL detected in TC/M trial, the remaining data without underline indicated QTL detected

in TC/P trial

increased 1.10-2.29 cm plant height providing alleles
by the current female parent. However, gPH-Chr25-1
and gPH-Chr26-1 were detected at the later stages just
in TC/M population. The ¢gPH-Chr25-1 was

simultaneously identified at ¢3, ¥4 and 5 stages in
TC/M population in 2016E2, which showed additive
effect. The four QTLs (gPH-Chr2-1, gPH-Chri4-1,
qPH-Chr19-2 and ¢PH-Chrl19-4) were detected

@ Springer
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Fig. 1 Locations of QTLs controlling plant height identified at
five stages in two parental TC populations * and ** (# and ##),
marker showed respectively segregation distortion significant at
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P =0.05 and 0.01 levels; markers with * and ** skewed toward
the GX1135 alleles, and markers with # and ## skewed toward
the GX100-2 alleles. t1—t5 refer to five development stages
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Fig. 1 continued
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Table 5 Summary on genetic effects of single-locus QTLs
identified for dynamic plant height in TC/M and TC/P trials

Stage  TC/M trial TC/P trial

A* PD OD Sum A PD OD Sum

11° 0 1 1 2 301 2 6
2° 0 1 1 2 7 1 1 9
3 1 1 1 3 1 0 3 4
4 1 0 1 2 11 2 4
15° 30 2 5 2 0 3 5
Total 5 3 6 14 14 3 11 28

Data in brackets referred to the number of QTLs in multiple
environments in 2015E1, 2015E3, 2016E1 and 2016E2

*A, PD, and OD indicated three types of QTLs, A, additive
effect; PD, partial dominance effect; OD, over-dominance
effect

"Data at 11, 12 stages were measured in paternal TC trial over
2016E1 and 2016E2, data at ¢5 stage were measured in
maternal TC trial over 2015E1, 2015E3 and 2016E2, the
remaining data were obtained in 2016E2

repeatedly in TC/P trials. The gPH-Chr20-1 displayed
apparent over-dominant effect, which was detected in
both TC/M and MPH-M datasets. A total of 5 additive
QTLs, 3 partial dominant QTLs and 6 over-dominant
QTLs were estimated in TC/M population (Table 5).

Together, eight and 18 QTLs were identified in the
TC/M and TC/P populations, respectively. Only the
qPH-Chrl19-2 shared in both TC populations. All of
six common QTLs showed stable genetic effects,
indicating high accuracy of these QTLs and be
valuable to MAS breeding. For example, gPH-Chr2-
1 with additive effect was simultaneously detected at
four stages t1, 12, 13, t4 and t5 in TC/P population,
respectively. Three common QTLs (gPH-Chri9-1,
gPH-Chr19-2 and  gPH-Chrl9-4)  explained
11.53-20.93% of PV and showed positive genetic
effect.

Table 4 presented 24 conditional QTLs which were
identified during four development intervals including
At1-2, A2-3, Ar3—4 and Ard4-5. Totally, 5 common
conditional QTLs were observed across more than one
interval or environment such as gPH-Chri-1, qPH-
Chr6-1, gqPH-Chr9-2, qPH-Chr19-2, and gPH-Chr20-
2. In TC/M trials, one, one, two and three QTLs were
detected in four periods of Ar1-2, Ar2-3, At3—4, and
Ard4-5.In TC/P trials, 6, 5, 6 and 6 QTLs were detected
at At1-2, Ar2-3, At3-4, and At4-5, respectively. The
common QTL ¢PH-Chr9-2 was simultaneously

identified during two growth periods (Az1-2 and
At4-5), explaining 9.12% and 26.76% of PV, respec-
tively. The gPH-Chr6-1 was detected at Ar2-3, Ar3—4
and At4-5 at the same time in 2016E2 based on TC/P
population. Among these 24 QTLs, 14 conditional
QTLs validated QTLs from five stages (Tables 3, 4).
Among these QTLs and conditional QTLs, we iden-
tified five and eight heterotic loci in TC/M and TC/P
populations, respectively.

Genetic effect at single locus level

In two testcross experiments, we identified 17 QTLs in
both TC populations and 12 heterotic loci using mid-
parent heterosis (MPH) datasets by CIM method.
Additive, partial dominance and overdominance effect
were observed for single QTLs (Table 5). In TC/M
population, genotypes of individuals contain heterozy-
gous PIP2 alleles and homozygous P/P] dominant
alleles providing by maternal parent GX1135. And
five additive QTLs and six over-dominant QTLs
contributed much to heterosis, following three partial
dominant QTLs. In TC/P population, genotypes of
individuals contain heterozygous PIP2 alleles and
homozygous P2P2 recessive alleles from paternal
parent GX100-2. And 14 additive QTLs, 3 partial
dominant QTLs and 28 over-dominant QTLs were
identified. The results indicated that additive, partial
dominance and overdominance effect explained the
genetic basis of plant height and the heterosis in
Upland cotton. Relationship between whole-genome
heterozygosity and dynamic performances.

We examined the correlations between whole
genome marker heterozygosity of 653 loci and mean
values underlying plant height at five stages in TC/M,
MPH-M, TC/P, and MPH-P datasets (Table S3). No
significant relationship was observed between
dynamic performances for plant height and overall
genome marker heterozygosity at all of the five
development stages. Majority of the correlation
showed negative but non-significant in the TC/M
and MPH-M datasets, as well as in the TC-P and MPH-
P datasets.

Gene actions controlling plant height
by environments

At the two-locus level, 31 main effect QTLs and
QTLs x environment interaction (M-QTLs and QEs)

@ Springer



167 Page 14 of 17

Euphytica (2018) 214:167

Table 6 Summary on M-QTLs and E-QTLs by environments in TC, MPH and RIL datasets in TC/M and TC/P trials by IciMapping

4.1

Stage Trial TC MPH RIL

M-QTL* n° V(A)%° V(AE)% n V(A)% V(AE)% n V(A% V(AE)%
15 TC/M 4 1.66 2.90 1 1.26 1.64 9 1.57 0.51

t1 TC/P 4 4.44 2.18 1 3.09 1.43 5 4.06 1.47

2 TC/P 7 3.02 3.96 1 222 1.59 6 3.65 1.26
11-2 TC/P 3 3.81 12.74 0 - - 4 4.65 0.14
E-QTL? n V(AA)%° V(AAE)% n V(AA)% V(AAE)% n V(AA)% V(AAE)%
5 TC/M 5 1.84 12.76 1 2.14 1.78 11 1.73 2.58

t1 TC/P 3 4.38 2.79 1 2.67 297 5 4.10 0.73

2 TC/P 3 4.62 1.62 1 3.79 1.55 4.08 0.74

t1-2 TC/P 1 1.04 5.14 0 - - 5.98 0.38

“Main effect QTL by environmental interactions
®The number of QTLs

“Percentage of the total phenotypic variation on average, V(A)% and V(AA)%, explained by M-QTLs and E-QTLs, V(AE)% and
V(AAE)%, explained by QTL x environments for M-QTLs and E-QTLs, respectively

and 25 epistatic QTLs and QTLs x environment
interaction (E-QTLs and QQEs) were identified at
t1, 12, and Ar1-2 stages in TC/P trials across 2016E1
and 2016E2 (Table 6, S4, S5). Totally, 15, 14, two
M-QTLs and QEs, and 16, 7, two E-QTLs and QQEs
were detected from three datasets in RIL-P, TC/P and
MPH-P datasets, respectively. And 83.33% of identi-
fied M-QTLs by ICIM method (Table S4) were
common to single locus detected QTLs by CIM
method (Tables 3, 4). In RIL population, five M-QTLs
and QEs were identified at 1 stage; and two were
simultaneously observed at 71 and £2 stages. In the TC/
P population, four and seven M-QTLs and QEs were
detected at ¢1 and 72 stages, with 4.99% and 3.59% of
phenotypic variation (PV) on average, respectively.
The region of Gh616-CIR139 was expressed repeat-
edly, explaining 12.72% and 3.95% of PV in the RIL
and TC/P populations, respectively. Taken together,
22 M-QTLs and QEs explained less phenotypic
variation than that by the detected E-QTLs and QQEs.
Twelve E-QTLs interacted in multiple stages or
populations, such as DPL0894-SWU10800 which
were observed at 2 stage in the RIL-P population, as
well as at 71 stage in the TC/P population.

In TC/M trials, we detected 16 M-QTLs and QEs,
and 17 E-QTLs and QQEs at #5 stage across 2015E1,
2015E3 and 2016E2 at the two-locus level (Table S6,
S7). A total of 11, four, one M-QTLs and 11, five, one

@ Springer

E-QTLs were detected under more than one environ-
ments by three datasets in RIL-M, TC/M and MPH-M
datasets, respectively (Table 6). Two stable M-QTLs
and QEs were simultaneously identified both on
chromosome 14 in RIL-M population and on chro-
mosome 22 in TC/M population.

We also dissected the genetic types of gene actions
by the relationship between M-QTLs and E-QTLs
(Table S8). In TC/P trials, five pairs of E-QTLs caused
between either of M-QTLs (Type II), 20 E-QTLs
caused between neither of M-QTLs (Type III) and no
E-QTLs caused between both of M-QTLs (Type I). In
TC/M trials, five E-QTLs were repeatedly detected.
They located on Chr 9, Chr 11 and Chr 12. Sixteen
E-QTLs belonged to Type III, one E-QTLs and QQEs
belonged to Type II, no Type I was observed. The
results indicated that E-QTLs mainly contributed to
phenotype by Type III in multiple populations of both
TC trials.

Discussion
Comparison among two parental TC populations
Previous studies on QTL mapping for plant height

provided information at the final development stages
in other crops (Shen et al. 2014; Wei et al. 2015). A
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total of 47 dynamic QTLs for plant height were
explored using TC/M populations in Upland cotton in
previous study (Shang et al. 2016a). However, no
paternal testcross population (TC/P) was exploited to
explore dynamic plant height at multiple development
stages in Upland cotton. In the present study, two
permanent parental testcrossing populations were
developed for the first time to explore dynamic QTLs
and heterotic loci for plant height in Upland cotton.
Superior performance and MPH values by two to three
times were observed in TC/M population than that in
TC/P population at all of 5 stages in the same
environment (Hejian, 2016E2). The result was attrib-
uted to the superior performance of GX1135 in
comparison with GX100-2 because the mean perfor-
mances of both parents were essential to the superi-
ority of their hybrid. However, a total of 18 and 30
QTLs including heterotic loci were detected in TC/M
and TC/P experiments, respectively. The result indi-
cated large power to map QTLs using the TC/P
population. Similar to the previous study, 98 and 105
QTLs for fiber quality and yield-related traits were
detected in TC/M and TC/P populations in Upland
cotton, respectively (Fang et al. 2016).

Common QTLs controlling dynamic plant height
across multiple stages, populations or years

Experimental design in two parental TC trials made it
available to validate QTLs across multiple populations
with high accuracy. In the present study, 35 common
QTLs (50%) for dynamic plant height were detected in
two parental TC trials across 2015 and 2016 in E1, E2
and E3. A total of 14 QTLs were detected by best
linear unbiased estimates (BLUESs) for the replicated
datasets in more than one environment for validating
the accuracy of the QTLs controlling plant height
(Table S2). Seven common QTLs were same to the
QTLs by single environment mentioned above, such
as gPH-Chr2-1, qPH-Chr19-1, qPH-Chrl19-2, qPH-
Chr19-4 and gPH-Chr24-1 (Table S2). Here, we also
detected 32 QTLs and 24 conditional QTLs were
detected in RIL, TC/M, and TC/P populations derived
from the cross ‘Xinzal’ (Table 3). A total of 50
conditional QTLs (71.43%) for plant height were
detected at eight successive times in rapeseed (Bras-
sica napus) (Wang et al. 2015). A total of 11 QTLs in
the present study were same to the previous results in
2012 (Table S9) (Shang et al. 2016a). Particularly, the

region of NAUS5330-NAU1269 was detected for 21
times at most in the same RIL population at early
stages (f1, 12, £3) across 2 years at two locations. The
region on chromosome 19 explained 20.93% of PV on
average. The flanking marker PGMLO0695 of ¢qPH-
Chr22-2 in the present study was common to a hotspot
including gFE24.1, gFM24.1 and gFS24.1 (Tang et al.
2015).

A total of 65,412 SSRs from CottonGen were
mapped to six sets of genome sequences for three
Gossypium species to define the physical locations,
respectively (Zhu et al. 2017). We verified physical
locations of flanking markers such as HAU1332
flanking with gPH-Chr4-1 in order to explore QTLs
or genes controlling plant height. In addition, two
GWAS loci (Hd3a and Hd1) controlled plant height on
chromosome 6 in rice and Hd3a displayed strong over-
dominant effects (Huang et al. 2015). In Upland
cotton, the homologous sequences of Hd3a and Hdl
were located on chromosome 2, 3,4, 5,8, 12, and 13 in
reference genome of “TM-1" (Zhang et al. 2015). On
these seven chromosomes, a total of 16 QTLs for plant
height were detected in the present study, providing
insight for further research. A high density new map
involving in SNP and SSR markers will be available to
validate the important regions of these QTLs with high
accuracy.

Genetic basis of dynamic plant height
and the heterosis in Upland cotton

In the present study, plant height showed dynamic at
different stages in TC/M and TC/P trials not only for
the number of QTLs but also the portion of genetic
effects (Tables 3, 4, 5). Over-dominant QTLs was the
most prevalent than additive and partial dominance
QTLs in TC/P population at single locus level, same as
in TC/M population. In rice, plant height locus, named
Hd3a, also showed strong over-dominant effect
(Huang et al. 2015). Here, partial dominant and
over-dominant QTLs were more than additive QTLs at
t1, 12 and 13 stages in TC/M population, similarly at 71,
13 and #4 stages in TC/P population. Nevertheless,
more QTLs showed additive effect at #5 stage in TC/M
population, similar at 2 stage in TC/P population. No
partial dominant conditional QTL was estimated in the
present study (Table 5). Then, all of 10 QTLs detected
in TC/M populations in the region of NAUS5330-
NAU1269 showed partial dominant effect, whereas all
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of 2 QTLs detected in TC/P populations showed
additive effect. The results indicated that different
genetic factors controlled dynamic plant height in
Upland cotton between TC/M and TC/P populations as
well as at different stages.

In rice, 15 heterotic loci (HL) contributed to
heterosis acting in dominance for plant height in rice
(Shen et al. 2014). In maize, 9 HL with dominant and
over-dominant effects were mainly affected for plant
height (Wei et al. 2015). In this study, the experimen-
tal design is also valuable to identify heterotic loci.
Eight HL were repeatedly identified at multiple stages.
Six common HL shared at multiple stages. Over-
dominant gPH-Chrl-1 and gPH-Chr9-2 were identi-
fied at 73, 4 and 5 stages in TC/P and TC/M
populations, respectively. In both TC populations,
additive, partial dominance and over-dominant effects
played roles for dynamic plant height. The results
were consistent with previous studies in cotton and
wheat (Shang et al. 2016a; Wang et al. 2010). We also
found that majority of the correlation showed non-
significant between the TC/M and MPH-M datasets, as
well as between the TC-P and MPH-P datasets. The
result was consistent with the previous analyses in
maize (Xiao et al. 1995), rice (Hua et al. 2002; Yu et al.
1997), and cotton (Shang et al. 2016a). It might be
attributed to just a few heterozygous loci, which
explained a large proportion of the advantage in
hybrids (Huang et al. 2015). Moreover, we detected 30
and six epistatic QTLs in both TC and their MPH
datasets by ICIM method. Corresponding QTLs x en-
vironment interaction explained phenotypic variation
in multiple populations. The result was consistent with
the previous study (Shang et al. 2016a), too. But no
epistatic QTLs were detected at r1-2 interval by MPH-
P datasets. However, the majority of average M-QTLs
or E-QTLs explained a larger proportion of pheno-
typic variation than did the QTL by environment
interaction. It was concluded that additive, partial
dominant and overdominant effects determined
heterosis for plant height in Upland cotton, together
with epistasis and QTL by environment interaction.

Data availability
The authors state that all data necessary for confirming

the conclusions presented in the article represented
fully within the article and in the Table S10.
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