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Abstract The evolution of species is complex and

subtle which always associates with the genetic

variation and environment adaption during active/pas-

sive spread or migration. In crops, this process is

usually driven and influenced by human activities such

as domestication, cultivation and immigration. One

method to discover this process is to analyze the

genetic diversity of those crops in different regions.

This research first assessed the similarity and differ-

entiation between genetic diversity of genotype and

phenotype in 768 world-wild cowpea germplasm

which were collected by USDA and US breeding

programs. Totally 1048 genotyping by sequencing

(GBS) derived single nucleotide polymorphisms

(SNPs) and 17 agronomic traits were used to analyze

the genetic diversity, distance, cluster and phylogeny.

The group differentiation was analyzed based on both

the genotype distances from 1048 SNP markers and

the phenotypic (Mahalanobis) distance D2 from 11

traits. A consistent result of diversity in genotype

(polymorphism information content, PIC) and pheno-

type (Shannon and Simpson index) indicated that the

East Africa and South Asia sub-continents were the

original and secondary regions of cowpea domestica-

tion. Both dendrograms built by genetic distance

present relationship among different regions, and the

Mantel coefficient showed medium correlation level

(r = 0.58) between genotype and phenotype. The

information of both genotypic and phenotypic differ-

entiations may help us to understand evolution and

migration of cowpea more comprehensively and also

will inform breeders how to use cowpea germplasm in

breeding programs.
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Introduction

Cowpea (Vigna unguiculata L. Walp.), an annual

herbaceous legume plant, is widely distributed in

tropical and subtropical regions. All plant parts can be

used as food with high nutritional value, providing

protein, vitamins, and minerals. Cowpea pod is

consumed as the vegetable, and its cereal used grain

contains 23–25% protein and 50–67% starch (Agah

et al. 2017). What’s more, cowpea is very efficient in

nitrogen fixing, and plays an important role in agro-

ecosystem. Cowpea has been considered to be culti-

vated from wild type at 3000 years ago in Africa

(Scott 1977; Scowcroft and Gibson 1975). After

transferred to Asia, cowpea evolved into two sub-

species known as ssp. biflora and ssp. sesquipedalis

that are important vegetables in East-south Asia. Now

cowpea is the major food and fodder to the livelihoods

of millions poor people in less-developed countries in

tropical and subtropical regions (Behura et al. 2015).

Genetic diversity is a broad concept, which can be

described by many aspects. Essentially, the genetic

diversity is built upon the information from whole

biosphere to summarize all development, variation,

similarity and difference (Nei 1972). Generally, we

prefer to shrink this concept in a certain species to

reveal the total numbers of genetic characteristics in

the inherited component. In addition, genetic diversity

is the base of biodiversity, in another words, it is the

material of evolution and mutation for species to adopt

environment variations (Simmonds 1976). Mean-

while, the diversity can be improved by evolution

and mutation as well. We prefer to describe the

evolution as a process that converts variation within a

population into the variations between populations. A

population with more diversity means it is likely to

have more chances to possess the variations of genes

that adapt to current environment. The individuals

with those advantage genes tend to survive and

produce offspring containing context genes (Smith

1989). The natural selection, genetic drift, gene flow,

mutation, and recombination create the divergence

and change of populations in different circumstances.

The important part of genetic diversity and population

structure research is to study the similarity and

difference within populations under multiple spaces

and times. This study may help understanding the

situation and history of development, evolution,

distribution, spread and domestication in a certain

species (Celik et al. 2016b; Wang et al. 2015; Caruso

et al. 2008; Chen et al. 2015).

A comprehensive and abundant world-wild germ-

plasm collection is the optimum material to describe

the genetic diversity among or within different pop-

ulations from multiple geographies. Meanwhile intro-

ducing the new accessions from germplasm collection

into breeding program is also the finest way to increase

genetic diversity in cultivated crops. Regards to the

former experience, it is impractical to describe the

whole collections comprehensively and accurately,

even if the information in both phenotypic and

genotypic levels is absolutely doable, due to labor

and time constraints. To build a core germplasm

collection which represented most accessions of whole

collection in an obvious small scale is considered to be

an alternative for exploiting the genetic resource

efficiently (Odong et al. 2013). Many core collections

in germplasm storage have been established for most

important crop like rice (Oryza sativa L.) (Li et al.

2010), common bean (Phaseolus vulgaris L.) (Deulvot

et al. 2010), barley (Hordeum vulgare) (Munoz-

Amatriain et al. 2014), peanut (Arachis hypogaea L.)

(Holbrook et al. 1993), sweet potato (Ipomoea batatas

L.) (He et al. 1995), potato (Solanum tuberosum L.)

(Su et al. 2017), cassava (Mannihot esculanta Crantz

L.) (de Oliveira et al. 2014), maize (Zea mays L.) (Lu

et al. 2009), and soybean (Glycine max L.) (Grant et al.

2010). Theoretically, the core collection ought to

retain genetic diversity of the major germplasm by

only approximate 10% accessions. The International

Institute for Tropical Agriculture (IITA, http://www.

iita.org/) collected 15,122 unique cowpea samples

from 88 countries and constituted a core collection

with 2062 accessions. Meanwhile, the cowpea core

collection has also been established by USDA (United

State Department of Agriculture) with 720 accessions

selected from 7737 cowpea accessions (USDA-ARS

Griffin, GA http://www.ars-grin.gov/ars.htm).

We collected 716 cowpea germplasm accessions

including core collection and special germplasm from

GRIN-USDA originally from 58 countries in six main

regions (North American, Latin American, Asia,
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African, Europe and Oceania), plus 52 US cultivars in

this study. The objective of this research was to

analyze the genetic diversity and characterize the

differentiation by both genotype and phenotype

among and within different regions in the whole

world-wide cowpea germplasm collection.

Materials and methods

Plant materials

A total of 768 cowpea genotypes were used in this

study including 716 USDA GRIN cowpea germplasm

accessions and 52 USA cowpea cultivars. Among the

716 USDA germplasm accessions, 502 accessions

were from the cowpea core-collection and the other

214 accessions were selected based on their special

traits such as cowpea mosaic virus resistance, bacterial

leaf bight resistance, Fusarium wilt resistance, iron

chlorosis tolerance, low phosphorus and rock phos-

phorus tolerance, and seed antioxidant content. All

seeds of the GRIN germplasm and US cultivars were

obtained from USDA Plant Genetic Resources Con-

servation Unit at Griffin, GA and the 716 cowpea

germplasm accessions were originally collected from

58 countries (Kamphuis et al. 2012; Singh et al.

2007, 2010) (Table 1, S1).

Field experiment and phenotyping

The 768 cowpea accessions were planted by a

randomized complete block design (RCBD), with

three replications in the Fayetteville Research and

Extension Experimental Center, University of Arkan-

sas, AR. The planting plot was set as 10 9 3 ft

growing, 20 plants in a row-plot during both 2014 and

2015. The weed control, water and fertilizer applica-

tion were followed as the regular management

practice.

Totally 17 agronomical traits were investigated and

recorded based on the criteria by USDA procedure

descriptionwithmodifications (https://npgsweb.ars-grin.

gov/gringlobal/cropdetail.aspx?type=descriptor&id=188).

The 17 traits consisted of (1) five quantitative traits: seed-

weight, pod-length, pod-number, maturity, and plant-

height; (2) six oligogenic traits: plant-habit, pod-position,

pod-placement, seed-shape, flower-color, and vine; and

(3) six typical qualitative traits: pod-color, seed-pattern,

seed-color, seed-pattern color, leave-shape and seed-tex-

ture. The evaluating and coding for the 17 traits are

described in the supplementary Table S2.

Genotyping

For DNA extraction, all cowpea were planted in 12*7

cell germination trays. Five unique seeds of each

Table 1 Allelic analysis of 768 cowpea accessions from 11 geographic regions and genotyped with 1048 SNP markers

Region No. accessions Major allele frequency (%) No. countries Gene diversity Heterozygosity PIC

American cultivar 74 77 1 0.27 0.05 0.23

North America 88 76 1 0.3 0.05 0.25

Latin America 67 77 17 0.3 0.06 0.26

Europe 8 85 2 0.21 0.06 0.17

Asia 252 76 16 0.35 0.07 0.31

East Asia 26 79 9 0.28 0.06 0.23

Central West Asia 66 80 6 0.28 0.05 0.23

India 160 72 1 0.35 0.08 0.32

Oceania 9 78 1 0.32 0.05 0.28

Africa 270 78 21 0.34 0.06 0.3

East Africa 25 77 7 0.34 0.05 0.3

South Africa 133 73 7 0.33 0.06 0.28

West Africa 112 72 7 0.3 0.06 0.027
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accession were seeded in a cell of tray, and then the

leaf tissues from five seedling plants for each genotype

were bulk sampled. After freeze-drying, the CTAB

method was applied for DNA extraction (Qin et al.

2017). DNA sequencing was conducted using geno-

typing by sequencing (GBS) (Elshire et al. 2011) that

was done by HiSeq 2000 in Beijing Genome Institute

(BGI). Sequence assemble, mapping and SNP call

were done by BGI using SOAP family software (http://

soap.genomics.org.cn/). The SOAPaligner/soap2

(http://soap.genomics.org.cn/) was used to align the

short-read to cowpea genome reference (cow-

pea_Genome_ 0.03.fa) and SOAPsnp v 1.05 was used

for SNP calling (Li 2011). The cow-

pea_Genome_0.03.fa (6750 scaffolds or contigs)

(http://harvest-blast.org/) was kindly provided by Dr.

Timothy J. Close in University of California River-

side, CA, USA.

Statistical analysis

Genetic distance was calculated by allele-sharing

method (Neuman et al. 2000). Phylogenetic recon-

struction was based on the un-weighted pair-group

method using arithmetic average (UPGMA) method

implemented in PowerMarker version 2.7 (Liu and

Muse 2005). The population structure based clustering

group (Q) was inferred by model-based program

STRUCTURE using the burn-in of 10,000, run length

of 50,000, and a model allowing for admixture and

correlated allele frequencies(Earl 2012). The tree to

visualize the phylogenetic distribution of accessions

and ancestry groups was constructed and bootstrapped

1000 times of re-sampling by using MEGA 6 (Tamura

et al. 2007). Principal coordinate analysis (PCoA), that

summarizes the major patterns of variation in multi-

locus data set, was performed with Tassel software

version 5.0 (Bradbury et al. 2007). PowerMarker was

also used to calculate the average number of alleles,

gene diversity, and polymorphism information content

(PIC) values. Fst indicative of ancestral relationship

between genetic groups was calculated using an

AMOVA approach in Arlequin V2.000 (Excoffier

et al. 2005).

Seventeen phenotypic traits were used to evaluate

the genetic diversity by Shannon (H0) and Simpson

index (1-D).

H0 ¼ �
Xs

i¼1

Pi lnPi

D ¼
P

nðn� 1Þ
NðN� 1Þ

Mahalanobis distance as a measurement to calcu-

late genetic differentiation among the groups (Ichi-

hashi et al. 2005) by 11 traits, seed-weight, pod-length,

pod-number, maturity, plant-height, plant-habit, pod-

position, pod-placement, seed-shape, flower-color,

and vine. Analysis of variance (ANOVA) and Canon-

ical discriminant analysis were performed by the JMP

Genomics to test the differences among the groups

based on 11 traits (Sall et al. 2012). Eventually, the

correlation of genetic structure differentiations result-

ing from the genotypic markers with phenotypic traits

was assessed using the Mantel test (Mantel 1967)

performed by PowerMarker.

Results

Genotypic diversity and differentiation

In this study, 768 accessions were collected from 6

continents including 11 geography populations: North

American, Latin American, Asia (East Asia, Indian

and Central West Asia), Africa (South Africa, East

Africa, and West Africa), Europe, Oceania and

American Cultivar. The SNP parameters of each

group were estimated for the major allele frequency,

gene diversity, heterozygosity, and PIC (Table 1). The

genetic diversity and PICs varied from 0.35 and 0.32

for India to 0.21 and 0.17 for Europe, respectively,

indicating genetic variation in each group. What is

noteworthy is that some populations in same conti-

nents have significant difference in genetic diversity

and PICs, such as the sub-populations of Asia and

Africa.

The ANOVA for the molecular markers showed

that the majority of genetic variance was within the

populations with 90.4% of total variation, while 9.6%

variation was observed among the populations. Pair-

wise genetic distances between each population based

on allele sharing of the 768 accessions showed the

medium differentiation. The mean genetic distance of

all group pairs were ranging from 0.074 between

North American and Latin American to 0.183 between

4 Page 4 of 15 Euphytica (2018) 214:4

123

http://soap.genomics.org.cn/
http://soap.genomics.org.cn/
http://soap.genomics.org.cn/
http://harvest-blast.org/


Oceania and Central West Asia, East Africa and

Europe (Table 2).

In order to verify the subdivisions, a model-based

clustering method for multi-loci genotype data was

employed to infer the population structure and assign

individuals to cluster (Q) using STUCTURE. The

most probable structure number of (K) was calculated

based on Evanno’s method (Evanno et al. 2005). The

genetic background was estimated by Q value for each

accession. As the result, totally three gene pools (Q1,

Q2, and Q3) were demonstrated to be the best division

for all 768 accessions/cultivars in our former reports

(Qin et al. 2016, 2017; Shi et al. 2016; Xiong et al.

2016).

In all tested 768 accessions, the percentages of gene

pool in each population were different. These differ-

ences were used to classify the geography population

in this study. All Europe (100%) accessions are

grouped into Q1 pool, after that the North American,

Latin American and USA Cultivars also showed the

relative high Q1 ratio (more than 40%), by contrast the

ratio of Q2 pool in each population was far less than

Q1, that only USA Cultivar and Africa have more than

40% Q2 accessions. The Q3 pool was minority (less

than 25%) in all populations except the Oceania,

which got 88% Q3 accessions; and Asia accessions,

which were close to even distribution of three pools.

The genetic distance was calculated to distinguish

seven continent populations and to build a phyloge-

netic tree which divided those populations into three

main branches where, Europe, North American, Latin

American, and Asia were grouped together in branch 1

as high Q1 group; the Oceania alone comprised the

second one as high Q3 group; Africa and Cultivars

were placed in another branch as high Q2 group. The

cowpea populations in the same branch and similar Q

ratio revealed close genetic background.

As well as the corresponding Q ratio and phylogeny

among continent populations, the similar result was

also found among 11 regional populations. The

dendrogram (Fig. 1) divided the six populations

including North America, Latin America, Oceania,

East Africa, India, and South Africa into one main

branch, which shown high Q3 ratio (more than 21%).

While the rest five populations including West Africa,

Cultivar, East Asia, Central West Asia, and Europe

were grouped into the other branch, which was marked

as low Q3 group. The consistency of structuring with
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phylogeny in both continent and regional populations

improved the reliability of our study.

The results of principal coordinate analysis in

Tassel 5 are marked by different geographical indica-

tions. As can be seen from Fig. 2, most accessions

from the same origin tend to cluster, and there were

obvious cross-overlapping among populations.

Although some sub-populations are from the same

continent, their distributions in the binary scatter-plots

are distinctly separated from each other, like the

accessions from Central-West Asia, India and East

Asia. The US Cultivars and other American (North

American and Latin American) populations are also

significantly different in the scatter plot. Moreover for

the two African sub-populations, both West and East

Africa in the figure, there is almost no overlap between

the two regions. However there are also the opposite

phenomenon, as in a continent South Africa and East

Africa have a very similar distribution, adding that

those accessions from North America and Latin

America have a similar phenomenon. It is noteworthy

that, there is a clear separation between American

cultivar and local American species, while the acces-

sions from western Africa indicated closer relation

with it by large-scale overlap in scatter-plots.

Phenotype diversity and differentiation

Totally 17 phenotypic traits were collected and

recorded with standards to analyze and estimate

genetic diversity among geography populations. The

Shannon–Weaver diversity index (H0) and Simpson

index (1-D) were calculated for the qualitative and

quantitative characters to compare diversity between

the different characters and among various districts.

The high consistency (r = 0.97, P\ 0.01) was found

between Shannon (H0) and Simpson index (1-D) in the

17 traits based on Mantel text (Table 3). Higher

diversity was observed in Asia populations, for eight

traits, including pod-number, plant-high, pod-length,

seed-weight, plant-habit, seed-color, seed-pattern

color and seed-shape, with the highest diversity score

in this population set. And the population of Africa

had the most diversity in maturity, plant habit, and

seed shape. Except the population from Europe whose

diversity was limited by population size, cultivar

populations seemed to be the narrowest one in trait

diversity, on the account of the preference to yield

(pod number, seed weight), harvest (plant habit,

maturity) and market (seed color, texture and shape)

during the breeding. Additionally, high level variable

coefficient (CV) of 11 continuous traits was observed

in Asia and Africa populations (Table 3), which also

implied the high genetic diversity.

All 768 accessions/cultivars were marked with

colors according to different geographic regions,

which were conducted by using Canonical discrimi-

nant analysis of 11 continuous traits (Fig. 3). The first

four significant canonical discriminant functions

(CAN) explained 92.0% total phenotype

Fig. 1 a Dendrogram of differentiation and genetic structure

ratios (blue for Q1, red for Q2, yellow for Q3, and green for

admixture) among 6 continents plus one group consisted of

America cowpea cultivars, and b dendrogram of differentiation

and genetic structure ratios among 11 regions. Only more than

0.50 bootstrap values are shown
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differentiation, and 44.9% of first CAN and 23.1% of

the second CAN function, respectively. According to

the discriminant analysis, almost all accessions can be

grouped into their own geography populations that

tended to distinguish with others but overlaps. The

accessions from Africa and Asia are most widely

distributed, indicating rich phenotype diversity. Quite

a number of Africa accessions were more similar to

wild cowpea that had massive vegetative growth with

poor harvest. The Asia populations contained more

diversity of pod and seed traits, which may be caused

by local market desires. Dense and mixed grouping

occurred in most sub-populations from same continent

especially in Latin and North American. However East

Asia and East Africa clearly separated with other same

continent populations. The dendrogram of differenti-

ation classified the populations to three main branches

based on Mahalanois distance (Fig. 4). The popula-

tions in the same branch were also with the high

overlap degree in discriminant analysis in this study,

which implied similar genetic background, vice versa.

Basically, the ‘Cultivar’ group was independent and

stayed alone and separated from others, however it

still modestly related to Asia and Africa populations

Fig. 2 Principal coordinate analysis based on 1048 SNPs in 768 accessions/cultivars
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(Table 2). The accessions from South Asia subconti-

nent were high relevant to Central East Africa

accessions, as well as the short genetic distance

between Latin and North American was observed.

Relationships between genotype and phenotype

differentiation

The dendrogram based on the Mahalanobis distance

(D2) using the 11 phenotypic traits (Fig. 4) didn’t fully

match with the dendrogram based on the genotype

differentiation using 1028 markers (Fig. 2). However,

all dendrograms and scatter diagrams revealed clear

and consistent relations among the seven

regions/groups: Cultivar, India, East Asia, West

Africa, East Africa, Latin American and North Amer-

ican. Mantel analysis has been widely used to compare

the genetic correspondence between genotypic and

phenotypic differentiation (Gizaw et al. 2007). In this

study, genetic distance derived from the genotypes

was correlated with the distance derived from pheno-

type in medium level (r = 0.53, P\ 0.02), indicating

the matching of dendrograms and similarity of scatter

diagrams between genotype and phenotype.

Discussion

The genotype and phenotype for genetic analysis

Compared to the rice, corn, soybean, barley, wheat,

and other major cereal or economic crops, high-

throughput sequencing and large-scale SNP develop-

ment in cowpea started very late and there was no

research reports involving SNP markers until 2009

(Cai et al. 2008; Shirasawa et al. 2007; Ching et al.

Fig. 3 Canonical discriminant analysis (CDA) using 12 phenotypic traits among structural groups in 768 accessions/cultivars
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2002; Rostoks et al. 2005; Yanagisawa et al. 2003;

Muchero et al. 2009b). GBS is considered to be one of

the most advanced and efficient technology for SNP

developing, which can obtain massive genetic markers

without deep sequencing or understanding of genetic

information in aim crop (Uncu et al. 2016; Schroder

et al. 2016; Celik et al. 2016a; Ariani et al. 2016;

Arbelaez et al. 2015). The 5808 SNPs derived from

768 accessions using GBS in this study had a similar

nucleotide ratio with former studies (Huynh et al.

2013; Muchero et al. 2009a). The large number of

missing and misreading in those SNPs wouldn’t be

ignored by consideration of the non-reference

sequencing in GBS. Therefore, only 1028 markers

were left for future research by removing the rare (less

than 5%) loci, high ratio (more than 20%) missing and

high (more than 5%) heterozygous nucleotide (Huynh

et al. 2013).

The analysis of phenotypic traits is an important

method to estimate and evaluate the relationship and

genetic diversity among accessions or groups (Jaaska

and Jaaska 1988). Even if the phenotype record and

detection are easily affected by different readers or

inspectors, while as a classical taxonomy method, it

cannot only reflect the genetic difference between

accessions/groups, but also can reveal the adaptability

of environment in multiple regions (Li et al. 2017;

Zeka et al. 2015). For calculating the Simpson and

Shannon index, all 17 traits used the assignment data

for diversity analysis (Darling et al. 2016; Peng et al.

2014). The ANOVA, CV dendrograms and discrim-

inant analysis were calculated based on original data

of 11 continuous traits. The three-level assignment

method was used to evaluate seven traits as oligogene

controlled traits to simplify and unify the detection,

however, the virtual instance may be more compli-

cated than this assumption (Cobb et al. 2013).

Genotype diversity and relationship

Genotype diversity has been partially described in our

former report (Xiong et al. 2016), while here we not

only analyzed the populations under the continents but

also involved the difference among each continent for

more comprehensive understanding and recognizing

in cowpea diversity. Among all continents, the most

richness of diversity was observed in Africa popula-

tion, in particular, the highest diversity is found in East

Fig. 4 a Dendrogram of differentiations among 6 continents plus one group consisted of America cowpea cultivars, b dendrogram of

differentiation among 11 regions. Only more than 0.50 bootstrap values are shown
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part of Africa while slightly reduced in western and

southern populations. The wider genetic diversity

found in East Africa conformed previous reports that

the eastern Africa was the center of domestication of

cowpea and western Africa was a distinct gene pool

which was derived by immigrant wild cowpea from

eastern part (Baudoin and Maréchal 1985; Singh and

Rachie 1985; Smartt 1986; Fatokun et al. 1993; Hartl

et al. 1997). The next most diversity was observed in

Asia population, especially in India (even more than

East Africa) which was considered to be the secondary

domestication place around the word according to the

dendrogram and former reports (Bower 2007; Maha-

lakshmi et al. 2007; Timko et al. 2007). More humidity

and short daytime may change the genetic structure of

the alien crop. Along with the spreading to the eastern

and western, the diversities were found to decline in

both areas, for human or nature selections may narrow

down the variation of imported cowpea (Xu et al.

2012). The medium diversity and similar genetic

background were revealed in Latin and North Amer-

ican, where had the shortest genetic distance with

Indian. This fact strongly recommended a direct

import or transport routes from India to American

continent. The ‘‘Cultivar’’ was distinguished with

other populations except the one from West Africa,

which had a long-term cooperation with USA in

cowpea breeding since 1940s (Behura et al. 2015;

Fang et al. 2007b). This breeding program based

import may explain the distinction and differentiation

between the Cultivars and accessions in the same

continent.

Phenotype diversity and relationship

Both Simpson and Shannon indexes revealed the

extraordinary diversity in Asia and Africa populations

using 17 traits. Especially Africa populations, not only

include bunch of breeding type resource, but also

contained semi-wild type accessions. The maturity of

Africa are wildly distributed from 23 to 214, mean-

while a lot of typical wild-type features such as

evergreen, perennial, perpetual blooming and crack

pod can be found in Africa populations(Behura et al.

2015). Their grain polymorphism is also the most

widely with richness in pattern color and had the

similar distribution in all kinds of grain type. Accord-

ing to the traditional evolution theory and past reports,

the Africa was confirmed to be the original

domestication place in this study (Kapoor-Vijay and

White 1992). The high diversity was also observed in

Asia accessions, which were closer to cultivated

cowpea generally. The most agricultural diversities

were focused in India population, which was closely

related to the population from east Africa. The slight

decline was found in east Asia population, which

contained abundant ssp. Biflora and ssp. Sesquipedlias

that are significantly distinguished with Africa type

accessions, which may be caused by the considerable

climate change (Krishna 2014). The humid weather

and short daytime may extend the maturity and pod

drying time, which made the pod have more time to

lengthen and keep fresh (Kanchikerimath and Singh

2001; Osman et al. 1998). In addition, the preference

of long and fresh pod in local diet changed the cowpea

tending to a vegetable crop in Asia. The diversities of

populations in North and Latin America were rela-

tively low, which were difficult to differentiate from

each other. Meanwhile, the American accessions are

closer to some Asian resources but properly distinct

with African populations and obviously different from

USA commercial varieties (Cultivar group). The

cultivars have very narrow agriculture diversity

including plant-habit, vine, maturity, plant-high and

seed-color for those advanced yield and harvest traits

were selected for breeding during the domestications

(Fang et al. 2007a; Santos and Boiteux 2013). The

Cultivars in our study were closer to the accessions

from South and West Africa, which implied a direct

import from Africa for USA breeding projects (Singh

et al. 1997).

Differentiation between genotype and phenotype

Assessment of differentiation and relationship

between genotype and phenotype has never failed to

fascinate geneticist. In this study, the similar genetic

diversities were found between genotype using 1028

SNPs and phenotype based on 17 agriculture traits.

The phenotypic dendrogram based on the Maha-

lanobis distance moderately matched with the geno-

typic dendrogram based on the genetic distance.

Despite of the very detailed relevance between each

population, the main processes of cowpea spreading

were clear and explicit. According to the high

consistent diversity and relation analysis, it is con-

cluded that (1) the east Africa and South Asia sub-

continents were identified to be the original and
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second domestication region of cultivated cowpea; (2)

the cowpea continued spreading to adjacent regions

from two domestication centers in both Africa and

Asia continents, respectively; (3) the cowpea was

transferred to America from South Asia sub-continent

by agriculture communication of two colonies of

Great Briton; and (4) the US breeding programs may

have imported the crucial resource from West Africa

and East Asia directly. However, the obvious conflic-

tion between phenotype and genotype were found in

Oceania and Europe, which had a close relation in

phenotype but adverse in genotype. This incompati-

bility may be caused by the leak of accessions in both

populations.

Genetic differentiation assessed by the genotypic

markers among geography populations was correlated

with the phenotypical differentiation assessed by

the agriculture traits in medium level (Mantel test,

r = 0.52, P\ 0.001) compared with other crops (Li

et al. 2010). The decreased correlation can be

explained by the sensitivity of some traits to environ-

mental influence, which results in low heritability. The

low heritability makes it hard to discriminate lines in

the population. A non-neutral evolutionary history for

some traits can also give a low correlation between

phenotypic distance and genetic distance.

Potential benefit of genotypic and phenotypic

diversity

Study of genetic diversity has practical significance

for the fluctuation of genetic diversity is the result

from the crop evolution. Research of genetic diversity

can reveal the species history and the impact of human

activities during the evolution. Those facts have

proven that human activity increased the species

evolution rate towards a single direction, especially in

the process of breeding, which is actually the process

of dramatic decline of genetic diversity. During long-

term and pursuit of high-yield cultivation, some elite

resources were used excessively, which caused a

narrower genetic background of massive cultivars in

specific regions, which is harmful to future agriculture

(Zhou et al. 2012; Bauchet et al. 2017). Cowpea

spreads all over the world, so the process of domes-

tication should arouse our attention and consideration.

At first, when cowpea was transported to Asia, its

growth period prolonged greatly due to climate

change, which was considered to be a negative

breeding trait. However, it makes the cowpea turn to

an important vegetable crop in Asia, which proved an

example to broaden genetic diversity during the

cultivation. We habitually consider the genetic diver-

sity as a finite resource, but the diversity itself is being

created. On one hand, it is the result of the adaption or

evolution to the environment, on the other hand it is a

result of modification by human. The history of

cowpea domestication is more than 3000 years (Faris

1965), while as a crop, the cowpea is used for most

purposes in agriculture, including cereal, vegetable,

fodder, crop rotation, nitrogen fixation and artifact.

According to context phenomenon, we may have this

conclusion: ‘‘human domestication will never reduce

the genetic diversity, but the single aiming will’’. In

recent years, development and use of functional crops

get more and more attention in the world. Those

accessions with specific function and specific nutrients

not only made a prominent contribution in their own

aspect, but also broaden the width of the spectrum of

breeding.
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