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Abstract NBS (nucleotide binding site) genes, one
type of the most important disease-resistance genes in
the plant kingdom, are usually found clustered in
genome. In this study, a total of 2288 full-length NBS
protein-coding sequences were isolated from the
wheat (Triticum aestivum L.) genome, and 903
TaNBSs of which were found expressed in wheat.
Meanwhile, 2203 microsatellite loci were detected
within 1061 scaffolds containing 7aNBS. The distri-
bution of these microsatellite loci across wheat
homologous groups (HG) is 20% HG2, 16% HG7,
15% HG1, 15% HG6, 12% HG4, 12% HGS and 10%
HG3. We developed 1830 NBS-related microsatellite
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(NRM) markers for the microsatellite loci on TaNBS-
scaffold sequences.Among them, 342 NRM markers
were developed for HG2 with the largest number of
microsatellite loci, and 69 out of these markers were
anchored to the wheat genetic map using mapping
population. Then, a total of 26 2AS-NRM markers,
nine 2BL-NRM markers and nine 2DL-NRM markers
were integrated into the genetic maps carrying Yr69,
Pm51 and Pm43, respectively. Finally, candidate
sequences, within the gene clusters where Yr5 and
Sr21 located, were analyzed according to the genomic
position information of TaNBS and NRM markers.
These NRM markers have clear chromosome loca-
tions and are correlated with potential disease resis-
tance sequences, which can be manipulated to
mapping or adding linkage markers of disease-resis-
tance genes or QTLs, especially for those in the NBS
gene clusters.

Keywords Wheat - Disease resistance - NBS genes -
NRM markers

Introduction

NBS (nucleotide binding site) gene family is one of the
largest and most important disease resistance gene
families in plant. The NBS domain, encoded by NBS
genes, contains several conserved motifs such as
Kinasel, Kinase2, Kinase3 and HD residues (Meyers
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et al. 2003), which can directly or indirectly mediate
the pathogen recognition via binding ATP or GTP and
therefore participate in signal transduction (Elmore
etal. 2011; Krattinger and Keller 2016). To date, more
than 140 disease resistance (R) genes were cloned and
80% of them are NBS genes (Shao et al. 2016). With
the publications of more and more draft genome
sequence of different plants, NBS gene families of 19
dicots and 11 monocots have been isolated from
respective genome (Urbach and Ausubel 2017; Morata
and Puigdoménech 2017). In dicots, some NBS
domains are usually linked to N-terminal TOLL/
interleukin 1 receptor (TIR) or C-terminal leucine-rich
repeat (LRR) that associated with pathogen recogni-
tion; while not the TIR but a coiled-coil domain (CC),
which associated with protein—protein interactions, is
present in the NBS domain of monocots (Lee and
Yeom 2015; Urbach and Ausubel 2017).

Bread wheat (Triticum aestivum L.) is the most
widely cultivated food crop, which faces attacks from
various pathogens during its growth. Of which, fungal
diseases like powdery mildew and rust (stripe rust, leaf
rust and stem rust) can cause severe damage to wheat
production (Goutam et al. 2015). Extensively identi-
fying and utilizing R genes for disease resistance
breeding is the most cost-effective way to control
wheat disease (Chen and Line 1995). So far, a total of
58 powdery mildew R genes (Wiersma et al. 2017), 76
stripe rust R genes (Xiang et al. 2016), 76 leaf rust R
genes (Bansal et al. 2017) and 59 stem rust R genes
(Rahmatov et al. 2016) were formally designated.
However, only 24 out of them have been cloned, and
20 (83%) were NBS genes, namely: Pm2a (Sanchez-
Martin et al. 2016), Pm3a-g (Yahiaoui et al. 2004;
Tommasini et al. 2006), Pm8 (Hurni et al. 2014),
Pm21 (Xing et al. 2017; He et al. 2017), Yr10 (Liu
etal. 2014), Lr1 (Cloutier et al. 2007), Lr10 (Sela et al.
2012), Lr21 (Huang et al. 2003), Lr22 (Thind et al.
2017), Sr22 (Steuernagel et al. 2016), Sr33 (Periyan-
nan et al. 2013), Sr35 (Saintenac et al. 2013), Sr45
(Steuernagel et al. 2016) and Sr50 (Mago et al. 2015).
Moreover, Yr5 (Smith et al. 2007) and S721 (Chen
et al. 2015) were mapped to the NBS gene clusters, and
the expressed sequence tag (EST) of Yr5 was also
reported to encode partial NBS domain (Smith et al.
2007). Except for this, a large number of resistances
genes and QTLs, formally designated or not, were
only preliminarily mapped. Most of the linked
molecular markers are often unable to be effectively
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used for molecular breeding because of their distant
locations from the target genes or QTLs. Therefore,
isolation of wheat NBS family with clear position
information and molecular markers is valuable for
both fine mapping the target genes or QTLs mentioned
above and the candidate sequences screening.

Using the 454 sequencing data of the common
wheat cultivar Chinese Spring (Rachel et al. 2012),
580 and 986 complete NBS sequences were isolated
respectively and their types and structures were
analyzed (Bouktila et al. 2014, 2015; Gu et al.
2015); however, genomic positions of these sequences
are unknown. In this study, the wheat genome
sequence based on sequencing isolated chromosome
arms (International Wheat Genome Sequencing Con-
sortium 2014) was employed to isolate wheat NBS
sequences with genomic location information. In
addition, a set of NBS-related microsatellite (NRM)
markers were developed according to the microsatel-
lite loci adjacent to the NBS sequences; meanwhile,
NRM markers in wheat homologous group (HG) 2,
which harbors the most microsatellite loci, were used
to construct the genetic map via mapping population
and were analyzed their linkage with R genes. These
TaNBS sequences and corresponding molecular mark-
ers can be further used for R genes or QTLs mapping.

Materials and methods
Plant materials

A RILs population of 194 lines derived from a cross
between wheat CH7034 and SY95-71 were recruited
to construct NRM marker map; An F, population of
136 plants from CH5025 (carrying Pm43, He et al.
2009)/Taichang (TC) 29 and 92 F, 3 lines derived from
CH7086 (carrying Pm51 and Yr69, Zhan et al. 2014;
Hou et al. 2016)/TC 29 were used to test for marker-R
gene association. DNA samples of the above mapping
population and their parents as well as phenotype data
(He et al. 2009; Zhan et al. 2014; Hou et al. 2016) were
provided by Shanxi Key Laboratory of Crop Genetics
and Molecular Improvement.
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NBS sequences isolation and bioinformatics
analysis

The wheat whole genome sequences and predicted
protein sequences were downloaded from the URGI
database (http://wheat-urgi.versailles.inra.fr/). The
wheat predicted protein data were retrieved in
HMMER 3.0 software (Mistry et al. 2013) using the
NBS family Hidden Markov Model file (accession
number PF00931, downloaded from http://pfam.xfam.
org/); the search results were then examined for the
conserved domains of NBS proteins via SMART
(http://smart.embl-hei-delberg.de). The obtained NBS
sequences were submitted to the CDD database in
NCBI (http://www.ncbi.nlm.nih.gov/Structure/cdd) to
further analyze characteristic domains such as CC,
LRR that correlated with NBS. The corresponding
coding sequences and scaffold sequences were
extracted from the wheat genome data according to the
protein accession number; and their position infor-
mation was determined by retrieving the wheat gen-
ome; then, TaNBSs were assigned to corresponding
chromosomes. Gene structures of 7aNBS were deter-
mined by the GSDS2.0 (http://gsds.cbi.pku.edu.cn/).
Expression profiles of TaNBSs were obtained from
retrieving wheat transcriptome sequencing data (ac-
cession number PRINA243835, downloaded from
http://www.ncbi.nlm.nih.gov/sra/).

NRM markers development and PCR validation

SSRhurnter software (Li and Wan 2005) was used to
search for the microsatellite loci within scaffolds
where TaNBSs situated. The searching criteria were
set as follows: the nucleotides per repeat unit were two
to five, and the repeat times > 5. Primers were
designed using the Primer5 software (http://www.
premierbiosoft.com/primerdesign/) for NRM loci.

To compare with the wheat molecular map con-
structed by wPt-DArT and SSR markers (Marone et al.
2013), 34 GBS-DArT markers, which located in the
same loci (genomic distance < 10 kb) with the wPt-
DArT markers in the HG2 of wheat, as well as 346
pairs of SSR markers were also recruited for NRM-
map construction. PCR used for screening and map-
ping NRM and other SSR markers was performed in
15 pL reaction mixture containing 1 U Taq DNA
polymerase (Takara Bio Inc. Dalian, China), 1.5 uL.
10 x buffer, 0.2 mmol L™' dNTPs, 0.25 pmol L™

primers and 100 ng of genomic DNA. PCR products
were separated in 8% non-polyacrylamide denaturing
gel and visualized by silver staining. The GBS-DArT
marker typing was performed by Diversity Arrays
Technology (DArT) PL, Canberra, Australia. The
linkage map was constructed using JoinMap 4.0
software (https://www.kyazma.nl/index.php/
JoinMap/), and the parameters were set as follows:
Node-population, Grouping-independence LOD and
Mapping function-Kosambi’s.

Results and analysis

Distribution, types and expression of wheat NBS
family

Conserved domain check was conducted on sequences
isolated from the wheat database, and a total of 2288
complete protein sequences containing NBS domain
were obtained. The distribution of these sequences in
genome A, B and D is 34.1, 37.7 and 28.2%,
respectively; among them, chromosome 4A contained
the highest number of protein sequences, up to 227;
while 4D contained the lowest, only 24 protein
sequences (Fig. 1a). The length of TaNBS varies
considerably, from the shortest sequence Tala-
sLoc007418.1, only 48aa to the longest Tadal-
Loc027793.2 for 1816aa (Table S1). Based on
whether the CC and LRR domains are included,
TaNBS sequences were classified into 4 types: CC-
NBS-LRR (CNL), NBS-LRR (NL), CC-NBS (CN)
and NBS (N); and the N-type was the largest, which
comprises 1144 sequences, accounting for 50%
(Fig. 1a). The gene length of TaNBSs range from
251 bp to 7762 bp and the introns contained varies
from one to 13; a total of 903 (56.3%) TaNBSs
expressed in wheat (Table S1); out of the 632 TaNBSs
with genetic position information, 477 (75.5%) were
clustered (Table S1).

TaNBS-related microsatellite loci analysis
and marker development

In total, 2203 microsatellite loci were detected on
1061 scaffold sequences containing TaNBS, of which
1621 were dinucleotide repeats loci, accounting for
73.6%, while the five nucleotide repeats loci was the
least, only six (Fig. 1b). The distribution of these
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Fig. 1 Classification and chromosome distribution of TaNBS protein sequences (a) and NBS-related microsatellite loci (b, ¢) in wheat

microsatellite loci across the wheat HGs of is HG2
(20%), HG7 (16%), HG1 (15%), HG6 (15%), HG4
(12%), HG5 (12%) and HG3 (10%) (Fig. 1c). We
totally developed 1830 pairs of NRM markers from
TaNBS-scaffold sequences with microsatellite loci
(Tables 1, S2). Among them, 342 pairs of NRM
markers were developed on HG2 that contained the
most microsatellite loci, including 49 2AS-NRM
markers, 51 2AL-NRM markers, 71 2BS-NRM mark-
ers, 94 2BL-NRM markers, 34 2DS-NRM markers
and 43 2DL-NRM markers (Table 1).

NRM markers map construction of the HG2
in wheat

The RILs population of CH7034/SY95-71 was ampli-

fied with 342 NRM markers of HG2, and 115 NRM
markers showed polymorphism between the parents.
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Finally, 69 NRM markers, 20 SSR markers and 16
DArT markers were mapped to the genetic map
(Fig. 2). The results showed that 31 NRM markers
were assigned to chromosome 2A, 25 of them were on
the short arm and mainly clustered in two regions;
eight NRM markers were identified in the region of
DArT marker 1088906-1138983, and this region may
contain disease resistance genes, such as Yr69 (Hou
etal. 2016) and Yr17/Lr37/5r38 (Helguera et al. 2003).
In addition, 22 NRM markers were assigned to
chromosome 2B, and three 2BL-NRM markers were
detected in the region of SSR markers Xgwm501I-
Xwmc332, which may contain Pm5] (Zhan et al.
2014), Yr5 (Smith et al. 2007; McGrann et al. 2014),
Lr48 (Singh et al. 2011), Sr9a (Tsilo et al. 2007), Sr28
(Rouse et al. 2012) and QYraq.cau-2BL (Guo et al.
2008). Sixteen NRM markers were assigned to
chromosome 2D, and four 2DL-NRM markers were
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Table 1 continued

Primers-R

Primers-F

Related-NBS Scaffold  Location SSR loci

NRM

CATGCTTGACTGCTTGAGTT

GGAAAGTGTTGATGCCTGAT
GTGCGTCCTCTTCTCCTCT

2D:580248099_580241389 TGl1

9900253
9900253
9900253
9900253
9910373
9908568
9888942
9865621

2DL-NRM14  Ta2dlLoc024520.1
2DL-NRM16  Ta2dlLoc024520.1

2DL-NRM17

2D:580248099_580241389

GATGAAGTGAGAGCACGGAT
GAGAACAGTACACTGAACCAT
CAAAGAAGAGCAAGTACCTGT
GCTAGGAATCACCGAGGTAT
CTGACTTCCAGACCCATGAT

TCT11
GT5
TGS
GT5

2D:580248099_580241389

CGAGTGCTGTTCGCTTGGT

Ta2dlLoc024520.1

2D:580248099_580241389

CTGATCTGATCTGATGTGTGT
GCCTCGATTCTGGTTCACAT
GTTCCTGAGTACGAGATGCT

Ta2dlLoc024520.1

2DL-NRM18

2D:625145480_625153357

Ta2d1Loc005806.1

2DL-NRM23

2D:635879946_635872478

CTCS
AG7

Ta2dlLoc027460.1

2DL-NRM28

2D:636910770_636914879

GTTCGGACAGAAGTTTGATCT
GAGGAACATCTTCTATGGACT

GACGAAGCATGATGTCTTAGT
CTCACATGACTAGCAAGCATT

Ta2dlLoc022402.1

2DL-NRM?29

2D:644665988_644657917

TG6 TGS

Ta2dlLoc017939.1

2DL-NRM33

Ta2dlLoc017940.1
2DL-NRM34  Ta2dlLoc011906.1

2DL-NRM42

GAAACAAGCCCAAACTGGATTT GAATGAGAAGAGCAAACTGCAT

GAGAAAGCCTGTTGATGGAGT

TGS GC6
TC5 TCC7

2D:646495012_646491356

9833583
9823729

2D:648551574_648554977

GATGCTCGTGACCTAGCATCT

Ta2dlLoc010152.1

in the region of DArT marker 1714628-1086188.
There might be Sr6 (Tsilo et al. 2010) and QPm.caas-
2DL (Lan et al. 2010) in this region.

Construction of more densely populated map
with NRM markers

NRM markers were employed to enhance the map-
density of three disease resistance genes Y769 (2AS,
Hou et al. 2016), Pm51 (2BL, Zhan et al. 2014) and
Pm43 (2DL, He et al. 2009) in HG2, respectively. The
results showed that 26, nine and nine NRM markers
were integrated into the genetic maps where Yr69,
Pm51 and Pm43 sited, respectively. Among them,
eight NRM markers were integrated into the original
X2AS833-1.9 cM-Yr69-3.1 cM-Xmag3807 region of
Yr69, which narrowed the region to X2AS-NRM34-
0.4 cM-Yr69-1.3 cM-X2AS-NRM31, inferring that
Yr69 may locate in the NBS gene cluster (Fig. 3a). In
addition, a marker X2DL-NRMO0S5 (Fig. 3c), which is
closer to Pm43, was obtained.

Identification of candidate sequences within gene
clusters by TaNBS and NRM markers

Yr5 (Smith et al. 2007) and Sr21 (Chen et al. 2015) are
two disease resistance genes that have been confirmed
to be located in the NBS gene cluster. The EST
(Genbank number JN631792) of Yr5 encoded partial
NBS structure, and its co-segregation marker
TaAffx.65234.1.51_at as well as its flanking linkage
marker S23M41-310 were also NBS sequences, in
which S23M41-310 is orthologous to the rice NBS
gene OsXal (Smith et al. 2007; McGrann et al. 2014).
In this study, Yr5 was assigned to a gene cluster,
consisting of 11 TaNBSs and 11 NRM markers, in the
region 693,372,707-732,340,422 of chromosome 2B.
The TaNBS sequence Ta2blLoc006115.1 includes the
whole Yr5-EST (100% sequence similarity) and can
express in wheat (Table S1); its co-segregation marker
TaAffx.65234.1.51_at and flanking marker S23M41-
310 correspond to Ta2blLoc008215.1 and Ta2bl-
Loc034091.1 in the gene cluster, respectively (Fig. 4).

In addition, we assigned seven linkage markers of
Sr21 to chromosome 2A with the closest flanking
markers corresponded to a 1.28 Mb region
709,765,601-711,049,068, which contained four
TaNBS sequences and two NRM markers (Fig. 5).
Multiple sequence alignment results showed that the
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Fig. 2 Genetic map of NRM markers in homologous group 2 of
wheat constructed by CH7034/SY95-71 RILs population. The
NRM markers are labelled in blue, the SSR or DArT markers

TaNBS protein sequences Ta2blLoc019062.3, Ta2bl-
Loc029872.3 and Ta2blLoc029875.1 exhibited highly
similar motifs to those within the NBS domain of
cloned disease resistance genes (Fig. S1), such as
P-loop (GGxGKTT) for ATP/GTP binding, Kinase2
(LLVLDDxW), Kinase3 (GxxxLxTxR) and HD
residues. Moreover, Ta2blLoc019062.3 expressed in

@ Springer

appearing in both linkage maps are labelled by pink, and the
genes for the next enhancing map-density are labelled with red.
(Color figure online)

wheat (Table S1), which means it may participate in
the process against pathogens, this requires subse-
quent validation in the mapping population using its
marker2AL-NRMO5.
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Fig. 2 continued

Discussion

Size of the wheat NBS family

NBS, the largest disease resistance gene family, has
been surveyed in various plants, such as bryophytes,
lycopodiums, gymnosperms and angiosperms (Elmore
et al. 2011; Krattinger and Keller 2016; Shao et al.

2016; Urbach and Ausubel 2017; Lee and Yeom
2015). The fungal bloom during the Cretaceous-
Paleogene boundary (~ 66 MYA) may trigger the
intensive expansion of NBS genes in plants (Shao et al.
2016), which suggests the important role of NBS genes
in the fight against fungal disease during evolution. In
cotton, the NBS expansion in Gossypium raimondii
enhanced its resistance to Verticillillm dahliae, while
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Fig. 2 continued

G. arboreum without NBS expansion was easily
susceptible (Li et al. 2014). After undergoing three
independent whole-genome duplications (WGD),
however, only 117 NBS genes were included in
banana genome, which may explain its susceptibility
to pathogen attacks (D’Hont et al. 2012). Therefore,
isolation and analysis of plant NBS gene families can
help us better elucidate the underlying disease resis-
tance mechanisms.

In this study, 2288 complete 7aNBS sequences
were isolated from the hexaploid wheat genome,
which is significantly higher than that of other
gramineous crops evolved from the same grass
ancestor (50-70 MYA) (Salse et al. 2008), such as
535 of rice (Zhou et al. 2004), 420 of barley, 316 of
Brachypodium distachyon (Gu et al. 2015), 274 of
sorghum (Cheng et al. 2010) and 109 of maize (Cheng
etal. 2012). We also isolated 463 (Liu et al. 2017) and
701 complete NBS sequences (the results were not
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listed) from Triticum urartu and Aegilops tauschii,
respectively. It was hypothesized that the NBS families
of three wild ancestral species of wheat were inte-
grated into the genome of the hexaploid wheat after
two polyploidization events (0.8 and 0.4 MYA,
IWGSC 2014); then with the propagation of wheat,
the TaNBS family expanded again to adapt to the
infection of various pathogens in different planting
areas, which eventually led to this gene family with
large number of members. The majority of these
TaNBS members (about 70%) are clustered in genome,
which is also true for NBS family members in plant
species like Arabidopsis thaliana (71.1%, Meyers
et al. 2003), rice (76%, Zhou et al. 2004) and potato
(73%, Jupe et al. 2012). The presence of the TaNBS
gene clusters as well as the loss of some subgenomic
copies in the evolutionary process (Comai 2005; Otto
2007) resulted in an uneven distribution of NBSs
across chromosomes in HGs; For example, there were
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Fig. 3 Construction of more densely populated maps of Y69 (a), Pm51 (b) and Pm43 (c). The disease resistance genes and their linked
NRM markers were labelled in red and blue, respectively. (Color figure online)

248 TaNBS genes on chromosome 4A, while only 40
and 24 were on chromosome 4B and 4D, respectively.
This may explain that the cloned disease resistance
genes are often one copy rather than ‘triplet gene’
(Pfeifer et al. 2014).

TaNBSs provide reference for homology-based
and map-based cloning

To date, some disease resistance-related NBS genes
were cloned from wheat using a homology-based
cloning strategy. In the case of resistance to powdery
mildew, there are genes such as TmMlal (Jordan et al.
2011), homologous to barley HvMlal (78% sequence
similarity), from diploid wheat; TdRGA-7Ba (Gong
et al. 2013), a Pm3b homologue (sequence

similarity > 90%), from durum wheat; and 7aRGA
from common wheat (Wang et al. 2016), which is
homologous to multiple plant disease resistance genes.
Many TaNBS isolated in this study exhibited high
sequences similarity with those cloned disease resis-
tance genes. For example, both TalbsLo-
c017427.1and TalbsLoc003202.1 shared over 70%
identity with barley powdery resistance genes HvMlal
(Zhou et al. 2001), HvMla6 (Halterman et al. 2001)
and HvMlal3 (Halterman et al. 2003) at the protein
level. These TaNBSs can provide candidate gene
sequences for cloning wheat disease-resistance genes
using homology-based method. Normally, genes with
similar domains may possess similar functions. The 19
cloned wheat NBS-encoding protiens are all CNL-
type, and the number of TaNBS proteins with CNL
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Fig. 4 Identification and analysis of NBS cluster of Yr5. Yr5 and the NRM markers in this cluster were labelled in red and blue,

respectively. (Color figure online)

isolated from this study is 240 (Fig. 1). In addition,
some TaNBSs contain other distinct domains, such as
Ta2bsLoc003709 and Ta2bsLoc014737, in HG2,
contian ABC (ATP-binding cassette) transport protein
domain; Ta2allLoc020734 and Ta2dlLoc021209 con-
tain Jacalin domain; while Ta2alLoc012596 and
Ta2blLoc002392 contain zinc finger domian; these
domains have been proved to play an important role in
disease resistance process (Krattinger et al. 2009; Ma
et al. 2013; Guo et al. 2013). ABC is also the function
domains of Lr34 (Krattinger et al. 2009). Studies have
shown that these domains may interact with the NBS
domain and against pathogen invasion together (Des-
landes et al. 2002). Hence, it is necessary to further
explore these TaNBSs in depth.

Furthermore, 7TaNBSs can provide reference
sequences for map-based cloning of disease-resistance
genes that in the NBS gene cluster. It has been reported
in previous studies that if the comparative genome
analysis showed the region of a mapped wheat
resistance gene corresponded to the NBS gene cluster
of rice, B. distachyon or other model plants, then often
this gene is in the wheat NBS gene cluster and is a

@ Springer

TaNBS gene, like both Sr35 (Saintenac et al. 2013) and
Sr50 (Mago et al. 2015) are TaNBS genes in the NBS
gene cluster. In this study, we analyzed the genomic
location of NBS gene cluster where Yr5 sited and
identified a TaNBS sequence Ta2blLoc006115.1 con-
taining Yr5-EST, which indicated the accuracy of the
genomic location of 7aNBS family. Then, Sr21, which
is also in the NBS gene cluster, was analyzed and
anchored its linkage marker to genomic map. Finally,
four candidate TaNBS sequences were found in the
target region.

NRM markers in gene mapping and molecular
breeding

Extensively identification and cloning disease resis-
tance genes are the foundations for wheat disease
resistance breeding. So far, among nearly 300 pow-
dery mildew and rust resistance genes were formally
designated in wheat, only few of them can be used for
wheat improvement and most of them are facing the
risk of resistance loss due to pathogens variation
before being used for breeding. This situation could be
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Fig. 5 Identification and
analysis of NBS cluster of
Sr21. Sr21 and the NRM
markers in this cluster were
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attributed to that the linkage marker of the R gene
cannot be efficiently used for marker-assisted selec-
tion (MAS). Since the common wheat contains three
sub-genomes and highly repetitive sequences (80%,
IWGSC et al. 2014), most of the SSR markers,
routinely used for R gene mapping, have a low
distribution density across the wheat genome, which
resulted in their often faraway locations from the gene
of interest. Besides, it is not easy to develop markers in
the linkage region due to the unclear genome location
of these SSR markers. Thus, gene recombination may
occur between linked markers and target genes and
result in the marker missing, which leads to breeding
failure.

With the rapid development of sequencing tech-
nology, markers with high density and precision like
SNP, DArT have been developed, which greatly
improved mapping accuracy and narrowed the dis-
tance between mark and gene. Meta analysis showed a
number of DArT markers that in the same loci as the R
genes or QTLs are NBS sequences, such as PmHNK54/
wPt-5865, QPm.inra.2A/wPt-6064, Pm23/wPt-7024
and Pm42/wPt-2600 in wheat HG2 (Marone et al.
2013). This could be explained by the fact that many R

= scaffold4505972
— scaffold3475142

Ta2alloc019062.3*
Ta2all oc028872.3
Ta2alloc028875.1

- Ta2allLoc012596.1

=1 scaffold6346243

- =1 scaffold6427003

genes are located in the NBS gene cluster, thus their
linked DArT markers may also NBS-related
sequences. However, relatively high chip scanning
costs makes it unsuitable for large population screen-
ing in breeding process for now. Aiming at improving
the effectiveness of routinely used molecular markers,
we developed 1830 NRM markers, each of which lay
in the same scaffold sequence with TaNBS. Of all the
NRM markers is 7DL_NRM59 the farthest from
TaNBS sequence Ta7dlLoc025447 with the longest
genetic distance of 38589 bp, which is approximately
equal to 0.007 cM based on the ratio of physical and
genetic distance on chromosome 7DL (5.41 Mbp/cM;
IWGSC, 2014). The remaining genetic distances
between NRM markers and TaNBSs are below the
value. Since most NRM markers were clustered in
some regions with the NBS genes, the polymorphism
of NRM markers is low in the genome regions that do
not contain disease resistance loci. If R gene and
multiple NRM markers are anchored to the same loci,
this gene may locate in a NBS gene cluster; such as
Yr69 in this study. Moreover, when a TaNBS is
confirmed to be associated with disease resistance, the
NRM marker(s) on its scaffold can be directly used as
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a co-segregation marker, which will improve the MAS
efficiency in breeding process.
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