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Abstract Bermudagrass is a warm season grass

widely cultivated for turf and fodder. Nonetheless, the

grass has poor forage quality because animals that

consume it fail to assimilate its organic matter

efficiently. Thus, identification of the marker-trait

association between simple sequence repeat (SSR)

markers and forage-quality-related traits in diverse

bermudagrass accessions would enable efficient selec-

tion of high forage quality bermudagrass cultivars.

Association mapping of 8 forage-related-quality traits

with 1474 markers was conducted in 60 diverse

bermudagrass accessions from five geographical

regions in China. Significant variations in eight pheno-

typic and physiological traits were observed among the

60 accessions. A total of 1474 alleles were amplified by

104 SSR primers. The average gene diversity and

polymorphic information content for the study sample

were 0.2097 and 0.1748 respectively. The clustering

analysis suggested that geographic origin influenced

genetic distances between accessions. A total of 76

markers significantly associated with traits at P\ 0.01;

73 with a single trait and 3 with two traits each.

Nevertheless, only 41 significant marker-trait associa-

tions (MTAs) were observed after Bonferroni test was

separately conducted for each trait. Forty-one

microsatellites had significant associations with 8

forage-quality-related traits. These markers provide a

feasible means of genetically improving forage quality

in bermudagrass after further authentication.
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AFLPs Amplified fragment length polymorphisms

B Biomass

CA Crude ash

CF Crude fat

CP Crude protein

CTAB Cetyl-trimethyl-ammonium-bromide

CV Coefficient of variation

CWCs Cell-wall-associated components

Electronic supplementary material The online version of
this article (doi:10.1007/s10681-017-2024-z) contains supple-
mentary material, which is available to authorized users.

M. M. Gitau � J. Fan � Y. Xie (&) � J. Fu (&)

Key Laboratory of Plant Germplasm Enhancement and

Specialty Agriculture, Wuhan Botanical Garden, Chinese

Academy of Science, Wuhan 430074, China

e-mail: xieyan60b@126.com

M. M. Gitau

Graduate School, University of Chinese Academy of

Sciences, Beijing 10049, China

J. Fu

School of Resources and Environmental Engineering,

Ludong University, Yantai, China

e-mail: jfu@wbgcas.cn

123

Euphytica (2017) 213:234

DOI 10.1007/s10681-017-2024-z

http://dx.doi.org/10.1007/s10681-017-2024-z
http://crossmark.crossref.org/dialog/?doi=10.1007/s10681-017-2024-z&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s10681-017-2024-z&amp;domain=pdf


DM Dry matter

EST Expressed sequence tags

FDR False discovery rate

GLM General liner model

H Height

LD Linkage disequilibrium

MAF Major allele frequency

MC Moisture content

MTAs Marker-trait associations

MLM Mixed linear model

NDF Neutral detergent fiber

PIC Polymorphic information content

QTLs Qualitative trait loci

SSR Simple sequence repeats

TDN Total digestible nutrients

Introduction

Bermudagrass [Cynodon dactylon (L.), Pers] is a

warm-season grass of the Poaceae family and Chlo-

ridinae subfamily of grasses (Casler and Duncan

2003). The Cynodon variety comprises of nine species

and ten varieties which have been substantiated as

important forage species; bermudagrass has been

listed among the varieties which can be exclusively

cultivated for forage (Wu and Taliaferro 2005).

In 1995, some scientists speculated that changes in

the global environment would alter the quality and

quantity of forage as well as grain mass production

(Sinclair and Seligman 1995). Bermudagrass was

initially mostly grown for pasture and hay in the

tropical and subtropical areas. However, the recent

global warming phenomenon has broadened the

tropical belt, and some formerly temperate regions

have become conducive for the growth of bermuda-

grass hence increasing the quantity of the grass grown

in these areas. Obviously, there is a growing need to

develop bermudagrass varieties with high forage

quality required for animal husbandry and beef

production. Bermudagrass is easily established via

springs and shoots to produce astronomical biomass

(Heldman 2003). Nonetheless, the grass has poor

digestibility and hence low forage quality; animals

feeding on bermudagrass are unable to efficiently

digest and assimilate the organic matter of the grass

due to the complex composition of its cell walls.

Forage quality refers to the animals’ effective and

efficient conversion of feed into animal products

(Fulgueira et al. 2007). Thus, animal performance, in

production of produce such as milk, beef, and mutton,

is a reflection of forage quality (Newman et al. 2009).

Digestibility and nitrogen content of grass are

principle determinants of forage quality. The primary

determinants of digestibility are the structural and cell-

wall-associated components (CWCs) (Comont et al.

Comont et al. 2013). Several studies of genetic diversity

and genetic control of CWCs have been performed in

principal crops such as ryegrass, rice, barley, and maize

(Chen et al. 2012). The composition of cellular

structures includes fats, proteins, fiber, minerals, and

moisture. Thus, the main parameters to test during

forage quality analysis are crude ash (CA), lignin, ADF,

neutral detergent fiber (NDF), crude protein (CP),

ammoniacal nitrogen, pH and dry matter (DM). The

fiber content in forage comprises ofADF, NDF and acid

detergent lignin (ADL). Both ADF and NDF contain

cellulose and lignin, but only NDF has hemicellulose.

ADF and NDF are critical indicators of forage quality

because a negative correlation between the two and

digestibility by livestock animals has been established

(Xie et al. 2011). A direct proportion between lignin

content and forage quality has also been documented. In

fact, lipid deposition (lignin polymers) on the cell walls

renders all warm-season grasses poor quality forage

producers (Giordano et al. 2014). Unfortunately, less

lignin in cells would weaken the plants and reduce the

biomass while high lignin content would contribute to

reduced digestibility. In maize (Zea mays), enzymes

that control deposition of lignin in cell walls have been

found to significantly influence digestibility and yield

traits(Chen et al. 2010). Thus, one of the ways to

enhance forage quality in bermudagrass would be the

reduction of lignin content without compromising on its

biomass (Wu and Taliaferro 2005). If researchers

identify accessions with high forage-quality-related

traits through marker-trait associations (MTAs), this

improvement is possible.

Marker-trait association analysis has been done for

agronomic traits in other plant species. They include

tall fescue, rice, peanut, cotton and maize (Abdu-

rakhmonov et al. 2008; Chen et al. 2010; Jiang et al.

2014; Lou et al. 2015; Zhang et al. 2014). A wide

range of molecular markers has been utilized in

association mapping studies. Although expressed

sequence tags (EST-SSRs) are more transferable

across species than genomic SSR markers and are

critical for plant improvement (Mian et al. 2005), we
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used the latter because they were readily available.

Genetic diversity of bermudagrass has been studied

using SSR markers concerning cadmium tolerance

(Xie et al. 2015) and seed yield (Wu et al. 2006). The

objectives of our study were to: analyze the genetic

diversity and genetic relationship of 60 bermudagrass

accessions native to China; assess their phenotypic

and physiological traits linked to forage quality and;

identify marker-trait association in the 60 accessions.

Materials and methods

Plant materials

The 60 Bermuda grass accessions were collected from

the turfgrass germplasm field at Wuhan Botanical

Garden between September and October 2015. The

different accessions had been initially collected from

various geographic regions in China and planted in

two different fields at Wuhan Botanical Garden turf

grass using a randomly complete block design

(Table S1; Fig. 1). Each of the accession was mowed

with a manual rotary mower. All the mowed grass for

each accession was weighed. The area that each grass

type occupied was measured using a tape measure.

The weight of total grass and the area would be

utilized for calculation of biomass. About 20 grams of

the mowed grass of each accession was collected in a

paper envelope and transferred to the laboratory. The

fresh weight (FW) of the each grass was recorded. The

samples were then dried in the oven at 108 �C for

30 min and then at 70 �C until they achieved a

constant weight which was registered as the dry

weight (DW). The dry samples were pulverized with

an electric pulveriser, between the months of Decem-

ber and January 2016, into a fine powder used for

analysis of the forage-related contents.

Phenotyping

The following phenotypic and physiological traits for

every accession were measured: height (H), biomass

(B), moisture content (MC), crude ash (CA), crude

protein (CP), crude fat (CF), ADF and NDF.

For each genotype, six plants were randomly

selected for height measurement with a ruler (cm).

About 20 g of freshly mowed grass of each genotype

was collected in a paper envelope, transported in the

laboratory and dried in the oven. Moisture content was

measured according to the following formula; Mois-

ture content (MC) = [(FW - DW)/FW] 9 100%.

Biomass (B) was calculated as total weight of grass

divided by the area covered by the grass (tons/Ha). CP,

CF, CA, ADF and NDF were analyzed according to

the methods used in previous studies (Gul and Safdar

2009). All the phenotypes were analyzed for variation

and significant correlation with each other using a two-

tailed Pearson correlation test (n = 8, P\ 0.05 and

P\ 0.01) conducted with IBM SPSS Statistics 24.0

(IBM. Corp 2014). A tow-tailed test was chosen

because we could not predict the interaction between

the traits and the data showed a normal distribution.

The results from the two fields had no significant

difference. Nonetheless, we calculated the average for

each phenotype for use in data analysis.

Fig. 1 Distribution of the 7 cluster groups according to

geographical regions. The map shows the five traditional

regions of China. The map template was obtained from the

dmaps.com website (http://www.d-maps.com/carte.php?num_

car=17504andlang=en) and modified with Paint Windows 8.1

application. Arrows indicate the direction to and from main

regions; on top of the map, arrows show direction along

Northern China (North-west to North and North-east to North)

while at the bottom part of the map, arrows show direction from

Central China to Eastern China and Southern China (South-west

China and South China). The five main geographical regions are

North-west China, Central China, South-west China, South

China and East China. The coloured triangles show each of the 7

groups identified by cluster analysis. Distribution of the

coloured triangles shows the geographical origin of the mem-

bers of each group
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Genotyping

Total genomic DNA isolation for each accession was

done with cetyl -trimethyl-ammonium-bromide

method (CTAB) similar to that used in previous

studies (Saghai Maroof et al. 1994; Xie et al. 2015).

Resolution of the DNA’s concentration and quality

was conducted with an ultraviolet (UV) spectropho-

tometer on 0.8% agarose gel (Xie et al. 2014).

Polymerase chain reaction (PCR) was performed in a

total volume of 10 lL containing 2 lL of 15 ng lL
DNA template, 1 lL of 1 pmol lL-1 forward primer,

1 lL of pmol lL-1 reverse primer, 0.2 lL of

10 mMdNTPs (Pharmacia, America), 0.6 lMMgCl2,

1 U lL 19 Taq DNA polymerase and 3.95 lL H2O.

The following procedure was used to carry out the

PCR in a Mastercycler gradient PCR machine (East-

win, China): 5 min at 94 �C, then 14 cycles of 20 s at

94 �C, 1 min at 58 �C, 30 s at 72 �C and a final

extension step at 72 �C (Xie et al. 2015). The SSR

markers (104 in total, from Department of Plant and

Soil Sciences, Oklahoma State University obtained

with Dr. Wu’s authorization) were screened in all the

60 Bermuda grass genotypes. These fluorescent dyes:

HEX (green), TAM (yellow) and FAM (Blue), were

used to label the 50 end of the forward primers.

Separation of the amplified fragments was achieved

with an ABI 3730 DNA Sequencer (Applied Biosys-

tem, Inc., Foster City, CA, USA). The GeneMarker 1.5

Software was used to label the alleles which were then

checked twice manually to ensure accuracy. For each

of the microsatellite, the presence or absence of a band

was recorded as (1) and (0) respectively into a binary

data matrix (Saha et al. 2005; Sun et al. 2015).

Population structure, kinship and genetic diversity

The Structure 2.3.4 software program was used to

carry out a Bayesian model-based clustering analysis

to infer a population structure to the 60 accessions

(Pritchard et al. 2000). Ten independent simulations

were conducted for K = 1 to K = 10 where K

represents the number of assumed populations. For

each simulation, 10,000 iterations were set as the burn-

in time and 100,000 iterations of Markov ChainMonte

Carlo (MCMC) were conducted with admixture and

correlated frequency models, the best configuration

for muted population structure (Falush et al. 2003).

The method eliminated admixture of correlated allele

frequencies and hence, the allocation of individual

genotype to K subpopulations allowed for linkage

equilibrium and validity of the Hardy–Weinberg

equation within the population. The structure results

were obtained via the structure harvester to determine

the best K value, and a bar plot of the individuals with

different colors indicating the posterior probability of

their assignment to specific clusters was obtained (Earl

and vonHoldt 2012). The most appropriate K value

was determined by the posterior probability denoted as

Ln P (D) and the delta K (Evanno et al. 2005; Pritchard

et al. 2000; Porras-Hurtado et al. 2013). Moreover, the

real value of K corresponds to the maximal value of

L(K) generated by structure(Ciofi et al. 2002; Evanno

et al. 2005; Vernesi et al. 2003; Zeisset and Beebee

2001).

A spatial pattern analysis of genetic diversity

(SPAGeDi) program was used in the calculation of

relative kinship among the 60 bermudagrass acces-

sions. The software is tailor-made to use population

genotypic data or mapped individuals’ spatial genetic

structure (Hardy and Vekemans 2002). A pairwise

kinship matrix was then made using the Loissele

coefficient (Loiselle et al. 1995) and all the negative

values between individuals were set to zero (Yu and

Buckler 2006) because these individuals are more

distant than random individuals (Yu et al. 2006).

The 60 bermudagrass accession were classified

according to their geographical area of origin. These

regions were East China, South China, South-west

China, North-west China and Central China. The

Powermarker 3.25 program was used to determine the

extent of genetic variation in the five groups of

accessions (Liu and Muse 2005). Both the polymor-

phic information content (PIC) and gene diversity

were calculated (Nei 1972). The unweighted pair

group method with arithmetic average (UPGMA) was

used to construct a dendrogram based on Nei’s genetic

distances. The genetic distances between groups, FST
values, and linkage disequilibrium were also calcu-

lated with the structure analysis using Powermarker

3.25.

Association mapping

Among the 1474 alleles amplified by the 104 SSR

primers, only 1326 with high PIC content were used

for association analysis. Permutation test (1000 per-

mutations, P\ 0.01) to determine marker-trait
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association was done with the trait analysis by

association, evolution and linkage (TASSEL 3.0),

using the general linear model (GLM) (Bradbury et al.

2007). Association between markers and traits was

determined by the P values while R2 referred to the

percentage of total variation attributable to a marker.

For each character, the critical P values for assessing

the significance of SSR markers were calculated

according to the false discovery rate (FDR), with

FDR cut-off of 0.05 and the Bonferroni test using the

Benjamini-Hochberg.xlsx (Benjamini and Hochberg

1995; Weinkauf 2012).

Results

Forage-quality-related trait variation

The summary statistics including the mean, range,

standard deviation, variance and coefficient of varia-

tion (CV) were calculated in excel spread sheet for 8

traits in 60 accessions (Table 1). The CV was highest

for crude protein (CP with 0.34) followed by Biomass

(B with 0.33) crude fat (CF with 0.28) and moisture

content (MC with 0.23). NDF and ADF had the least

CV of 0.04 and 0.08 respectively. Height (H) and

crude ash (CA) had relatively moderate CV of 0.20

and 0.19 respectively.

Pearson correlation coefficients of the phenotypic

and physiological traits were calculated at the signif-

icance level of P\ 0.01 and P\ 0.05 (Table 2). The

correlation coefficient of the traits ranged from

r = -0.356 (between NDF and CP) to r = 0.475

(between CP and CF) with an average of r = 0.0595.

Both positive and negative correlations were observed

between the traits. Statistically significant positive

correlations at P\ 0.01 were found between B and H

and CP and CF. Conversely, a statistically significant

negative correlation at P\ 0.01 was observed

between CP and NDF. All statistically significant

associations at P\ 0.05 were negative; they occurred

between B and MC, B and CP and NDF and CF

(Table 2).

Population structure, kinship and genetic

differentiation

Population structure

The population structure of the 60 bermudagrass

accessions was derived using 1474 SSR markers and a

model-based Structure 2.3.4 software. The possible

number of groups (K) was set to range from 1 to 10,

and 10 replications for each K value were performed to

infer the population structure. The Ln P (D) value for

each K value increased, nonetheless, the most signif-

icant increase occurred between K = 1 and K = 2

implying that the population comprised of two

subpopulations and hence K was set to 2 (Fig. 2a).

The highest L (K) value corresponded to the actual K

value. The Q matrix obtained from running the K = 2

parameter was used to determine the membership

probability for assigning accessions into their partic-

ular subpopulations when the probability was[0.75

(Fig. 2b). The majority of grasses had a membership

probability higher than 0.9.

Structure divided the 60 grass samples into two

groups, GI and GII. GI had 56 individuals (93%) of all

geographical regions except North-west China. All the

4 accessions from North-west China clustered in GII

(Fig. 2b). The average distances or expected heterozy-

gosity between individuals in GI was 0.1981 while that

between individuals in GII was 0.1576.

Table 1 Summary statistics of 8 phenotypic and physiological

traits analysed in the 60 bermudagrass accessions

Traits Range Mean SD Variance CVa

H (cm) 19.10–49.27 34.16 6.85 46.93 0.2

B (tonnes/

Ha)

1.15–12.54 6.356 2.10 4.40 0.33

MC (%) 16.67–57.69 37.26 8.62 74.32 0.23

CA (%) 5.00–14.50 7.99 1.52 2.31 0.19

CP (%) 3.88–13.30 7.73 2.6 6.75 0.34

ADF (%) 26.85–42.49 36.29 2.98 8.86 0.08

NDF (%) 63.59–77.54 71.66 2.92 8.51 0.04

CF (%) 1.25–3.92 2.35 0.65 0.42 0.28

H height, B biomass, MC moisture content, CA crude ash, CP

crude protein, ADF acid detergent fibre, NDF neutral detergent

fibre, CF crude fat, CV coefficient of variation
a CV was calculated as standard deviation divided by the mean.

The value allows comparison of the parameters despite of the

different units of measuring the parameters
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Kinship

The population lacked kinship relationships; about

79% of the pairwise kinship coefficients were between

0 and 0.05 while about 13%were between 0.05 and 0.1

(Fig. 3). Thus, this approximation of kinship coeffi-

cient less than 0.05 represents the minimum relative

relatedness among the samples; this portion is likely to

affect association analysis.

Cluster analysis

The 60 bermudagrass accessions fell into 7 distinct

groups named G1–G7 (Fig. 4). Group 1 comprised of

7 individuals which further fell into two different

subgroups. One of the subgroup contained 3 acces-

sions from East China while the other contained 1

grass from East China, 1 from Central China and 2

from South-west China. Group 2 comprised of 22

accessions which fell into 2 distinct subgroups; one

subgroup contained 4 kinds of grass from North-west

China, 2 types of grass from East China and 1 grass-

type from Central China. The other subgroup included

13 accessions from East China, 1 from South-west

China and 1 from South China. Group 3 contained 2

accessions from Central China while Group 4 con-

tained 4 accessions from South-west China. Group 5

comprised of 16 accessions from South China, Group

6 of 3 accessions from Central China and, Group 7 of 6

accessions, 5 from Central China and 1 from East

China (Fig. 4).

Table 2 Pearson correlation analysis for the 8 phenotypic and physiological traits measured in 60 bermudagrass samples

H B MC CA CP ADF NDF CF

H 1

B 0.457** 1

MC 0.018 -0.299* 1

CA -0.126 -0.059 0.089 1

CP -0.134 -0.318* 0.195 0.032 1

ADF 0.097 0.163 -1.6 0.131 -0.119 1

NDF -0.045 0.173 -0.004 0.092 -0.356** 0.182 1

CF -0.166 -0.221 0.091 0.026 0.475** 0.054 -0.29* 1

ADF acid detergent fibre (%), B biomass (tonnes/Ha), CA crude ash (%), CF crude fat (%), CP crude protein (%), H height(cm), MC

moisture content (%), NDF neutral detergent fibre(%)

** Significant at P\ 0.01; * significant at P\ 0.05

Fig. 2 Population structure analysis of 60 bermudagrass accessions. GI andGII are the resultant structure groups. a. Magnitude of delta

K for each K value (K represents the number of populations). b. Inferred population structure of the 60 bermudagrass accessions
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Fig. 3 The distribution of

pair-wise relative kinship

coefficients between the 60

bermudagrass accessions. Y

axis shows percentage of

distribution while X axis

shows relative kinship

Fig. 4 Dendrogram of 60

Bermuda grass accessions

achieved using 1474 SSR

markers based on Nei’s

genetic distance. Seven

clusters: G1, G2, G3, G4,

G5, G6, G7 bear different

symbols as shown at the top

right corner. Members

collected from the same

geographic regions

clustered together.

Individuals from adjacent

regions were close to each

other while those distant

regions clustered in far-apart

groups
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Gene diversity of the entire collection

of bermudagrass accessions

The total number of alleles obtained from the 1474

SSR loci scored for the 60 accessions was 2811 with

an average of 1.91 alleles per marker. Major allele

frequency (MAF) occurred at the range of 0.5–1.0

with an average of 0.856. The entire sample’s gene

diversity was in the range of 0–0.5 with a mean gene

diversity of 0.2097 (Table S2).

The range of polymorphic information content

(PIC) for all the accessions was 0–0.375 while the

average PIC was 0.1748. The heterozygosity of the

entire sample was 0 while the number of observation

of the markers ranged from 37 to 60. Of all the

markers, 137 had a PIC value of zero. These and other

11 markers with little PIC were excluded in further

analysis using Powermarker. 170 bands were high

polymorphism alleles (PIC[ 0.35) while 1167 alleles

had moderate polymorphism (0.01\PIC\ 0.35)

(Table S2).

Genetic relationships among 60 accessions grouped

according to geographic origin

The statistics regarding gene diversity and PIC present

at each locus in each population based on the

geographic origin of bermudagrass accessions used

in this study revealed an average gene diversity of

0.157 and an average PIC of 0.128. Both Central China

and East China had the highest gene diversity and PIC

of 0.184 and 0.150 respectively. South China closely

followed with gene diversity of 0.162 and PIC of

0.133. North-west China population had the least gene

diversity and PIC. The average gene diversity and PIC

for each one of the population were as follows: Central

China = 0.184 and 0.150, North-west China = 0.103

and 0.082, East China = 0.184 and 0.150, South-west

China = 0.152 and 0.123 and South China = 0.162

and 0.133 (Table 3).

Genetic distances, FST values and linkage

disequilibrium (LD)

North-west china and South-west china were the

furthest distance apart with a pairwise genetic distance

of 0.1536 followed by North-west china and South

china with 0.1424. The least genetic distance was

observed between East China and Central China

(0.0276) followed by Central China and South-west

China (0.0313) (Table 4). Nei’s distance between the

two structure populations (GI and GII) was 0.1763.

FST values were calculated via structure analysis to

show genetic differentiation of the subpopulations

(Table 5). The maximum FST value was 0.422 for

South-west China followed by 0.406 for Central

China. The minimum FST value was 0.012 for South

China. East China and North-west China had FST
values of 0.117 and 0.043 respectively.

A total of 1335 pairs of markers were found to be in

disequilibrium after pairwise linkage disequilibrium at

the allele level. Of these pairs, 746 were in complete

LD (D’ = 1) while according to r2, 25 pairs were in

perfect LD (r2 = 1).The percentage of significant SSR

loci pairs in LD was 22% and 33% at r2[ 0.1 was and

at r2[ 0.05 respectively (Table S3).

Marker-trait association

A total of 8400MTAs between 1337 markers and the 8

traits were observed. However, only 76 of these

marker-trait association were significant at P\ 0.01.

Most markers had a significant association with both H

and CA, 13 markers each, followed by MC with 11

markers and ADFwith 10 markers. B had 5MTAs, the

least among the 8 traits. Three of the markers had

significantMTAs atP\ 0.01 with more than one trait;

these were M109 with B and H, M1415 with H and B

andM890 with CF and CP (Table S4). Nonetheless, no

Table 3 Approximations of genetic parameters of 60 Ber-

muda grass accessions sampled from diverse geographic

regions based on 1474 SSR markers

Populations Sample size Gene diversity PIC

Central China 13 0.184 0.15

North-west China 4 0.103 0.082

East China 19 0.184 0.15

South-west China 7 0.152 0.123

South China 17 0.162 0.133

Mean 0.157 0.128

The first column shows the initial geographic location where

samples were collected before being planted at Wuhan

Botanical Garden. The second column shows the number of

individuals collected from each location while the third and

fourth columns show gene diversity and PIC respectively
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marker had a significant association with more than

two traits at P\ 0.01.

Only 41 markers had significant marker-trait asso-

ciation after independent Bonferroni test for each

character. The following marker-trait associations

were observed: 4 markers associated with ADF, 5

with B, 10 with CA, 5 with CF, 3 with CP, 7 with H, 4

with MC and 3 with NDF (Table 6).

The percentage of variation attributable to a marker

(R2) ranged between 9 and 23%. The highest was

observed in the marker-trait association between

M1170 and CA and the least between the associations

of both M1418 and M83 with B. The R2 for multiple

MTAs were moderate ranging between 11 and 14%.

The highest R2 values for each of the other traits were:

CF 16%, CP 17%, ADF and NDF 17%, MC 18% and

H 18% (Table S4).

Discussion

The large variation in forage-quality-related traits

observed among accessions as well as the significant

correlations between these traits reflects the rich

phenotypic and physiological trait diversity among

the 60 bermudagrass accessions. These findings imply

that our study sample qualified for marker-trait

association mapping for different forage-quality-re-

lated traits.

Plant scientists have identified CV as a critical

indicator to guide the selection procedure for target

phenotypic variants in breeding programs (Lou et al.

2015) since it is an indicator of variability of

quantitative traits. CP, B and CF with 0.34, 0.33, and

0.28 CV respectively could be useful in selection

breeding programs purposing to increase the B and CP

and CF in forage. Although MC, H, CA, NDF and

ADF had lower CV in that order, they reveal that the

study sample has diversity which can gradually sum

up to produce heterosis.

The results of the phenotypic analysis indicate that

reducing B could increase both MC and CP and

consequently improve forage quality since B nega-

tively correlated to MC and CP. They also imply that

reducing NDF would result in increased CF and CP.

However, our study seeks to improve forage quality

without interfering with B and the latter observation is

more valuable and suitable for application in breeding

programs. Since NDF contains lignin, these results

support the hypothesis that reduction of lignin content

would increase forage quality by increasing crude fat

and crude protein. Our results are consistent with

similar results which showed NDF to have a negative

correlation with CP, CP to have a positive relationship

with CF and, although not significant, CA to have a

Table 4 Genetic distances of different groups from structure analysis

OTU Central China East China North-west China South China West-south China

Central China 0 0.0276 0.1356 0.0352 0.0313

East China 0.0276 0 0.125 0.0377 0.0462

North-west China 0.1356 0.125 0 0.1424 0.1536

South China 0.0352 0.0377 0.1424 0 0.0413

South-west China 0.0313 0.0462 0.1536 0.0413 0

Pairwise genetic distances ranging between 0.0276 and 0.1536. High values between populations imply that populations are distant

while lower values imply populations are close

Table 5 Mean values of FST within population

Population FST value

Central China 0.406

North-west China 0.043

East China 0.117

South China 0.012

South-west China 0.422

FST values reflect population differentiation. Where

microsatellites are used, FST\ 0.1 signify low

differentiation, FST = 0.15–0.2 signify moderate

differentiation while FST[ 0.25 represent high population

differentiation
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positive relation with CP (Gharehshekhlou et al. 2012;

Sluiter et al. 2008; Xie et al. 2009).

The accessions used in this study grew under the

same environmental conditions and were harvested at

the same time. Therefore, the variation in the pheno-

typic and physiological traits cannot be attributable to

environmental factors, soil characteristics or time of

harvest. The difference we observed could only result

from genetic differences among the accessions. We

found significant genetic variations between acces-

sions which are consistent with a similar study on

bermudagrass accessions collected from different

regions in China (Xie et al. 2014, 2015). Our study

sample, therefore, represents a germplasm with the

potential for use in future breeding programs. It

suggests the possibility of controlling the forage

quality via regulation of CP, B and CF contents which

have high CV.

Furthermore, population structure, kinship and

genetic diversity analysis results confirms the relia-

bility of our study for use in breeding strategies aimed

at improving forage quality in bermudagrass. The

structure results gave two groups and hence, one

covariate which has been suggested to be inefficient in

controlling stratification (Mezmouk et al. 2011). Thus,

it was prudent to use a reliability test which depended

on the distance between the structure-generated out-

puts by evaluating the similarity of the Q matrices.

However, in a previous study, the neighbour-joining

tree using a subset of 342 lines only showed a

consistency between structure-derived groups and

clustering when K = 2 and K = 3 but showed a

vague trend for more K values (Camus-Kulandaivelu

et al. 2006). These findings confirm previous obser-

vations that combining structure’s results and dis-

tances between clusters generated on the neighbour-

joining tree improves the reliability of the association

analysis study.

In studies of genetic diversity, researchers have

come to a concession that different types of markers

yield different results of population structure when

analysed with the structure software. Nonetheless,

microsatellite markers have been identified to perform

better than amplified fragment length polymorphisms

(AFLPs) markers (Evanno et al. 2005). Furthermore,

proper sampling of individuals and markers alike has

been determined to influence the outcome of the

groups produced by the structure software (Evanno

Table 6 Association of

markers with percentage of

reduction of single

agronomic traits of

bermudagrass after

Benjamini–Hochberg

correction

P the permutation based test

for marker significance of

individual markers

R2 the fraction of the total

variation attributable to the

marker

Trait Marker Marker P Mark R2 Trait Marker Marker P Marker R2

ADF M1265 0.001735 0.1635 CF M443 0.003013 0.1466

ADF M227 0.002926 0.1478 CF M890 0.003434 0.1385

ADF M1430 0.003025 0.1534 CF M873 0.006822 0.1197

ADF M492 0.004453 0.1334 CP M996 0.001235 0.1679

B M638 0.001561 0.1325 CP M1163 0.002795 0.1414

B M109 0.002078 0.1151 CP M1131 0.004124 0.1335

B M114 0.004526 0.1008 H M1194 0.000395 0.1836

B M83 0.006541 0.0898 H M920 0.000599 0.1693

B M1415 0.006977 0.0911 H M921 0.000599 0.1693

CA M1171 0.000109 0.2327 H M821 0.000691 0.1658

CA M1170 0.000191 0.2182 H M244 0.000841 0.1839

CA M1038 0.000285 0.2112 H M897 0.001028 0.1562

CA M916 0.000369 0.2076 H M1415 0.003214 0.1322

CA M1005 0.000786 0.1809 MC M1076 0.000893 0.1825

CA M1193 0.001005 0.1767 MC M424 0.001273 0.1726

CA M915 0.00116 0.176 MC M329 0.002248 0.1749

CA M707 0.001461 0.1667 MC M211 0.002254 0.1538

CA M544 0.00247 0.1574 NDF M200 0.001375 0.1657

CA M762 0.002789 0.1488 NDF M180 0.00223 0.1525

CF M538 0.001761 0.1616 NDF M167 0.003042 0.1439

CF M659 0.002183 0.1604
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et al. 2005). Thus, the use of SSR markers plus the

selection of diverse accessions makes our association

mapping study reliable.

A remarkable consistency, with negligible discrep-

ancies, between the distribution of accessions accord-

ing to geographic location, structure results and cluster

analysis was observed. The population structure

derived from structure analysis showed an association

between population structure and geographical origin

which was consistent with similar studies on ber-

mudagrass collected from China (Xie et al.

2014, 2015).

All the accessions that fell under structure’s GII

clustered together in Nei’s dendrogram and shared a

common geographical origin, that of North-west

China. Furthermore, some of the cluster groups (G3,

G4, G5 and G6) exclusively contained members from

the same geographical origin. In addition, accessions

with furthest distance apart clustered away from each

other as shown for North-west China and South-west

China. The clustering together of accessions collected

from similar or adjacent regions could imply a strong

correlation between genetic diversity and geographic

location (Li et al. 2011). The results of our study

closely resonate with previous studies on genetic

diversity of bermudagrass collected in China using

both ISSR and SSR markers (Wang et al. 2013), and

SSR markers only (Xie et al. 2014, 2015).

The pairwise kinship matrix confirmed that the

accessions were relatively distant. This phenomenon

could be attributable to the diversity of the genotypes

and, the fact that accessions were collected from

different regions eliminating the possibility of ana-

lyzing similar genotypes.

The genetic diversity of the entire sample collection

was 0.2097 and lower than the 0.2270 previously

reported for 120 bermudagrass accessions. The PIC

was 0.1748 and also lower than the 0.1894 reported for

120 bermudagrass accessions (Xie et al. 2015). Our

study sample has less genetic diversity than the one

used in the previous study utilizing a similar number of

markers. Thus, these discrepancies could be due to a

large number of markers used on a small population

(60 samples).

Other than the PIC values, FST values can be used to

define the genetic diversity of a population; they can

determine the standardized population distance

between populations (Dang et al. 2016), due to their

relationship with allele frequencies and genetic

diversity (Jakobsson et al. 2013). According to the

FST values, Central China and South-west China are

highly differentiated from the other groups. East

China, North-west China and South China are less

differentiated. These results imply that Central China

and South-west China contributed the least genetic

material in GI while East China and South China

contributed the most genetic material. Although

North-west China (FST = 0.043) is likely to exchange

genetic material, it is physically isolated from the

other groups hindering exchange of genetic material.

Besides it has the furthest genetic distance from either

of the groups and since structure’s GI1 exclusively

contains accessions from this geographical origin, it

has low genetic diversity.

The genetic distances show East China and Central

China to be significantly closer (0.0276). Genetic

diversity was also highest in East China and Central

China but lowest in North-west China. North-west

China is, however, genetically closer to East China

(0.1250) than to Central China (0.1356) (Table 4).

These results coincide with the clustering results

shown in Nei’s dendrogram where East China and

Central China appear close to each other at the

extreme ends of the dendrogram with North-west

China being closer to East China than to Central

China. Since the two groups with the highest genetic

diversity and the shortest genetic distance apart fell

under structure’s GI, it is more diverse than GII

because the distinct groups can exchange genetic

material. Besides, the average genetic distance

between GI members was higher than that between

GII members implying that GII members were readily

exchanging genetic materials than GI members. These

results could be attributable to exchange of genetic

material between adjacent members since bermuda-

grass is an outcrossing variety. Members of GII were

physically separated from the other groups promoting

inbreeding and hence the low genetic diversity. GI,

therefore, contained rich genetic diversity which could

be utilized in breeding programs to improve forage

quality of bermudagrass.

Although the percentage of markers in LD was high

in terms of D’(55% in complete LD), we cannot rely

on this criterion because it is inflated when one allele is

rare or the sample size is small. However, perfect LD

(defined by r2) is reliable for association mapping

because it will persist until recombination occurs and

loci in LD can remain in strong LD for a very long time
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(Montgomery Slatkin 2008). Thus, recombination

events that occurred in the past can be exploited

through association mapping. The percentage of

significant SSR loci pairs in LD at r2[ 0.1 (22%)

and r2[ 0.05 (33%) observed in our study is similar to

that reported for cotton (22%), and relatively higher

than reported for sorghum (8.7%), and maize (10%)

(Abdurakhmonov et al. 2009; Hamblin et al. 2004;

Remington et al. 2001). Higher percentages of SSRs in

LD have been reported for durumwheat (49–56%) and

cultivated barley germplasm (45–100%) (Kraakman

et al. 2004; Maccaferri et al. 2005). Bermudagrass

being an outcrossing breed, we expected it to have

lower LD than inbreeding varieties such as sorghum

since LD in outbreeding varieties is usually low.

Compared to maize, which is a highly outbreeding

crop, we can consider the bermudagrass in our study to

have high LD. On the contrary, the bemudagrass has a

moderate LD as compared to wheat and barley.

Nonetheless, it qualifies for association mapping

although with low resolution. The presence of the

moderate LD could imply the presence of rare alleles

which could be caused by mutation.

Through association mapping the rare alleles linked

to markers associated with forage-quality-related

traits could be identified and exploited in breeding to

improve forage quality. The ease of accessibility to

many molecular markers and developed mapping

populations recently has enabled association mapping

to identify the qualitative trait loci (QTLs) for

agronomic traits (Ravi et al. 2011; Selvaraj et al.

2009). Several scientists have emphasized the need to

control association mapping studies to avoid spurious

marker-trait association (Flint-Garcia et al. 2005; Yu

et al. 2011). Both genetic linkage and population

structure have the capacity to cause marker-trait

association. Furthermore, individuals from different

geographical locations subjected to association anal-

ysis may possess a population structure or kinship ties

as a consequence of selection or adaptation to a local

habitat (Yu and Buckler 2006). Thus, it is crucial to

analyze the population structure of a sample intended

for association mapping studies since with time,

inbreeding and evolution have inevitably created

population structures and kinship ties (Yu and Buckler

2006). It is evident from the structure results that the

60 bermudagrass accessions used for this study had a

population structure but lacked kinship relatedness.

In association analysis, two traditional models are

used; these are the general linear model (GLM) and the

mixed linear model (MLM). Both account for popu-

lation structure, however, the latter also accounts for

kinship while the former does not. Although using

both models limits the number of false positives (Yu

et al. 2006), we used the GLM model because our

population lacked kinship ties but had a distinct

population structure. Besides, most of the MTAs

identified with the MLM model become statistically

insignificant after marker-trait association analysis

with the GLM model (Chen et al. 2010).

A total of 41 significant MTAs were observed. The

trait with the highest number ofMTAswas CAwith 10

while the least was CP and NDF each with 3MTAs. Of

the 10 MTAs involving CA, two pairs appeared close

to each other and could belong to the same locus; these

were M915 and M916 as well as M1170 and M1171.

However, CA had no significant correlation with the

other traits and this information could be irrelevant for

application in selection procedures. Height had 7

MTAs of which M920 and M921 are close implying

location in similar loci. No other close markers

involved in MTAs of the same trait were observed.

Thus, it is evident that different markers significantly

associated with a particular trait as no marker had

significant association with more than one trait.

In our study, three markers significantly associated

with correlated traits (prior to Bonferroni correction)

indicating presence of a pleiotropic gene or tight

linkage of several genes. These markers were M890

associated to CP and CF (which had a positive

correlation) and M1415 and M190 both associating

with B and H (which also had a positive correlation). B

was also correlated to MC and CP while CP correlated

to NDF. Thus, the three loci positions contained a gene

that could control all these phenotypes or genes which

controlled each of these phenotypes were tightly

linked. Fine-mapping of the chromosomal regions in

these loci is imperative for the discernment of the

actual genetic control of these congruent traits (Li

et al. 2012). If experts could design markers for these

congruent traits in the particular locus, the implemen-

tation of potent marker-assisted selection (MAS) for

enhancing forage quality in bermudagrass would be

possible.

Unfortunately, the low resolution of MTAs, low

proportion of phenotypic variation explained by the

QTLs (\10), and limited success in validating QTLs in
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different scenarios limits the implementation of MAS

(Neale et al. 2002). Besides, MTAs with R2 greater

than 10% show high heritability although they might

be difficult to identify for congruent traits (Wang et al.

2012). This limitation arises because QTLs’ effect is

highly dependent on the breeding strategy of a plant

(inbreeding or outbreeding) as well as the sum of

genes with little control over the expression of a

qualitative trait (Guimarães et al. 2007). Bermuda-

grass is a highly outcrossing species (Wu and Talia-

ferro 2005) and it is, therefore, impossible to use

recombination-based methods for position cloning of

genes (Salvi et al. 2002). Notwithstanding, fine-

mapping would be required for practical use of the

identified significant MTAs.

In our study, the average variation attributable to

the marker ranged from 11% for B to 19% for CA

implying feasibility of MAS. Moreover, since we

identified population subdivision in our study, we can

rule out the possibility of LD being a result of

unrecognized population subdivision; the markers in

significant LD were indeed linked suggesting that

linkage was the primary cause of LD. Nevertheless,

the number of statistically significant MTAs is quite

low and unsuitable (76 at P\ 0.01 and 41 after

Benjamini–hochberg correction) for direct use in

MAS. Successful MAS based on our results would

require the selective choice of parents for QTL

mapping and elaborate crosses to verify the effective-

ness of marker alleles critical for developing high

forage quality bermudagrass cultivars.

Conclusion

In summary, our study showed diversity in phenotypic

variation in ADF, B, CA, CF, CP, H, MC and NDF

among the 60 bermudagrass accessions intended for

association mapping for forage quality. The clustering

analysis revealed that genetic distance between acces-

sions was affected by geographical origin. The

individuals fell into two subpopulations, and the entire

sample lacked kinship relatedness. Seventy-six MTAs

were significant at P\ 0.01 while only forty-one were

significant after Bonferroni correction of the P values.

Three of the markers associated with two correlated

forage-related-traits and could play a meaningful role

in the determination of forage quality. The results of

our study can be used for fine mapping to establish the

exact contribution of the genes in loci positions of

these markers for use in MAS to enhance forage

quality of bermudagrass.
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