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Abstract Heterogeneity in genetic effects among

environments (G 9 E) is a common phenomenon in

crop plants and can arise from heterogeneity in

variance (scale effects) and/or crossover interaction.

Here, a study of yield of macadamia progeny in 15

trials established at 9 locations and assessed for yield

at 7 years is used to explore the impact on prediction

of clonal values (additive ? dominance effects) from

(i) scaling observations by phenotypic standard devi-

ation of each trial, and (ii) reducing complexity of the

pattern of genotype-by-environment interaction. The

initial fit of an unconstrained G 9 E model to

unscaled observations indicated significant G 9 E,

which was supported by the fit of the same model to

scaled data. Scaling observations reduced heterogene-

ity of genetic parameter estimates among locations.

Clustering of the additive and dominance genetic-by-

environment covariance matrices from the fit of

G 9 E models to scaled observations and log-likeli-

hood testing was used to identify reduced models

where locations with apparent homogeneous genetic

effects (genetic variance not significantly different,

and genetic correlations not significantly different

from 1) were grouped into single environments.

Complexity reduction condensed the additive

genetic-by-environment covariance matrix to 3

environments, and 4 environments for the dominance

matrix, and the accuracy of parameters estimates

increased, although accuracy of prediction as assessed

by generalised heritability only improved for a few

locations. On the other hand, accuracies of clonal

values predicted from a main effects only G ? E

model were lower. Nevertheless, correlations of the

averages of predicted clonal values across locations

from different models were very high suggesting

models are robust to parameter estimates. These

results support the use of scaling by the phenotypic

standard deviation to reduce heterogeneity in param-

eter estimates, and complexity reduction to improve

accuracy of estimating parameters required to predict

genetic effects.

Keywords Macadamia � Quantitative genetics �
Multi-environment trials � Mixed-models

Introduction

Genotype-by-environment interaction (G 9 E) is a

common phenomenon in crop plants (Allard and

Bradshaw 1964). Genotype-by-environment interac-

tion may be expressed as heterogeneity in genetic

variance among environments (scale changes) and/or

heterogeneity in ranking of individuals (crossover

interaction—COI) (Burgueno et al. 2008; Baker

1988). The presence of G 9 E complicates genetic
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selection (Allard and Bradshaw 1964; Cooper and

Delacy 1994; Comstock andMoll 1963). On one hand,

if patterns in G 9 E exist that can be explained by

some repeatable factor, and there is sufficient advan-

tage, elite genotypes may be selected for specific

environments (Allard and Bradshaw 1964; Matheson

and Cotterill 1990). Alternatively, if no repeatable fac-

tor can be identified that predict patterns, G 9 E is

treated as noise, reducing the repeatability of the

genetic potential across the production environment.

Commonly, field trials established across multiple

environments (METs) are used to detect the presence

and patterns of G 9 E.

Linear mixed models, where genetic effects are

treated as random factors, have become the standard

approach for genetic evaluation, and are readily

extended to modelling of METs (Smith et al. 2005).

This approach provides a frame-work for combining

all available information to predict the best (lowest

variance) linear unbiased (BLUP) genetic effect

(Henderson 1975; Patterson and Thompson 1971;

Thompson and Meyer 1986; Hardner et al. 2016).

However, prediction of genetic effects requires

knowledge of their variance and covariance architec-

ture, which is often estimated directly from available

data (E_BLUP, Kackar and Harville 1981), adding an

additional source of uncertainty to predictions.

A simple main effect and interaction model (i.e. G

? G 9 E) may be used to detect G 9 E, but may not

be sufficiently flexible to identify patterns in G 9 E

(Smith et al. 2005). Amore flexible approach is to treat

the performance in each environments as a separate

trait (Falconer 1952; Burdon 1977; Yamada 1962).

This model enables estimation of unique genetic

variances for each environment to account for scale

effects, and pair-wise genetic covariances to model the

degree of interaction (or re-ranking) among environ-

ments. Arief et al. (2015) demonstrated that the

average of the off-diagonals of the most general

unstructured genetic-by-environment covariance

matrix is equal to the estimate of the genetic main

effects variance in the simple G ? G 9 E model, and

the average of the diagonals of the unstructured matrix

is equal to the sum of the main effects and interaction

variances of the G ? G 9 E model. However, the

complexity of the an unstructured covariance matrix

increases with number of environments (n), as the

number of parameters is given by n nþ 1ð Þ=2, leading

to over-parameterisation and estimation difficulties

(Silva et al. 2009; Kelly et al. 2009; Hardner et al.

2010; Smith et al. 2001).

A factor analytic (FA) parameterisation of the

genetic-by-environment covariance matrices has been

developed to reduce the number of parameters

requiring estimation (Smith et al. 2001; Piepho

1997) and provides a parsimonious approximation to

the fully unstructured genetic-by-environment covari-

ance matrix (Kelly et al. 2007). The FA parameteri-

sation models the genetic effect of an individual at

each location as the sum of: (i) the product over

k hypothetical orthogonal factors of location loadings

for each factor by the genetic scores of the individual

for the respective factors, and (ii) a remaining genetic

effect for each location not explained by the factor

model (specific location deviation). The genetic-by-

environment covariance matrix is estimated as the sum

of the square of the vector/matrix of factor loadings

and the variance in specific deviations (specific

variance).

The complexity of G 9 E models may be reduced

through transformation of observations if G 9 E is in

part a consequence of variance heterogeneity. A

common transformation is to scale the observation

by the raw phenotypic standard deviation of each

environment so that the raw phenotypic variance in

each environment is 1.0 (Hill 1984; White et al. 2007).

On this scale, no G 9 E would be observed if the

underlying heritabilities of the traits in different

environments are equal and there is no re-ranking of

individuals. This approach may support a reduction in

the dimensionality of multi-variate models by

enabling environments to be grouped into ‘mega-

environments’’, within which G 9 E is not significant.

By reducing the number of parameters requiring

estimation, parameters may be more accurately esti-

mated, possibly increasing the accuracy of predictions

compared to more complex models.

This study examines the impact on prediction of

genetic values of: (i) scaling observations by the

phenotypic standard deviation for each specific trial

prior to modelling fitting; and (ii) reducing the

complexity of G 9 E. The motivating example is a

series of trials of macadamia progeny established at

nine locations across the main production area in

eastern Australia that have been assessed for yield at 7

years. Macadamia is a perennial sub-tropical tree that

produces highly valued kernels that are consumed as
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snack food, enrobed in chocolate, ingredients in

bakery products and ice-cream, or edible oil (Hardner

et al. 2009). Detailed interpretation and relevance for

genetic improvement of macadamia of the G 9 E

patterns for this, and other traits, will be undertaken in

a subsequent paper.

Methods

Motivating example

Field trials were established across the macadamia

production area of Northern NSW and South-East

Queensland, Australia. Observations for yield of NIS

(nut-in-shell at 1.5% moisture content) 7 years after

planting were available for 2068 macadamia individ-

uals established across 14 trials at 9 locations

(Tables 1, 2). All locations except East-Bundaberg

(Bq) were grower farms. 2040 of the individuals were

seedling progeny grown on own-roots produced from

crossing 44 parents over 3 years (1999, 2000 and

2001) to produce 101 families. Progeny were estab-

lished in field trials 2 years after crossing had been

made (i.e. 2001, 2002 and 2003). Field trials also

included individuals from 28 of the 44 parents, planted

as scions grafted onto seedling rootstocks from open-

pollinated seeds of the cultivar ‘‘H2’’. Grafted parents

were not replicated within each trial except for limited

replication at the two trials at East Bundaberg (Bq1

and Bq3) and the 2003 Baffle Creek trial (Bc3).

Individuals were laid out in incomplete blocks of

single-tree plots designed with family as the treatment

effect. The spatial arrangement of trials was defined as

planting rows (Row) by planting spaces along planting

rows (Sp) with distance between rows varying from 5

to 8 m (Table 1), but 4 m between plants within a row,

except at Nn (5 m).

NIS per tree was assessed at 7 years after planting at

each trial (i.e. 2006, 2007 and 2008). Fruit on the

ground prior to March were considered immature (i.e.

incomplete oil accumulation) and were not included in

yield assessment. In general, four ground harvests of

abscised fruit were undertaken throughout the season

at approximately 6 weekly intervals: the first in mid-

April, the second at the end of May or start of June,

mid-July and late August, early September. Immedi-

ately following the last ground harvest, all remaining

fruit were stripped from the tree. Harvested fruit were

transported to a central location and dehusked. Total

wet nut-in-shell (WNIS) was assessed for each tree-

by-harvest collection, from which 100 nuts were

randomly sampled, dried to 1.5. % moisture content,

weighed and used to convert WNIS to NIS for each

tree-by-harvest collection. To examine the effect of

missing neighbouring trees on prediction of genetic

potential, status of neighbouring trees along the

planting row was recorded as 0 neighbours, 1 neigh-

bour or both (2) neighbours alive at the age of

assessment.

Statistical methods

Consistent with Falconer (1952) and others (Smith

et al. 2001, 2005; Cullis et al. 2014; Hardner et al.

2010) performance in different environments was

treated as a unique attribute. The genetic model

assumed the total genetic effect of the ith individual in

the qth environment was composed of additive and

dominance genetic effects, i.e.

giq ¼ aiq þ diq

The general G 9 E model for the additive and

dominance genetic effects of m individuals, assessed

at t trials in w environments was:

y ¼ Xbþ Zuuþ Zaaþ Zddþ r

where y was the vector of observation, b was a vector

of unknown fixed effects including the general mean,

trial, and linear Row and linear Sp, neighbour status

(NI) and propagation method (PM) for each trial,

X was a design matrix that mapped the observations

onto the unknown fixed effects, u was a vector of

unknown random non-genetic effects including Block,

Row and Sp effects for each attribute-by-trial,Zuwas a

design matrix that mapped the observations onto the

unknown random effects, a was a vector of unknown

additive genetic effects for the ith individual (includ-

ing ancestors) for the qth environment, Za was a

design matrix that mapped the observations onto the

additive genetic effects, d was vector of unknown

dominance genetic effects for the ith individual

(including ancestors) for the qth environment, Zd

was a design matrix that mapped the observations onto

the non-additive genetic effects, and r was a vector of

unknown random residual effects for each

observation.

Variance of y was defined as
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varðyÞ ¼ V ¼ ZuGuZ
0
u þ ZaGaZ

0
a þ ZdGdZ

0
a þ R

where Gu was the variance–covariance matrix of the

random non-genetic effects among trials, Ga was

variance–covariance matrix of the random additive

genetic effects among environments, Gd was the

variance–covariance matrix of the random dominance

genetic effects among environments, and R was the

variance–covariance of the residual effects of the

observations.

Non-genetic random factors at each trial were

considered independent, hence Gu was diagonal, with

sub-blocks for each unique trial-by-non-genetic ran-

dom effect combination.

The variance–covariance matrix of additive genetic

effects among environments, Ga, was modelled as a

two-way separable process:

Ga ¼ A� Ea

where A was the matrix of additive genetic relation-

ships among individuals (including ancestors) formed

from historical pedigree relationships (Henderson

1975) and Ea was the additive genetic-by-environ-

ment covariance matrix.

Similarly, the variance–covariance matrix of dom-

inance genetic effects among environments, Gd, was

modelled as:

Gd ¼ D� Ed

where D was matrix of dominance genetic relation-

ships among individuals (including ancestors, also

estimated from the historical pedigree, ignoring

inbreeding, Henderson 1985) and Ed was the domi-

nance genetic-by-environment covariance matrix.

The variance–covariance of residual effects,R, was

modelled as a block diagonal matrix with each block

representing the variance–covariance matrix of resid-

ual effects for each trial, Rj. Rj was modelled as an

anisotropic separable first-order autoregressive corre-

lation structure in the two spatial dimensions (Row and

Sp) with an independent error (nugget) term (Gilmour

et al. 1997; Cullis et al. 1998; Costa e Silva et al. 2001;

Costa e Silva and Graudal 2008; Smith et al. 2001;

Dutkowski et al. 2002):

Rj ¼ Rej þ Rgj

where Rej was the variance–covariance among spa-

tially dependent residual effects, and Rgj was the

variance–covariance among spatially independent

residual (nugget) effects, at the jth trial. Rej was

modelled as

Rej ¼ PRowj
qRowj

� �
� PSpj qSpj

� �h i
r2ej

where PRowj
qRowj

� �
and PSpj qSpj

� �
were first-order

autoregressive correlation matrix along the Row and

Table 2 Congruence of progeny families (upper triangle) and all (progeny ? grafted parents) individuals (lower triangle) assessed

for NIS per tree at 7 years of age at 14 trials (see Table 1) across major production regions in Australia

Bc2 Bc3 Bn1 Bq1 Bq3 Bs2 Ga2 Ga3 Ge1 Gy1 Gy2 Nd1 Nd3 Nn2

Bc2 139\46 16 25 26 15 45 45 17 23 24 43 25 12 37

Bc3 18 162\44 22 26 41 21 22 42 23 22 19 24 34 16

Bn1 19 21 183\60 59 21 31 30 20 54 58 31 60 15 26

Bq1 19 21 24 384\66 25 36 36 24 57 61 34 64 18 29

Bq3 17 18 20 20 124\45 20 21 41 22 21 18 23 33 15

Bs2 18 20 23 23 19 172\59 56 22 31 32 54 35 16 43

Ga2 16 18 21 21 17 22 185\59 23 31 31 53 34 17 45

Ga3 17 19 22 22 18 21 19 123\46 21 20 20 22 33 17

Ge1 16 17 20 20 18 19 17 18 161\58 55 30 56 17 26

Gy1 19 21 24 24 20 23 21 22 20 174\62 32 61 16 26

Gy2 15 17 19 19 16 19 18 17 15 19 147\55 34 15 41

Nd1 19 21 24 24 20 23 21 22 20 24 19 202\65 16 28

Nd3 10 12 12 12 9 12 10 12 9 12 9 12 73\34 12

Nn2 18 19 21 21 17 21 19 19 17 21 17 21 11 112\45
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Sp dimensions, respectively, and r2ej was the spatially

dependent residual variance at the jth trial. The

matrix Rgj was modelled as a two-way separable

process:

Rgj ¼ Igjr
2
gj

where r2gj was the spatially independent residual

variance for the jth trial.

Parameters of the mixed model were estimated

using Restricted Maximum Likelihood approaches

implemented in the statistical software ASReml

(Gilmour et al. 2009). Estimation of standard errors

of parameters, testing and estimation of fixed effects,

and prediction of genetic effects was also undertaken

using this package.

Individual trial analyses of transformed

observations

Independent univariate models were initially fitted to

raw observations from each trial to evaluate the

assumption of normality of residuals, and identify

significant sources of non-genetic variation for inclu-

sion in multi-variate models. In these individual trial

analyses, the additive and dominance genetic-by-

environment, and non-genetic- and residual-by-trial

covariance matrices described above were reduced to

within trial variances. Analyses indicated that a

square-root transformation of the raw observations

(y) was required to normalise the residual distribu-

tions. Following model fitting, significance of fixed

effects was evaluated using Wald tests (Kenward and

Roger 1997). Significance of random effects were

evaluated using likelihood ratio test (Wilks 1938) that

was adjusted for the case where the null hypothesis

was that the parameter was at the boundary of the

estimation space (Stram and Lee 1994). Akaike

Information Criterion (Akaike 1974) (AIC) was used

to more generally compare the goodness-of-fit among

models with common fixed effects with lower AIC

indicating a more parsimonious fit.

Fit of unconstrained G 9 E model to unscaled

observations

An unconstrained G 9 E model (M01, i.e. individual

locations treated as environments for the additive—Ea

and dominance genetic by environment—Ed,

covariance matrices in the general G 9 E model)

was fitted to square-root transformed observations

(y) to describe patterns of genetic effects across

locations for unscaled observations. Factor analytic

order 1 (FA1) parameterisations (Smith et al. 2001)

were used to model both the additive and dominance

genetic-by-environment covariances matrices. As

locations were treated as unique environments, genetic

variances at trials within locations were constrained to

be equal with a genetic correlation of 1. Non-genetic

effects and residuals were modelled at the trial level.

Only non-genetic effects significant in individual trial

analyses were fitted.

To evaluate the accuracy of estimated FA1 model

parameters, a z-score was estimated as the ratio of the

parameter estimate to its standard error. Estimated

parameters for the FA1 model of the additive and

dominance genetic-by-environment covariance matri-

ces were used to estimate the full additive and

dominance genetic-by-location covariance matrices

(Smith et al. 2001). These were summed to estimate

the total (additive ? dominance) genetic-by-location

covariance matrix. Coefficient of variation of the

estimates was calculated to quantify the heterogeneity

in estimates among locations.

Additive and dominance genetic effects for each

individual in the pedigree were predicted for each

location using the estimated parameters from the

model fit, and summed to obtain clonal values for each

location (g_M01.y). Average individual clonal values

across locations were also obtained.

To quantify the accuracy of predicted additive

effects, generalised narrow sense heritability at the qth

location (Piepho andMohring 2007; Cullis et al. 2006;

Oakey et al. 2006) was estimated as:

ĥ2�q ¼ 1�
�r2DA;q

2� r̂2A;q

where �r2DA;q was the mean variance of the difference of

additive predictions at the qth location, estimated from

the prediction error variance matrix of additive effects

and r̂2A;q was the estimated additive genetic variance at

the qth location. A similar expression was used to

estimate the generalised dominance heritability (d̂2�q ).

Generalised heritability is a function of accuracy, and,

as such is different from classical individual heritabil-

ity estimates and are only comparable for balanced

designs (Cullis et al. 2006).

248 Page 6 of 17 Euphytica (2017) 213:248

123



A singular value decomposition (SVD) of the

table of predicted clonal values of individuals-by-

location, standardised by location, was undertaken to

study patterns in the interaction. Biplots (Kempton

1984) of the first and second location and individual

singular vectors was undertaken with the location

vectors displayed as lines from the origin and

individuals as points. The angle between two location

vectors on the biplot represents the correlation in

clonal values among locations explained by the first

and second vectors.

Scaling observations by within trial phenotypic

variation

To evaluate the impact of scaling observations prior to

model fit on the prediction of genetic values, the same

unconstrained G 9 E model used above (M01) was

also fitted to the square-root transformed raw obser-

vations standardised by the phenotypic standard

deviation of these observations for the respective trial

(sy) so that observations within each trial were scaled

to a unit scale (i.e. phenotypic variance of each trial

equal to 1). As described above, z-scores were

estimated to evaluate the accuracy of estimated FA1

model parameters, and these parameters were used to

estimate the full additive and dominance genetic-by-

location covariance matrices (which were summed to

estimate the total genetic-by-location covariance

matrix), and predict additive and dominance effects

on the unit scale for each location. Predicted additive

and dominance genetic effects were summed to

predict clonal values by location on the unit scale

(sg_M01.sy) and the PEVs of these predictions were

used to estimate generalised narrow sense (and

dominance) heritability for each location. De-scaled

clonal values (g_M01.sy, i.e. predicted clonal values

from the analysis of scaled observation on the square-

root scale) were obtained by multiplying sg_M01.sy

by the phenotypic standard deviation of the respective

location (obtained by taking the square-root of the

average of the phenotypic variances of each trial at the

respective location). Biplot of the SVD of the table of

de-scaled clonal values were used to examine G 9 E

patterns as described above.

Reduced dimension G 9 E models

To evaluate the impact of reducing the complexity of

G 9 E models on prediction of genetic effects,

sequential analyses of scaled square-root transformed

observations (sy) were undertaken with models in

which multiple locations of either the additive or

dominance genetic-by-location covariance matrices

were constrained to be the same environment if

genetic effects were homogenous (i.e. equal variance,

and genetic correlation of 1) across the these locations.

To detect groups of locations for which genetic effects

appeared homogenous (i.e. environments), cluster

analyses were undertaken of the genetic (either

additive or dominance)-by-environment covariance

(not correlation) matrices estimated from an unre-

duced model. Environments were grouped using

Ward’s minimum distance and Gruvaeus and Wainer

algorithm (Hahsler et al. 2008) was used to order

nodes of the dendrogram so that an environment at the

edge of a cluster was adjacent to environments to

which it was most similar in the neighbouring cluster.

A reduced model was then constructed so that the

genetic variance of environments that appeared most

similar were constrained to be equal, and genetic

correlation among these to one, with all other terms

equivalent to the unreduced model. Following the fit

of the reduced model, log-likelihood testing

(a = 0.05) was undertaken and AIC examined to

identify the most parsimonious model between the

reduced and unreduced models. Where the reduced

model was found to be more parsimonious than the

unreducedmodel, the constraint applied in the reduced

model was maintained in subsequent model fits. The

initial unreduced model examined for complexity

reduction was the un-constrained G 9 E model

described above (M01) where locations represented

the environments of the additive and dominance

genetic-by-environment covariance matrices. The

most parsimonious reduced model (M13) was defined

as the model for which any reduced model was a

significantly poorer fit to the data.

As above, z-values of the estimated FA1 model

parameters were used to evaluate the accuracy of

model parameters. In addition, the total genetic-by-

location covariance matrix was estimated by summing

the additive and dominance genetic-by-location

covariance matrices estimated from the FA1 model

parameters. Clonal values for each individual by
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location were predicted on the unit scale (sg_M13.sy),

generalised narrow sense (and dominance) heritability

estimated, trial phenotypic standard deviations were

used to de-scale clonal values, biplots of the SVD of

de-scaled predicted clonal values by locations were

used to examine G 9 E patterns, and average de-

scaled clonal values across locations were obtained.

To evaluate the effect of not accounting for G 9 E

on the prediction of genetic effects, a main effects only

G ? E model that assumed no interaction in additive

and dominance genetic effects with location (M00, i.e.

common additive and dominance genetic variance and

genetic correlation of 1 among locations) was fitted to

the scaled square-root observations (sy). This model

maintained the same terms for individual trial non-

genetic and residual variation as the previous models.

Generalised heritabilities on the unit scale and

predictions of unscaled clonal values (g_M01.sy) were

estimated as above.

Results

Data characteristics

Phenotypic variance in raw untransformed observa-

tions of NIS at 7 years ranged from 0.39 at the East

Gympie trial (Ge1) to 16.8 at the Baffle Creek 2003

planting (Bc3) (Table 1), a magnitude of over 40 fold.

However, phenotypic variance of transformed

(square-root) observations, undertaken to normalise

the distribution of within trial residuals, ranged from

0.20 to 0.97, less than five fold difference. There was

strong association between trial average and variance

on both the transformed and untransformed scale.

Fit of unconstrained G 9 E model (M01)

to unstandardised data (y)

Across all locations, the loadings of the FA1 model of

the additive genetic-by-environment covariance

matrix of the unconstrained G 9 E model (M01)

explained on average 94% of the additive genetic

variation in unscaled square-root transformed obser-

vations for NIS at age seven (Tables 3, 4). Loadings

for the FA1 model of the dominance genetic-by-

environment covariance matrix explained 73%. Addi-

tive genetic loadings explained 100% of the additive

genetic variance at most locations, except for at Ga

(71%), Ge (81%) and Gy (96%) (Tables 3, 4).

Dominance genetic loadings incompletely explained

dominance variation at Bn (56%), Bq (84%), Bs

(45%), Ge (99%) and Nn (1%).

Additive genetic variance of unscaled NIS on the

square-root scale estimated using the unconstrained

G 9 E model (M01) ranged from 0.00 to 0.20, with a

coefficient of variation of 0.78 (Tables 3, 4). Coeffi-

cient of estimated dominance variation was of similar

magnitude (0.71) and coefficient of variation of

estimates of total genetic variance was 0.59. At most

locations (Bc, Bn, Bq, Bs, Ga and Gy), the estimated

percentage of total genetic variance that was additive

genetic was less than the percentage due to dominance

(Tables 3, 4), with an average of 41%. At Bs, all

genetic variance was estimated to be dominance, and

at Ge all genetic effects were additive. However,

estimated generalised heritability of additive genetic

effects was higher than estimated generalised heri-

tability of dominance effects for all locations.

In agreement with parameter estimates for the FA

models, the first dimension of the singular value

decomposition of the location standardised clonal

(additive ? dominance) values predicted from the fit

of the M01 model to unscaled observations explained

a large proportion of variance (84%), with the second

dimension explaining 14% (Fig. 1a). The locations

Bc, Bn, Bq, Ga, Gy and Nd formed a group within

which clonal values were highly correlated among

locations. Clonal values at Nn and Ge were also highly

correlated between these locations, but less so with

clonal values at Bc, Bn, Bq, Ga, Gy and Nd. Clonal

values at Bs were not highly correlated with clonal

values at any other location.

Fit of unconstrained G 9 E model (M01)

to observation scaled by the phenotypic standard

deviation (sy)

The percentage of additive genetic and dominance

genetic variance explained by loadings of the FA1

models of the respective genetic-by-environment

covariance matrices estimated from the fit of the

unconstrained G 9 E model (M01) to observations

scaled by the phenotypic standard deviation of the

respective trial (sy) was virtually identical to that for

the fit of the same model to unscaled observations

(Tables 3, 4). Similarly, there was no large differences

in the z-value of the FA1 parameter estimates between
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the fit of the unconstrained G 9 Emodel to scaled (sy)

or unscaled (y) data.

Coefficients of variation of additive, dominance

and total genetic variance components among loca-

tions estimated from the fit of the unconstrained

G 9 E model (M01) to scaled data (0.68, 0.61, 0.30,

Tables 3, 4) were lower than from the fit of the same

model to the unscaled scaled data (see above).

However, there was only a negligible difference in

estimated proportion of total genetic variation

explained by additive effects between the fits of the

M01 model to scaled or unscaled data (Tables 3, 4),

with an average of 41%. Generalised heritabilities of

additive and dominance effects predicted from the fit

of the M01 model to scaled observations were only

slightly higher compared to the fit of the same model

to unscaled observations, except for a slightly smaller

dominance variance at Nn (Tables 3, 4).

The structure of the biplot of de-scaled clonal

values from the fit of M01 to the scaled observations

(Fig. 1b), was virtually the same as that for the plot

of the fit of the same model to unscaled data. The

only small differences are that the genetic correla-

tion between Nn and Ge, and Gy and Ga, were

slightly higher. Average de-scaled clonal values

across locations predicted from the fit of M01 to

scaled data, was also almost perfectly correlated

(0.9996) with average clonal values across locations

predicted from the fit of the same model to unscaled

observations (Fig. 2a).

Table 4 Estimated additive (vA), dominance (vD) and total

(vG) genetic variance, proportion of variance explained by

loadings (%k) and genetic variance due to additive genetic

variation (%A) derived from estimated parameters presented in

Table 3, and generalised narrow sense (h2*) and dominance

(d2*) heritability at each location

Trait Mod Param Bc Bn Bq Bs Ga Ge Gy Nd Nn

y M01 vA 0.08 0.19 0.10 0.00 0.03 0.06 0.01 0.20 0.11

sy M01 vA 0.09 0.20 0.13 0.00 0.05 0.30 0.05 0.28 0.24

sy M13 vA 0.08 0.22 0.08 0.00 0.08 0.22 0.08 0.22 0.22

y M01 %kA 1.00 1.00 1.00 1.00 0.71 0.81 0.96 1.00 1.00

sy M01 %kA 1.00 1.00 1.00 1.00 0.73 0.82 0.96 1.00 1.00

sy M13 %kA 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

y M01 vD 0.15 0.33 0.26 0.29 0.10 0.00 0.05 0.09 0.09

sy M01 vD 0.19 0.35 0.36 0.49 0.17 0.00 0.19 0.12 0.18

sy M13 vD 0.17 0.34 0.34 0.49 0.17 0.00 0.17 0.17 0.00

y M01 %kD 1.00 0.56 0.84 0.45 1.00 0.99 1.00 1.00 0.01

sy M01 %kD 1.00 0.56 0.84 0.46 1.00 0.97 1.00 1.00 0.00

sy M13 %kD 1.00 0.69 0.69 0.49 1.00 1.00 1.00 1.00 1.00

y M01 vG 0.23 0.52 0.36 0.29 0.13 0.06 0.06 0.29 0.19

sy M01 vG 0.28 0.55 0.49 0.49 0.22 0.30 0.24 0.40 0.43

sy M13 vG 0.24 0.56 0.41 0.49 0.24 0.22 0.24 0.39 0.22

y M01 %A 33 37 26 0 26 100 19 69 55

sy M01 %A 34 36 26 0 25 100 21 70 57

sy M13 %A 31 40 18 0 31 100 31 57 100

y M01 h2� 0.46 0.46 0.46 0.45 0.35 0.42 0.44 0.46 0.46

sy M01 h2� 0.46 0.46 0.46 0.46 0.36 0.42 0.44 0.46 0.46

sy M13 h2� 0.45 0.45 0.45 0.44 0.45 0.45 0.45 0.45 0.45

y M01 d2� 0.30 0.21 0.30 0.19 0.30 0.30 0.30 0.30 0.05

sy M01 d2� 0.31 0.22 0.30 0.20 0.31 0.30 0.31 0.31 0.04

sy M13 d2� 0.29 0.29 0.29 0.20 0.29 0.29 0.29 0.29 0.29
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Fit of most parsimonious reduced G 9 E model

(M13) to scaled observations (sy)

The most parsimonious reduced G 9 E model (M13,

Table 5) fitted to scaled observations (sy) identified

three groups of locations (environments) for the

additive genetic-by-location covariance matrix, and

four environments for the dominance genetic-by-

location covariance matrix, within which genetic

variances for each locations were constrained to be

equal and genetic correlations were constrained to 1.0.

This model required estimation of 37 parameters

compared to 53 for the fully unconstrained model

(M01).

Factor loadings for the FA1 model of the additive

genetic-by-environment covariance matrix for the fit

of M13 to scaled data (sy) explained 100% of the

additive genetic variance at each location, compared

to the 94% for M01 fitted to unscaled and scaled

observations (Tables 3, 4). Similarly, loadings for the

M13 model of the dominance genetic-by-environment

covariance matrix explained 88% of the dominance

variance at each location, compared to 76% for M01.

In particular, 100% of dominance genetic variance in

scaled observations at Nn was explained by the M13

Fig. 1 Biplot of first 2 dimensions of singular value decompo-

sition of location standardised clonal values (additive ? domi-

ance values) (a) predicted from the fit of an unconstrained

G 9 E model (M01, see Table 5) to square-root transformed

NIS yield per tree (y) at age 7 at 9 locations, (b) de-scaled

predictions from the fit of M01 to square-root transformed

observations scaled by the standard deviation of the transformed

observations at each location (sy) and (c) de-scaled predictions

from the fit of a reduced model (M13, Table 5) to square-root

transformed observations scaled by the standard deviation of the

transformed observations at each location (sy)

Fig. 2 Plot of average of clonal value for NIS yield per tree at

7 years of age (kg) predicted from a fit of a unconstrained

G 9 E to unscaled observations (g_M01y.) by (a) average of de-
scaled clonal values predicted from the fit of a unconstrained

G 9 E model to observations scaled by the phenotypic standard

deviation of the respective trial (g_M01.sy), (b) average of de-

scaled clonal values predicted from the fit of the most

parsimonious reduced G 9 E model to observations scaled by

the phenotypic standard deviation of the respective trial

(g_M13.sy), and (c) de-scaled clonal values predicted from the

fit of a unon-G 9 E model to observations scaled by the

phenotypic standard deviation of the respective trial (g_M00.sy)

Euphytica (2017) 213:248 Page 11 of 17 248

123



model compared to 0% for M01. However, percentage

of dominance variance at the Bq location explained by

the FA1 model in the most parsimonious reduced

G 9 E model (69%) was lower than that for M01

(84%). Under the M13 fit, z-values (indicating accu-

racy of parameters) for estimated parameters for the

FA1 models of the additive and dominance genetic-

by-environment covariance matrices were generally

considerably higher than those for the fit of M01 to

scaled data (Tables 3, 4), although the magnitude of

this effect was not consistent across all locations.

Coefficient of variation among estimates of addi-

tive genetic variation from the fit of M13 to scaled

observations was 0.63, less than that for the fit of the

unconstrained G 9 E model to scaled data, but

coefficient of variation among dominance variance

estimates (0.74), and those for total genetic variance

(0.37), were larger. Reflecting the constraints applied

in the reduced model, estimates of additive genetic

variance in scaled observations from the fit of M13

were equal at Bn, Ge, Nd and Nn (0.22), as were

additive genetic variances at Bc, Bq, Ga and Gy (0.08).

In agreement with previous models, there was virtu-

ally no variance among additive genetic effects at Bs.

Similarly, estimates of dominance genetic variance at

Bn, Bq were equal (0.34), as where estimates at Bc,

Ga, Gy and Nd (0.17). Dominance genetic variance

estimates from the fit of the reduced G 9 E model to

scaled observations were virtually 0 at Nn (in contrast

with results from the fit of the unconstrained G 9 E

model) and Ge.

Total genetic variance was only homogenous

among Bc, Ga and Gy (0.24), and at Ge and Nn

(0.22) as the locations for which additive genetic

effects were constrained to be homogenous were

different from the locations for which dominance

genetic effects were constrained to be homogenous.

Percentage of total genetic variance explained by

additive effects estimated from the fit of M13 to scaled

data was greater than the percentage estimated from

the fit of the unconstrained model to the same data at

Bn, Ga, Gy and Nn, but lower at Bc, Bq, and Nd, with

an average of 45%. The only location for which

generalised heritability of additive effects was rela-

tively higher for the fit of the reduced G 9 E model to

scaled data compared to the fit of the unconstrained

model was Ga. Estimated of generalised heritability of

dominance effects was slightly smaller for the fit of the

M13 model compared to the fit of M01 for most

Table 5 Model alias, structure of additive (AE) and domi-

nance (AE) genetic variance–covariance by environment

matrices, log-likelihood (Logl), and degrees of freedom (df)

for alternative models of the genetic by environment variance–

covariance matrices in the analysis of squared NIS at 7 years

for macadamia seedling progeny and grafted parents planted in

14 trials in 9 locations (see Table 1 for full description) across

3 regions of the Australian macadamia production zone and

scaled by the within trial phenotypic standard deviation

Model AE DE Logl df

M01 Bc, Bn, Bq, Bs, Ga, Ge, Gy, Nd, Nn Bc, Bn, Bq, Bs, Ga, Ge, Gy, Nd, Nn -940.20 53

M02 Bc, Bn, Bq, Bs, Ga, Ge, Gy, Nd, Nn Bc = Gy, Bn, Bq, Bs, Ga, Ge, Nd, Nn -940.20 52

M03 Bc, Bn, Bq, Bs, Ga, Ge, Gy, Nd, Nn Bc = Ga = Gy, Bn, Bq, Bs, Ge, Nd, Nn -940.22 51

M04 Bc, Bn, Bq, Bs, Ga, Ge, Gy, Nd, Nn Bc = Ga = Gy = Nd, Bn, Bq, Bs, Ge, Nn -940.30 51

M05 Bc, Bn, Bq, Bs, Ga, Ge, Gy, Nd, Nn Bc = Ga = Gy = Nd, Bq = Bn, Bs, Ge, Nn -940.64 47

M06 Bc, Bn, Bq, Bs, Ga, Ge, Gy, Nd, Nn Bc = Bq = Bn = Ga = Gy = Nd, Bs, Ge, Nn -943.66 47

M07 Bc, Bn, Bq, Bs, Ga, Ge, Gy, Nd, Nn Bc = Ga = Gy = Nd, Bq = Bn, Ge = Nn, Bs -940.82 46

M08 Nd = Nn, Bc, Bn, Bq, Bs, Ga, Ge, Gy Bc = Ga = Gy = Nd, Bq = Bn, Ge = Nn, Bs -940.22 45

M09 Ga = Gy, Nd = Nn, Bc, Bn, Bq, Bs, Ge Bc = Ga = Gy = Nd, Bq = Bn, Ge = Nn, Bs -940.25 44

M10 Bc = Bq, Ga = Gy, Nd = Nn, Bn, Bs, Ge Bc = Ga = Gy = Nd, Bq = Bn, Ge = Nn, Bs -940.34 43

M11 Bc = Bq, Ga = Gy, Bn = Nd = Nn, Bs, Ge Bc = Ga = Gy = Nd, Bq = Bn, Ge = Nn, Bs -941.67 41

M12 Bc = Bq, Ga = Gy, Bn = Ge = Nd = Nn, Bs Bc = Ga = Gy = Nd, Bq = Bn, Ge = Nn, Bs -941.88 39

M13 Bc = Bq = Ga = Gy, Bn = Ge = Nd = Nn, Bs Bc = Ga = Gy = Nd, Bq = Bn, Ge = Nn, Bs -943.72 37

M14 Bc = Bn = Bq = Ga = Ge = Gy = Nd = Nn, Bs Bc = Ga = Gy = Nd, Bq = Bn, Ge = Nn, Bs -952.47 35

M00 Bc = Bn = Bq = Ga = Ge = Gy = Nd = Nn = Bs Bc = Bn = Bq = Ga = Ge = Gy = Nd = Nn = Bs -970.90 30

The equality symbol (=) indicates locations constrained to be the same in each respective analysis

248 Page 12 of 17 Euphytica (2017) 213:248

123



locations (Bc, Bq, Ga, Ge, Gy and Nd), but was

relatively larger at Bn and Nn.

Again, the structure of the biplot of de-scaled clonal

values from the fit of M13 to scaled data (Fig. 1c) was

very similar to the biplots of clonal values predicted

from the fit of M01 to unscaled (Fig. 1a) and scaled

data (Fig. 1b). Under the M13 model, de-scaled clonal

predictions at Ga, Gy and Bc were perfectly corre-

lated, as were clonal predictions at Ge and Nn. The

consistency between de-scaled clonal predictions from

the fit of M13 and predictions from the fit of M01 to

scaled and scaled data is demonstrated by the high

correlation between average de-scaled clonal values

across locations predicted from M13 and average

clonal values across locations predicted from the fit of

M01 to unscaled observations (0.9976, Fig. 2b).

Fit of main effects only G ? E model (M00)

to scaled observations (sy)

The estimate of additive genetic variance in scaled

observations estimated from a non-G 9 E model

(M00) was 0.12 (40% of total genetic variance, similar

to that for more general models), and dominance

variance was 0.18. Generalised heritability of additive

genetic effects was 0.40, lower than the estimate for

the fit of any additive G 9 E model to both scaled and

unscaled data, and 0.28 for dominance genetic effects,

which was similar in magnitude to that from the

dominance G 9 E models to unscaled or scaled data.

Nevertheless, de-scaled clonal values of individuals

predicted across locations from this analysis was still

highly correlated (0.9876) with average clonal values

predicted from the fit of the unconstrained G 9 E

model to unscaled observations (Fig. 2c).

Discussion

This study has demonstrated that FA models of both

additive and dominance genetic-by-environment

matrices can be successfully fitted to multi-environ-

ment data, as shown by others (e.g. Oakey et al. 2007).

This is achieved by separating the variance–covari-

ance of genetic effects among environments into a

correlation matrix of genetic effects and the genetic-

by-environment covariance matrix (Oakey et al. 2007;

Kelly et al. 2009; Smith et al. 2001). Here a dominance

relationship matrix was estimated from the historical

pedigree to predict dominance genetic effects of an

individual. Other studies that include non-additive

effects have often employed a family effect term,

where all families are assumed unrelated, in the

statistical model (Hardner et al. 2012; Costa e Silva

et al. 2006; Cappa et al. 2012), or have been

undertaken with clonally replicated material where a

total non-additive genetic effect is used (Paget et al.

2014; Kelly et al. 2009). Although not demonstrated

here, accuracy of predictions are higher from multi-

variate models compared to that for predictions of

effects from univariate models by leveraging corre-

lated information (Thompson and Meyer 1986; Hard-

ner et al. 2016). Kelly et al. (2007) demonstrated the

mean square error of prediction using an FA models

was similar to that from an unstructured parameteri-

sation of the same matrix, and in some cases may be

lower for trials containing relatively few genetic

entries (i.e. 80 compared to 200 and 500). FA models

are particularly appealing for reduced rank genetic-by-

environment covariance matrices (Thompson et al.

2003; Burgueno et al. 2011). This may occur when

there is a relatively low number of genetic treatments

per dimension. These models are also superior to

pairwise bivariate estimations of between environ-

ment correlations that may produce unrealistic esti-

mates of the covariance matrices (i.e. absolute

correlations[1) (Cullis et al. 2014; Hill and Thomp-

son 1978).

The linear mixed model framework used here

supports an unbiased approach to describing and

testing the significance of G 9 E patterns (Burgueno

et al. 2008). Estimated environmental loadings of the

FA model can be rotated to a principal component

representation (Smith et al. 2001). Importantly,

the mixed model approach readily accommodates

missing and unbalanced data (Henderson et al. 1959;

Thompson 1973) such that the effect of all genotypes

can be predicted in each environments by leveraging

information from relatives tested in those environ-

ments. As uncertainty increases (e.g. correlation

among environments less than 1.0), predictions are

shrunk towards zero (Henderson 1977). This fits neatly

with the biplot of the decomposed predictions of

clonal value by location table where individuals near

the centre of the biplot (i.e. values of zero) represent

performance that is not well explained by the singular

vector dimensions displayed in the graph.
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In the example examined here, the failure of the fit

of a full unstructured matrix is a consequence of the

limited data particularly for locations where only a

single trial was established (i.e. Bn, Bs, Ge and Nn).

The relative low values for the specific variances at

most sites for the FA1 parameterisations of the

additive, and to lesser extent dominance, genetic-by-

location covariance matrices indicates that the load-

ings of the factor analytic parameterisation captured

most of the structure of the genetic-by-location

covariance matrices, and higher order FA models

were unnecessary. The higher location specific vari-

ances for the unconstrained dominance genetic-by-

location FA1 model may be a consequence of the

sparser dominance relationship matrix. The presence

of a negative (and small) environment loading for only

additive genetic effects at the Bs location suggests that

the FA model has not detected large cross-over

interaction for additive and dominance effects (Bur-

gueno et al. 2008; Callister et al. 2013) and much of

the G 9 E interaction is due to scale differences.

The near perfect correlation between the average of

clonal values predicted from the fit of the un-

constrained G 9 E model to unscaled observations,

and average of descaled clonal values predicted from

the fit of the full model to observations scaled by the

phenotypic variation for the respective trials, confirms

that little bias is introduced by scaling by the

phenotypic standard deviation of each trial. In addi-

tion, the lower coefficients of variation of genetic

parameters estimated from the fit of the unconstrained

model to the scaled observations, compared to those

estimated from the fit of the same model to unscaled

observation, supports recommendations by Hill

(1984), Visscher et al. (1991) and White et al.

(2007) that phenotypic scaling of observations can

be used to reduce variance heterogeneity among

environments. Nevertheless, there is evidence

of heterogeneity in genetic variances among locations

as the fit of the G 9 E models to the data was

significantly better than that of the model that did not

account for G 9 E.

This study has also demonstrated that the accuracy

of estimated model parameters (i.e. components of the

FA model) and complexity of G 9 E patterns can be

reduced by scaling observations by trial phenotypic

standard deviation and combining locations among

which genetic variance was homogenous and genetic

correlations were one into single environmental

dimension. The very high correlation between average

clonal effects for an individual across locations

predicted from the fit of the unconstrained G 9 E

model to unscaled data, and the average of the de-

scaled predictions of clonal effects from the fit of the

most parsimonious constrained G 9 E model, sug-

gests that predictions are not greatly biased by the

complexity reduction undertaken here. However, the

accuracy of genetic predictions was only improved in

a few cases (dominance effects at Bn and Nn, and

additive effects at Ga) when the accuracy of estimated

model parameters was improved through a reduction

in complexity (i.e. estimation required for a fewer

number of parameters). This may be a result of the

robustness of predictions to variability in genetic

parameter estimates (Kennedy 1981; Kackar and

Harville 1981). The failure to find significant differ-

ences between the unconstrained G 9 E model and

restricted parsimonious models suggests that the

hypothesis that the greater heterogeneity in genetic

parameters estimated from the unrestricted model was

due to sampling could not be rejected.

The complexity reduction approached undertaken

here is similar to the that undertaken by Burgueno et al.

(2008) to identify groups of environment within which

genetic correlations among environments was perfect,

indicating absence of cross-over interaction. The

difference is that Burgueno et al. (2008) estimated a

genetic-by-environment dissimilarity matrix using

only the loadings, whereas the current study estimated

the dissimilarity matrix from the complete (load-

ings ? specific variance) genetic-by-environment

covariance matrix, as the aim of the current study

was to reduce the dimensions of the covariance matrix.

In the current study, scaling was used to reduce

variance heterogeneity, whereas heterogeneity of

variance among environments would have inflated

the specific variance termof the FAparameterisation in

Burgueno et al. (2008). Presumably, the Burgueno

et al. (2008) approach could be extended to test for

homogeneity of specific variances among environ-

ments. In addition, an independent relationship model

was fitted in the models in Burgueno et al. (2008),

whereas here both additive and dominance relationship

matrices were fitted. Both approaches provide formal

methods to test for heterogeneity among environments

and identifying mega-environments, rather than an

arbitrary approach employing analysis of visual sum-

maries of the data (Yang et al. 2009). However,
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knowledge of G 9 E patterns are only useful for

selection if some repeatable factor can be identified

which explains the detected patterns and can be used to

predict patterns in the target deployment environments

(Allard andBradshaw1964). Reducing the influence of

noise on the complexity of G 9 E patterns by

complexity reduction may aid identification drivers

of these patterns and hence their utilisation.

Hill (1984) demonstrates that when variances are

heterogeneous across environments, but heritabilities

are similar and genetic effects are highly correlated,

selection based on a main effects only model will tend

to select more individuals that have been evaluated in

more variable environments. In this study, estimated

generalised heritability was relatively similar across

environments for the most parsimonious G 9 E

model. However, the high correlation of clonal effects

predicted from the fit of the main effects only G ? E

model to scaled observations with average of clonal

effects predicted from the fit of a fully unconstrained

G 9 E model (to the same data) suggests that clonal

effects predicted from the G ? E only model are not

greatly biased. This is apparent even though the

G 9 E models were a significantly better fit to the

data, and the biplot of the first two singular location

vectors indicated G 9 E. It may be that the relatively

high correlation of clonal values among all locations,

except Bs, overwhelms the interaction in clonal values

between the Bs and the other locations. However,

accuracy of additive genetic values predicted from

G 9 E models are greater than for the main genotypic

effect model (Smith et al. 2015). A bias may also arise

when modelling G 9 E using the simplified main

effect and interaction model (G?G 9 E, which treats

genetic variance and genetic correlations as homoge-

nous among environments). In addition, modelling of

G 9 E provides more flexibility in that weights can be

used to target selection for specific environments

(Smith et al. 2015; Cooper and Delacy 1994). In this

study, genetic variance at different trials at the same

location were assumed to be homogenous with perfect

genetic correlation as the number of records for most

trials was low possibly resulting in over-parameteri-

sation, difficulty in estimation and decreased accuracy

(Wolak 2012), and because planting year causes

variation which is difficult to control.
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