
Association mapping reveals loci associated with multiple
traits that affect grain yield and adaptation in soft winter
wheat

Dennis N. Lozada . R. Esten Mason . Md Ali Babar . Brett F. Carver .

Gina-Brown Guedira . Keith Merrill . Maria Nelly Arguello . Andrea Acuna .

Lucas Vieira . Amanda Holder . Christopher Addison . David E. Moon .

Randal G. Miller . Susanne Dreisigacker

Received: 19 May 2017 / Accepted: 18 August 2017 / Published online: 2 September 2017

� Springer Science+Business Media B.V. 2017

Abstract Genome-wide association studies

(GWAS) are useful to facilitate crop improvement

via enhanced knowledge of marker-trait associations

(MTA). A GWAS for grain yield (GY), yield compo-

nents, and agronomic traits was conducted using a

diverse panel of 239 soft red winter wheat (Triticum

aestivum) genotypes evaluated across two growing

seasons and eight site-years. Analysis of variance

showed significant environment, genotype, and geno-

type-by-environment effects for GY and yield com-

ponents. Narrow sense heritability of GY (h2 = 0.48)

was moderate compared to other traits including plant

height (h2 = 0.81) and kernel weight (h2 = 0.77).

There were 112 significant MTA (p\ 0.0005)

detected for eight measured traits using compressed

mixed linear models and 5715 single nucleotide

polymorphism markers. MTA for GY and agronomic

traits coincided with previously reported QTL for

winter and spring wheat. Highly significant MTA for

GY showed an overall negative allelic effect for the

minor allele, indicating selection against these alleles

by breeders. Markers associated with multiple traits

observed on chromosomes 1A, 2D, 3B, and 4B with

positive minor effects serve as potential targets for

marker assisted breeding to select for improvement of

GY and related traits. Following marker validation,

these multi-trait loci have the potential to be utilized

for MAS to improve GY and adaptation of soft red

winter wheat.
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Introduction

Identification of marker-trait associations (MTA) is a

first step toward marker-assisted selection (MAS),

which has become an important tool for accelerating

varietal improvement and rate of genetic gain (Moose

and Mumm 2008; Wang et al. 2014b). Whole-genome

mapping approaches such as genome-wide association

studies (GWAS) have recently become a popular

alternative to bi-parental quantitative trait loci (QTL)

mapping for identifying MTA in plant populations,

due in large part to recent advances in high-throughput

sequencing and genotyping platforms that have

decreased cost and increased discovery of marker

polymorphisms (Patel et al. 2015; Ruggieri et al. 2014;

Thomson 2014).

GWAS use the concept of linkage disequilibrium

(LD), the non-random co-segregation of alleles at

multiple loci, to survey genomic regions that render

significant variation to phenotypes (Breseghello and

Sorrells 2006a; Flint-Garcia et al. 2003). A primary

advantage of GWAS is exploitation of recombination

events that have occurred over an individual’s evolu-

tionary history using a diverse population (Myles et al.

2009), consequently resulting in a higher mapping

resolution compared to a bi-parental approach (Zhu

et al. 2008). Additionally, GWAS allows for a much

larger gene pool to be surveyed and screened for

genetic variation in traits of interest (Neumann et al.

2011; Zhao et al. 2011).

Previous studies have established the usefulness of

GWAS in identifying regions affecting variation for

GY and adaptation traits in bread wheat (Triticum

aestivum). Wang et al. (2014a) reported MTA for

kernel hardness, kernel weight, grain protein concen-

tration, grain volume, and plant height in a diverse set

of 94 wheat lines. Prior to this, Neumann et al. (2011)

conducted GWAS for 20 agronomic traits in a winter

wheat core collection using diversity array technology

(DArT) markers where significant MTAwere detected

for plant height, GY, and disease resistance. Suku-

maran et al. (2014) and Lopes et al. (2015) identified

genomic regions associated with GY and yield-related

traits in a wheat association mapping initiative

(WAMI) panel consisting of 287 elite lines of spring

wheat from CIMMYT, Mexico. Sehgal et al. (2017)

recently identified regions affecting GY and yield

stability and their epistatic interactions using a large

elite panel of CIMMYT spring wheat genotypes under

multiple environments.

Hoffstetter et al. (2016) identified important loci

governing GY and other economic traits in an elite

collection of soft red winter wheat (SRWW) lines

adapted to the northeastern US while Addison et al.

(2016) determined genomic regions affecting GY

potential utilizing a bi-parental approach in a popula-

tion derived from two elite SRWW cultivars. Except

for these studies, reports on MTA for GY and related

traits for US soft winter wheat remain limited and

hence there is a need to identify yield-related QTL in

current soft red winter wheat germplasm. The objec-

tives of this study were to perform GWAS for GY and

agronomic traits and to examine population structure

and linkage disequilibrium of a diverse panel of

SRWW lines adapted to the southern region of the US

using genome-wide SNP markers. Information from

this research will serve as a valuable resource for

genetic improvement of GY and related traits via

marker-assisted selection approaches.

Materials and methods

Plant material and experimental design

The association mapping panel (AMP) used for this

study consisted of 239 inbred lines of SRWW,

including cultivars from the SunGrains� (Southeast-

ern University Grains) small grain breeding and

genetics group, publicly and privately developed

cultivars, and genotypes adapted to the southeastern

region of the US. Trials were drill seeded in seven row

plots (1.5 m width 9 4.5 m length) at a rate of 118 kg

of seed hectare-1. The AMPwas evaluated in a total of

eight high yield potential site-years that included two

environments in the 2013–2014 season and six

environments in the 2014–2015 season. Locations

included Fayetteville (FAY14, FAY15), Marianna

(MAR15), Stuttgart (STU14, STU15), Keiser (KEI15)

and Rohwer (ROH15), in the state of Arkansas; and

Okmulgee, in the state of Oklahoma (OKL15), US. All

locations belong to the west south central US region of

SRWW commercial production.

The AMP was sown in an augmented incomplete

block design (Federer and Raghavarao 1975; Federer

and Crossa 2012), with two repeated check lines

(Jamestown and Pioneer Brand 26R20) with
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unreplicated lines on each location. The random

nature of the new treatments and blocking variables

are considered in augmented designs resulting in a

more efficient analysis (Federer et al. 2001). In all

locations except for OKL15, the experimental field

was divided into 24 incomplete blocks, each contain-

ing 10 different AMP genotypes and both checks. For

OKL15, unequal incomplete block sizes, k, were used,

where k = 10 for IB 1–19; k = 20 for IB 20–23 and

k = 18 for IB 24. Planting and harvest dates and trial

management varied based on recommendations at

each location for maximizing yield potential, but

included routine fungicide applications to control

foliar diseases.

Trait measurements

Grain yield (GY) in kg ha-1 was recorded by

harvesting whole plots, weighing the grain, and

adjusting values to 13% moisture content. Heading

date (HD) was recorded as the date when 50% of

plants from the whole plot had fully visible spikes and

reported in Julian Days. Plant height (PH) was

recorded from the soil surface to tip of the spike,

excluding awns when present. Kernel weight (KW)

was determined by counting 1000 seeds using a

Seedburo� 801 seed counter (Chicago, IL, USA).

Peduncle length (PL) was measured as the length of

the uppermost internode, in cm, averaged across ten

culms plot-1. Spike length (SL) was taken as the

measurement from the base to tip of the spike

(excluding awns), in cm, averaged across ten spikes

plot-1. Kernel number spike-1 (KNS) and kernel

weight spike-1 (KWS) were estimated by hand-

harvesting 50 spike-bearing culms from each plot at

maturity prior to harvesting of whole plots.

Statistical analysis

Phenotypic data were analyzed following procedures

described by Wolfinger et al. (1997) for analysis of

augmented designs using PROCMIXED in SAS v.9.4

(SAS Institute 2011). Genotypes, incomplete blocks,

environments, incomplete blocks nested within envi-

ronments and genotype-by-environment interactions

were regarded as random effects. Adjusted means

represented as least square means (LSM) for each

genotype were estimated using a restricted maximum

likelihood (REML) approach for each site-year.

Narrow sense heritability (h2) was calculated for each

trait using TYPE3 sum of squares from the adjusted

means, with the formula:h2 ¼ r2
G

r2
G
þr2

GEI
e

þr2
E
er

,where r2G,

r2GEI and r2E variances due to genotype, genotype-by-

environment, and error, respectively; and e and r are

the number of environments and replications. Associ-

ations between traits and environments were explored

using principal component analysis (PCA) with the

contribution of each variable to the first two principal

components (PC) illustrated using bi-plots. The PROC

CORR procedure in SAS v.9.4 was used to calculate

correlation of normalized means of phenotypes across

environments.

SNP marker genotyping

DNA was isolated from each sample following a

CTAB extraction procedure modified from Pallotta

et al. (2003). Samples were genotyped using the

Illumina 9K iSelect assays for wheat previously

described by Cavanagh et al. (2013) through the

USDA-ARS Eastern Regional Small Grain Genotyp-

ing Laboratory, Raleigh, NC. Marker data polymor-

phisms of 8632 SNPs were scored using the

GenomeStudio� software (Illumina, San Diego,

USA). After filtering, 5715 polymorphic markers with

minor allele frequency (MAF) C 0.04% and less than

10% missing data remained and were used to perform

GWAS. SNPs with lowMAF were included to capture

rare allele variants (MAF\ 0.01) which could poten-

tially explain additional variability within the mea-

sured traits (Lee et al. 2014).

In addition to the 9K iSelect assay, the AMP was

genotyped using KASP� allele-specific SNP markers

(LGC Genomics, UK) diagnostic for height (Rht-B1,

Rht-D1), vernalization (Vrn-A1 and Vrn-B1) and

photoperiod (Ppd-B1, Ppd-D1) loci (Guedira et al.

2014, 2016). Reactions were performed in a total

volume of 5 lL [2.5 lL KASP� mix and 2.5 lL DNA

sample (50 ng)], following manufacturer’s instruc-

tions with minor modifications. Conditions for thermal

cycling were as follows: 94 �C for 15 min; 94 �C for

20 s and 65–58 �C (decrement of 0.8 �C per cycle) for

9 cycles; 94 �C 20 s and 57 �C for one minute for 25

cycles; 35 �C for 3 min and a plate read step. An

additional thermal cycling step (94 �C for 20 s

followed by 57.0 �C for one minute for 2 cycles; and

35 �C for oneminute and a plate read step) was used as
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needed to improve accuracy and precision of

clustering.

Linkage disequilibrium, population structure,

and genetic diversity

Coefficients of linkage disequilibrium (LD), repre-

sented by the square of allele frequency correlations,

r2 (Weir and Cockerham 1996), were calculated using

the program TASSEL 5.2.33 (Bradbury et al. 2007).

Imputation for missing genotype data was done using

a numeric, Euclidean-based distance method in

TASSEL, with minimum and maximum allele fre-

quencies set to 0.05 and 1.0, respectively. Pairwise r2

values were plotted against genetic distance (in cM;

based on genetic linkage map by Cavanagh et al.

(2013)) and a locally weighted polynomial regression

(LOESS) curve (Cleveland 1979) was fitted on the LD

plot using RStudio� (R Development Core Team

2010) using the ‘loess’ function. Critical values were

estimated by performing a square root transformation

of corresponding r2 estimates for unlinked marker

pairs (distance[ 50 cM) and then taking the 95th

percentile of this distribution (Breseghello and Sor-

rells 2006b). The intersection of LOESS line and r2

critical value was regarded as the distance where LD

starts to decay (Laido et al. 2014; Nielsen et al. 2014).

A p\ 0.005 was considered the significance threshold

for marker pairs to be in LD with each other.

Population stratification was assessed using the

program STRUCTURE (Pritchard et al. 2000) apply-

ing an admixture model, a burn-in of 10,000 iterations

followed by 10,000 Monte Carlo Markov Chain

(MCMC) replicates and number of clusters (K) set in

the range 2–10, with number of replications per

K equal to 10. The true number of clusters which best

fit the data was inferred using the Evanno criterion,

which uses an ad hoc statistic DK based on rate of

change in the log probability of data between succes-

sive values of K (Evanno et al. 2005). Likelihood

scores and results from STRUCTURE were collated

and visualized using the program STRUCTURE

Harvester (Earl 2012). Bar plots for membership

coefficients, Q for the AMP were plotted using the

‘pophelper’ package (Francis 2016) in RStudio�.

Analysis of molecular variance (AMOVA; Excof-

fier et al. 1992) was conducted using a ploidy

independent infinite allele model (q) tested under

999 permutations implemented in the software

Genodive (Meirmans and Van Tienderen 2004). Rho

(q) is an analogue of the population differentiation

coefficient (Fixation index, Fst) and is independent of

the organism’s ploidy level (Meirmans and Van

Tienderen 2004). Fixation indices and pairwise Gst

values of subpopulations were calculated using

STRUCTURE and Genodive programs, respectively.

Fst estimates the correlation of alleles within the same

subgroup relative to the entire population (Chao et al.

2010) while Gst compares heterozygosity within and

between populations, considering a correction for a

bias resulting from sampling a limited number of

populations (Nei 1987).

GWAS for GY and agronomic traits

Association analyses was performed employing sev-

eral model selections for a compressed mixed linear

model (CMLM) implemented in the Genome Associ-

ation Prediction Integrated Tool (GAPIT) (Lipka et al.

2012) package in RStudio�. Models included: (1) a

naı̈ve model, where only the kinship, K information,

and no correction for population structure were

applied (K only model); (2) a K-PC model (Zhao

et al. 2007) where kinship information together with

the first three principal components (PC) were

included for GWAS; and (3) a K-Q approach, where

a centered IBS (Identical by State) kinship method

(Endelman and Jannink 2012) in TASSEL 5.2.33 and

a population structure matrix derived from STRUC-

TURE were included in the model as fixed effects to

address population structure. In addition to these

models, marker scores for Rht and Vrn loci were

included under the K and K-PC as covariates to correct

their effects in identifying GY related MTA (Lopes

et al. 2015).

The mixed model used to account for genetic

relatedness in the AMP was as follows:

y ¼ l þ xb þ u þ e

where y is the vector of observed phenotype; l is the

mean; x is the genotype of the SNP; b is the effect of

the SNP; u is the random effects due to genetic

relatedness with Var (u) = r2g K and Var (e) = r2e;

K is the kinship matrix across all genotypes (Kang

et al. 2008; Lopes et al. 2015). CMLM tests one

marker at a time and considers the u andKmatrices as

the mean additive genetic relatedness between

222 Page 4 of 15 Euphytica (2017) 213:222

123



individuals to model polygenetic effects (Lipka et al.

2012).

A total of five combined datasets were used for

GWAS, namely BLUP trait values calculated from

adjusted means across all environments (ABLUP);

BLUP values derived from 2014 site-years (BLUP14);

BLUP from the 2015 site-years (BLUP15); BLUP

from northern environments across two years (Fayet-

teville, Keiser, AR; Okmulgee, OK; NBLUP), and

from southern environments across the two years

(Stuttgart, Marianna, Rohwer, AR; SBLUP).

The most reliable model for GWAS was identified

by performing a tenfold cross validation (CV) under a

ridge regression best linear unbiased prediction

(rrBLUP) model (Endelman 2011) for the most

heritable trait on an ABLUP dataset, where kinship,

K represented as a marker relationship matrix and

scores for Q and PC as covariates were fitted on the

model. A value of p\ 0.0005 was considered the

threshold for defining significant SNP due to devia-

tions of observed quantile–quantile (QQ) plots and to

further reduce Type I errors (Hoffstetter et al. 2016;

Lopes et al. 2015). Manhattan plots were visualized

using the ‘qqman’ package (Turner 2014) in RStudio�

Results

Genotype-by-environment interactions and trait

heritability

FAY15 had the highest mean GY, followed by

ROH15, and OKL15, while STU14, STU15, and

FAY14 had the lowest. Significant genotype effects

were observed for all traits indicating differential

performance (Table 1). Genotype-by-environment

interaction was highly significant for all traits. Incom-

plete block treatments as well as incomplete blocks

nested within environments did not show a significant

effect for measured phenotypic traits. Narrow sense

heritability (h2) estimates ranged from 0.30 to 0.81,

with PH the most heritable (h2 = 0.81), followed by

Table 1 Adjusted means and analysis of variance (ANOVA) of the measured traits for the soft red winter wheat association mapping

panel

Trait Mean Range h2 a

(Adj.)

ANOVA (mean squares)

Block (B)b Environment

(E)

B(E)c Genotype (G) GEI d

Grain yield (kg ha-1) 3172 604–7184 0.48 42204 1.42 9

107***

67904 1.37 9 106*** 710921***

Heading date (days) 116.3 57–136 0.63 1.18 9 10-21 535.67*** 2.40 9 10-21 30.80*** 11.37***

Kernel number

spike-1
27.4 9.5–43.9 0.37 1.78 9 10-22 933.04 5.09 9 10-22 30.46*** 19.27***

Kernel weight spike-1

(mg/spike)

0.85 0.3–1.9 0.47 5.67 9 10-24 0.85*** 6.25 9 10-24 0.08*** 0.043***

Kernel weight (mg/

kernel)

33.2 11.4–51.0 0.77 3.40 9 10-22 316.33*** 2.16 9 10-22 51.54*** 11.70***

Kernel weight spike-1

(mg/spike)

0.85 0.3–1.9 0.47 5.67 9 10-24 0.85*** 6.25 9 10-24 0.08*** 0.043***

Plant height (cm) 80.0 62.4–106.1 0.81 9.61 9 10-24 3940.59*** 1.12 9 10-21 309.75*** 58.82***

Peduncle length (cm) 34.1 24.4–47.2 0.33 1.13 9 10-22 3183.30*** 8.16 9 10-23 74.11*** 49.52***

Spike length (cm) 18.0 12.8–27.8 0.30 1.86 9 10-21 394.34*** 1.33 9 10-21 19.32*** 13.65***

a Narrow sense heritability estimates for adjusted means; calculated as h2 ¼ r2
G

r2
G
þr2

GEI
e

þr2
E
er

b Incomplete blocks
c Incomplete blocks nested within environments
d GEI genotype by environment interaction

*** Significant at p\ 0.0001 level
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KW (h2 = 0.71) and HD (h2 = 0.63). GY was

moderately heritable (h2 = 0.48) while SL was the

least heritable trait (h2 = 0.30).

Principal components analyses (PCA)

and phenotypic correlations

Results from PCA showed PC1 to explain 36.4% of

the total variation for phenotypic traits and was

positively associated with PL and negatively associ-

ated with all other traits (Fig. 1). PC2 contributed

20.1% of the total variation and was in positive

correlation with GY and KNS. The PCA biplot was

divided into two trait clusters: (1) GY and its

components including KNS, KWS, and KW; and (2)

HD and agronomic traits including PH, SL, and PL.

Pearson correlation coefficients (r) further supported

these PCA groupings as GY was strongly correlated

with KW (r = 0.48), KNS (r = 0.67) and KWS

(r = 0.73) (Table 2). PH was positively correlated

with PL (r = 0.49) and HD (r = 0.19). Neither HD

nor PH was significantly correlated with GY.

PCA biplot analyses for GY across site-years

revealed separation based on year, with the 2014

(FAY14 and STU14) and 2015 (excluding MAR15)

clustering separately (Fig. 1). PC1 explained 21.9% of

the variation for GY and was positively correlated

with MAR15. PC2 contributed 15.2% of variation for

GY across environments, was positively correlated

with OKL15, STU14, FAY14, and MAR15 and was

negatively correlated with STU15, FAY15, ROH15,

and KEI15.

Analysis of LD

A total of 74,822 intrachromosomal pairs were in

significant LD (p\ 0.005) at the whole genome level

(Online Resource 1). Average distance of markers in

significant LD was * 14.40 cM, while markers in

complete LD (r2 = 1.0) had an average distance of

1.71 cM for the whole genome. Genome D had the

highest average distance for pairs in complete LD

(3.14 cM), followed by Genomes B (1.90 cM) and A

(1.34 cM). Average r2 value for significant pairs

across the whole genome was 0.32. Among the

subgenomes, genome D also had the highest mean r2

for all significant pairs (0.37), followed by genomes A

(0.32) and B (0.31). LD was estimated to decay at

*7 cM for the whole genome, while genome D had

the highest extent of LD among the subgenomes,

estimated at*10 cM, compared to genomes A and B

(both estimated at *7 cM) (Online Resource 2).

Fig. 1 PCA biplots for the ameasured traits and b adjusted GY

across different site-years for the soft winter wheat AMP. Site-

years: FAY14 Fayetteville14; FAY15 Fayetteville15; KEI15

Keiser15; MAR15 Marianna15; OKL15 Oklahoma15; ROH15

Rohwer15; STU14 Stuttgart14; STU15 Stuttgart15. Traits GY

grain yield; HD heading date; KNS kernel number spike-1; KW

kernel weight; KWS kernel weight spike-1; PH plant height; PL

peduncle length; SL spike length
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Population structure

Genetic structure was evaluated using 5661 genome-

wide SNP markers where markers linked to major

genes were designated as fixed effects. Inference for

the true number of clusters (K) using the Evanno

criterion (Evanno et al. 2005) revealed the optimum

number of subpopulations for this panel at K = 3

(Online Resource 3). Each entry was assigned to one

of three subpopulations based on its largest value for

coefficient of membership (Q). Fifty-nine lines were

assigned to the first subgroup (Q1), 54 lines were

assigned to the second subgroup, Q2, and 126 lines to

the third subgroup,Q3 (Online Resource 4). There was

no observable clustering based on geographic origin

for the lines across the different subgroups. Analysis

of molecular variance (AMOVA) further revealed the

presence of within population variation, which

accounted for 89.1% of the total variance (Online

Resource 5). Mean value for Fst was highest for Q1

(0.69), followed by the Q2 (0.43) and Q3 (0.23)

subpopulations (Online Resource 6).

Genetic diversity for developmental genes

A total of 207 (87%) lines were semi-dwarfs, having a

dwarfing allele in combination with a tall allele for

either Rht-B1 or Rht-D1 (Online Resource 7). Two of

the lines were double dwarfs, while 26 lines possessed

wild-type tall alleles for both loci. Subgroup Q3 had

the highest number of semi-dwarf entries for both the

Rht-B1a/Rht-D1b and Rht-B1b/Rht-D1a (semi dwarf)

allelic combinations (106; 51.2%), in addition to 17

wild-type lines. Majority of lines possessing the

photoperiod insensitive Ppd-D1a allele also belonged

to the Q3 subpopulation (56; 57.7%). Forty-seven of

the entries (19.7%) had a short vernalization allele at

the winter vrn-1A locus (vrn-A1b, M_vrn_A1_ex4

locus) with 23 of these lines belonging to subgroup

Q3, while 40 of the lines (16.7%) had short vernal-

ization at vrn-B1 (Vrn-B1a, Vrn-B1_AGS2000 locus)

(Guedira et al. 2014).

Summary for marker-trait associations (MTA)

identified

Predictability for PH (i.e. the most heritable trait) for

the ABLUP dataset was highest for K-PC (0.25) under

an rrBLUPmodel; hence this was regarded as the most

reliable in identifying significant MTA. K-Q and K

only models, performed similarly with prediction

values equal to 0.18 and 0.16 (data not shown). GWAS

identified 112 loci significantly associated with the

eight measured traits at a threshold of p\ 0.0005

(Online Resource 8; Online Resource 9).

MTA were detected in all chromosomes except 1D,

3D, 5D, and 6D based on a significance threshold of

p\ 0.0005. SNPs associated with multiple traits

Table 2 Phenotypic correlations (r) of the measured traits for the soft winter wheat association mapping panel

Trait GY HD KNS KW KWS PH PL SL

GY –

HD 0.10 –

KNS 0.67*** 0.13* –

KW 0.48*** –0.07 0.26*** –

KWS 0.73*** 0.06 0.87*** 0.70*** –

PH -0.07 0.19* 0.02 0.18* 0.10 –

PL -0.15* -0.04 -0.10 0.06 -0.07 0.49*** –

SL 0.01 0.09 0.08 0.062 0.08 0.12 0.11 –

GY grain yield, HD heading date, KNS kernel number spike-1, KW kernel weight, KWS kernel weight spike-1, PH plant height, PL

peduncle length, SL spike length

* Correlation is significant at p\ 0.05 level

** Correlation is significant at p\ 0.001 level

*** Correlation is significant at p\ 0.0001 level
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included: SNP wsnp_Ex_c12254_19574891 (1A)

associated with HD and KNS; Ppd-D1- ‘Norstar’

allele (2D) associated with both PH and HD (Table 3;

Fig. 2). SNP wsnp_Ex_c2500_4671165 (3B) associ-

ated with PH and KNS; wsnp_Ex_c13849_21698240

(4B) with GY and KNS, and

wsnp_Ex_c48922_53681502 (4B), associated with

GY and KWS.

MTA for GY and yield components

Fifteen markers significant for GY were distributed

across eight chromosomes and responsible for 8–28%

of the phenotypic variation. Highly significant GY

MTA (wsnp_Ex_c259_497455; p = 8.56E-05) in

chromosome 2B showed an overall negative allelic

effect (-49.35) under a K-Q model. Using Rht-B1 and

Vrn-A1 as covariates in a K and K-PCmodel identified

nine SNPs associated with GY in four different

datasets. There were 19 markers in 11chromosomes

associated with KNS, explaining 6–16% of the

phenotypic variation. MTA for KWS (19) were

distributed across seven chromosomes and responsible

for 8–26% of the phenotypic variance. Markers

associated with KW (9) which accounted for

10–29% of the variation were located in four chro-

mosomes (1A, 2B, 3A, 6A).

MTA for agronomic traits

Fourteen trait-specific MTA for HD were detected in

four chromosomes with KASP� markers for the

alleles of Ppd-D1 ‘Ciano 67’ and Ppd-D1 ‘Norstar’

being highly significant across four datasets. PH had

the largest number of detected MTA (24) which

included Rht-D1 (4D) detected across all BLUP

datasets and responsible for 17–34% of variation.

Rht-D1 was highly significant for PH, with p values

ranging from 1.90E-08 to 1.80E-05. Spike length

had the least number of detected MTA (8), which

mapped to chromosomes 1A, 1B, 7B, and 7D.

Significant markers for PL (10) were identified in

four chromosomes and were responsible for 6–13% of

trait variation.

Discussion

Rapid LD decay

Analysis of LD is a prerequisite for evaluating a

collection of genotypes and determining adequate

marker density for GWAS (Bellucci et al. 2015; Chen

et al. 2012; Lopes et al. 2015). LD in the AMP was

estimated at *7 cM across the whole genome, with

Table 3 Markers associated with multiple traits identified for yield and agronomic traits for the soft red winter wheat association

mapping panel

Marker Model Traits Dataseta Chr Position (cM) p value Allelic effectsb R2c

wsnp_Ex_c12254_19574891 K-Q HD NBLUP 1A 12.43 0.00027 2.136 0.08

K-Q KNS NBLUP 1A 12.43 0.00012 -7.331 0.09

Ppd-D1d K-Q HD BLUP14 2D 4.86 9 10-5 0.314 0.13

K-Q PH SBLUP 2D 0.000375 1.067 0.28

wsnp_Ex_c2500_4671165 K-PC PH ABLUP 3B 263.71 7.10 9 10-5 0.113 0.18

K KNS NBLUP 3B 263.71 0.000433 -6.877 0.06

wsnp_Ex_c13849_21698240 K-PC-Rht-

Vrn

GY BLUP15 4B 85.15 2.03 9 10-5 128.3 0.26

K-Q KNS NBLUP 4B 85.15 3.33 9 10-5 -2.034 0.10

wsnp_Ex_c48922_53681502 K-PC GY SBLUP 4B 100.86 0.000288 -43.347 0.27

K-PC KWS BLUP15 4B 100.86 0.000270 -0.012 0.24

GY grain yield, HD Heading date, KNS kernel number spike-1, KWS kernel weight spike-1, PH plant height
a Phenotypic dataset generated from combining adjusted means from BLUP across all environments (ABLUP); across the northern

locations (NBLUP); southern locations (SBLUP); 2014 site-years (BLUP14); and 2015 site-years (BLUP15)
b Allelic effects with respect to the minor allele
c Reflect the phenotypic variation explained by the marker, R2 of the model with SNP calculated in GAPIT package in R
d Ppd-D1 ‘Norstar’ allele
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Fig. 2 Manhattan plot showing genome-wide SNP loci asso-

ciated with GY, HD, and PH. Horizontal line represents the

significance threshold by which markers were considered

associated with a trait (p\ 0.0005; *3.30). a Plot of

genome-wide markers associated with GY under a K-PC model,

BLUP15; b Plot of genome-wide markers associated with HD

under a K–Q model, ABLUP c Plot of genome-wide markers

associated with PH under a K–Q model, NBLUP
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the low proportion of observed marker pairs in

complete LD (3.96%) and significant LD (48.71%)

leading to this rapid decay. The mean r2 value for

significant marker pairs was 0.32, comparable to a

previous study on eastern US soft winter wheat

(Cabrera et al. 2014). Other studies have shown LD

in winter wheat to decay at distances from 2 to 5 cM

(Chen et al. 2012; Hoffstetter et al. 2016; Tadesse et al.

2015) and up to[10 cM distances (Benson et al. 2012;

Zhang et al. 2010). Higher LD in the D compared to

the A and B genomes was consistent with previous

reports (Chao et al. 2010; Sukumaran et al. 2014) and

is a possible consequence of recent introgression and

bottleneck accompanying the origin of hexaploid

wheat (Chao et al. 2010).

The relatively rapid LD decay implies a higher

number of markers required for GWAS, which can

result in higher mapping resolution (Abdurakhmonov

and Abdukarimov 2008). Next-generation sequencing

(NGS) platforms such as genotyping by sequencing

(GBS) (Elshire et al. 2011; Poland and Rife 2012)

could help in generating a larger number of markers

amenable to GWAS, particularly for the D genome

where marker coverage was low. This low marker

coverage in the genome D could also have led to

higher mean r2 values, average distance of pairs in

significant LD, and markers in complete LD. Using a

two-tailed t test to compare the average r2 values and

cM distance revealed significant differences between

values for genomeD and genomes A and B (p\ 0.05).

Higher average r2 value for the D genome, neverthe-

less, indicates that fewer markers are needed for

association mapping (Sukumaran et al. 2014).

Moderate genetic stratification

The presence of population structure (PS) can lead to

false positive discoveries in GWAS and thus relation-

ships must be accounted for (Sorrells and Yu 2009;

Sukumaran and Yu 2014). Moderate genetic stratifi-

cation for the AMP was supported by a high within

group genetic variance (89.1%). This observation was

similar with previous results in spring wheat (Edae

et al. 2014) and wheat lines from US and Mexico

(Chao et al. 2010) and reflects the impact of selection

in maintaining allelic diversity in wheat breeding

populations (Edae et al. 2014). The lack of clustering

of entries from the same geographic origin within a

subpopulation in this study further supported this large

within group variation. Subgroup Q1 was more

genetically similar with Q3, reflected by a lower Gst

value between these subgroups (0.13), compared toQ1

and Q2 (0.17). One possible explanation for this is the

presence of more entries possessing the Rht-B1b/Rht-

D1b allele combinations in the Q1 (7) and the Q3 (17)

subgroups, compared to the Q2 (2) subgroup. Q3 was

the least differentiated among the subgroups, as

reflected by having the lowest value for Fst. In

contrast with the current observation, higher levels of

population structure had been detected in Chinese

wheat cultivars (Zhang et al. 2011), US elite winter

wheat (Zhang et al. 2010), and CIMMYT elite spring

wheat yield trial lines (Dreisigacker et al. 2012).

Genome location of identified MTA compared

to previous studies

GY is a complex trait and its improvement is a primary

objective for wheat breeding programs (Ain et al.

2015; Green et al. 2012). The distribution of MTA in

multiple chromosomes confirms a complex genetic

architecture for yield (Quarrie et al. 2005; Shi et al.

2009). In the present study, significant associations

identified for GY and yield component MTA in

chromosomes 1A, 2A, 2B, 3B, and 5A agreed with

previous reports (Addison et al. 2016; Bennett et al.

2012; Bordes et al. 2014; Lopes et al. 2015). Markers

in LD in chromosome 4B associated with GY

(wsnp_Ex_c13849_21698240, wsnp_Ex_c48922_536

81502, and wsnp_CAP11_c84_120095) were mapped

in a region flanking the Rht-B1 locus, which was

previously associated with variation for GY in a

CIMMYT spring wheat GWAS (Lopes et al. 2015).

SNP wsnp_Ex_c259_497455, identified in the SBLUP

dataset, coincided with a GY QTL mapped between 9

and 12.5 cM in chromosome 2B by Bordes et al.

(2014). Additionally, GY-associated markers

wsnp_Ex_c2723_5047696, mapped in ABLUP,

BLUP15, and SBLUP datasets under a K-Q model,

together with wsnp_Ex_rep_c66331_64502363 and

wsnp_Ex_rep_c66331_64502558 co-localized with a

QTL previously mapped in chromosome 3BS for yield

under irrigated conditions (Bennett et al. 2012). The

use of BLUP trait values from combined analyses

increased the power in finding significant QTL as

BLUPs are robust in identifying significant associa-

tions (Mason et al. 2013). Majority of the GY MTA

observed in this study showed negative allelic effects
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with respect to the minor allele, indicating that

breeders have been successful in selecting alleles that

improve yield and productivity in modern winter

wheat cultivars. Validation of yield QTL in CIM-

MYT’s WAMI panel (Lopes et al. 2015; Sukumaran

et al. 2014) also showed that selections were made for

the yield ‘‘enhancing’’ major allele (DN Lozada,

unpublished data), suggesting that both winter and

spring classes have undergone similar selection pres-

sures to achieve optimum yield. Simultaneously

capturing these favorable alleles into new germplasm

would be beneficial for breeding higher yielding

varieties of wheat.

Yield component traits are generally more herita-

ble than GY itself and therefore have potential for

genetic improvement. A SNP associated with KNS,

wsnp_Ex_c12254_19574891 (1A), was mapped

within a 6 cM distance from marker wPt6122, previ-

ously associated with grain number and spike number

m-2 in a winter wheat core collection (Neumann et al.

2011). The same marker was also located proximal to

a KNS QTL (within 1 cM) region previously detected

by Edae et al. (2014). SNP wsnp_Ex_c1276_2445537

mapped at 172.32 cM in chromosome 6B coincided

with a KWS-associated region reported by Neumann

et al. (2011) at 175.9 cM. For KW,

wsnp_JD_c5699_6859527 (3A) co-located with a

thousand grain weight ‘‘enhancing’’ locus

BARC0197_174 in a panel of European winter and

spring wheat varieties (Zanke et al. 2015). The

positive minor allele effect of this marker and its

detection in three BLUP datasets (ABLUP, BLUP15,

NBLUP) under a K-Q model indicate that it could be a

potential target for improving KW in existing

germplasm.

Twenty-four markers distributed across 10 chro-

mosomes were associated with variation in PH.

Although influenced by many genes, PH is highly

heritable and controlled in large part by Rht-B1 and

Rht-D1 (Snape et al. 1977; Würschum et al. 2015;

Zanke et al. 2014b). Rht-D1 was highly significant for

PH across all BLUP datasets and models used with the

dwarfing allele present in 64% of the lines (Online

Resource 7). The positive allelic effect for this locus

indicates that selection by breeders has favored the

‘‘height reducing’’ major allele, as shorter stature has

been shown to reduce lodging and increase harvest

index (Rebetzke et al. 2011). Despite this, PH was not

correlated with GY, in agreement with a previous

study by Sukumaran et al. (2014) and in contrast with

Bellucci et al. (2015) where negative correlation

between these traits was observed. No PH MTA were

detected in chromosome 4B harboring the Rht-B1

gene, consistent with other studies that have shown

Rht-D1 to have a larger genetic effect (Bellucci et al.

2015; Neumann et al. 2011; Würschum et al. 2015;

Zanke et al. 2014b). It is also worth noting that PH did

not share common significant loci with PL and SL, an

unexpected result considering a high correlation

observed between these traits and in contrast with

previous studies (Heidari et al. 2012; Sukumaran et al.

2014).

The timing of anthesis is a critical trait for

adaptation of wheat to diverse environments and is

primarily affected by genes for vernalization and

photoperiod response (Zanke et al. 2014a). In the

present study, MTA for HD were identified in four

chromosomes and did not include the Ppd-B1 region

on 2B. This result is likely due to both the stronger

effect of the Ppd-D1a allele for conferring photope-

riod insensitivity (Guedira et al. 2016; Kamran et al.

2014) and its higher frequency within the population

(54.8%) compared to Ppd-B1a (14.6%) (Online

Resource 7). Ppd-D1 markers for ‘Ciano 67’ and

‘Norstar’ alleles were significantly associated with HD

across four BLUP datasets and all GWAS models

used, similar to previous observations (Zanke et al.

2014a). Major alleles for these loci had negative allelic

effects for HD, indicating that insensitivity to pho-

toperiod decreased days to HD, which plays a large

role in the adaptation of wheat to the southern US

growing areas.

Current and future genetic improvement

of southern US winter wheat

The pleiotropic effect of photoperiod insensitivity

conferred by Ppd-D1a on plant development has

previously been shown (Snape et al. 2001; Zanke et al.

2014b) and has its importance for adaptation of

southern US winter wheat (Addison et al. 2016;

Guedira et al. 2016). In addition to HD, Ppd-D1

‘Norstar’ allele was associated with PH, with a

positive minor allele effect indicating selection for

reduced PH to improve grain yield. Bentley et al.

(2014) and Wilhelm et al. (2013) noted a reduction in

PH caused by Ppd-D1a among elite European lines

and in a worldwide wheat germplasm panel. In this
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study, 66 of the 100 highest yielding lines possessed

the Ppd-D1b allele for the Ppd-D1 ‘Norstar’ allele,

which was higher than expected based on allele

frequency (Online Resource 11), indicating its impor-

tance for yield and adaptation in the current germ-

plasm. The Rht-D1b dwarfing allele was also present

in 60 of the 100 highest yielding entries. Taken

together, our results showed the interplay of reduced

PH and photoperiod to produce higher yielding

cultivars of soft winter wheat adapted to the southern

US.

Several studies have previously reported multi-

trait MTA associated with GY, yield components and

agronomic traits using a GWAS approach in spring

wheat (Edae et al. 2014; Sukumaran et al. 2014). GY

shared common MTA (wsnp_Ex_c13849_21698240

and wsnp_Ex_c48922_53681502 (4B)) with KNS

and KWS (Table 3), which explained 10–26% of trait

variation (Table 2). To our knowledge, there has not

been a report on multi-trait loci related with control-

ling variation for GY and yield components mapped

in chromosome 4B. Edae et al. (2014) previously

identified multi-trait markers associated with GY,

spikes m-2, KW, and TW in chromosome 5B while

Wang et al. (2009) mapped loci in 1B, 2A, and 3B

associated with grain filling rate, KWS, and KW. Our

results here thus provide additional multi-trait loci

associated with yield and yield components which

can be targeted for future MAS to improve GY and

adaptation in soft winter wheat. The multi-trait

markers identified in this study could ultimately be

used to accelerate pyramiding of yield and adapta-

tion-related QTL to develop southern US winter

wheat varieties with increased GY potential and

broader adaptations.

Conclusions

A GWAS for GY, yield components, and agronomic

traits in soft winter wheat was conducted using

genome-wide SNP markers. Multi-trait MTA in

chromosomes 1A, 2D, 3B, and 4B were identified

and could be potential targets of selection for marker-

assisted breeding to capitalize on variation for GY,

yield components, and adaptation traits in winter

wheat. QTL validation and development of breeder-

friendly assays for these multi-trait loci and their

deployment to existing breeding programs could

ultimately help accelerate MAS to improve GY and

adaptation in soft winter wheat. Results from this

study serve as valuable resources for molecular

breeding towards varietal improvement of wheat.

The utility of association mapping approach for

determining genomic regions affecting variation for

traits of agricultural and economic importance was

demonstrated.
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