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Abstract Genome-wide association studies have

become a wide spread method of quantitative trait

locus identification for many crops, including wheat

(Triticum aestivum L.). Its benefit over traditional

biparental mapping approaches depends on the extent

of linkage disequilibrium (LD) in natural populations.

We estimated the genetic diversity, population struc-

ture, and LD decay rate in a winter wheat association

mapping panel (n = 205) and identified markers

associated with thousand-kernel weight (TKW) and

related traits. The panel was genotyped with a high-

density Illumina iSelect 90 K single nucleotide poly-

morphism assay. PIC values were 0.047–0.375 with a

mean of 0.277. Structural analysis suggested the

association mapping panel contained four subpopula-

tions. LD decay rates extended to longer genetic

distances within the D genome (11.0 cM) relative to

the A and B genomes (1.5 and 1.8 cM, respectively).

A total of 271 marker-trait associations (MTAs) were

identified for TKW and related traits, explaining

5.49–9.86 % of variation in individual traits. Among

them, 11 highly significant markers (p\ 0.0001),

eight stable markers and twelve multi-trait MTAs

were detected. Two stable markers,Ku_c9210_105 for

KL and BS00023893_51 for TKW, were detected in

three environments. These MTAs could be used for

developing cleaved amplified polymorphic sequence

markers for molecular marker-assisted selection in

wheat breeding programs.
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Introduction

Wheat (Triticum aestivum L.) is one of the most

important crops in the world. Thousand kernel weight

(TKW) is one of the three major yield components, and
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it is not only directly related to wheat grain yield and

milling quality, but also affects seedling vigor and

growth, which indirectly affects yields (Cui et al. 2011;

Ramya et al. 2010). TKW has also been found to be

closely associated with kernel size traits, such as kernel

length (KL), kernel width (KW), kernel thickness (KT),

and kernel diameter ratio (KDR; Sun et al. 2009; Tsilo

et al. 2010). Consequently, a better understanding of the

relationships between kernel weight and associated

traits by analyzing their geneticmechanisms is essential

to further increases in wheat grain yields.

Genome-wide association studies (GWAS) and

traditional quantitative trait loci (QTL) mapping are

the two main approaches to dissecting the genetic

bases of complex traits (Risch and Merikangas 1996).

To date, numerous traditional QTL studies have been

conducted to uncover the genetic basis of TKW and

related traits in wheat (Cui et al. 2011, 2015; Huang

et al. 2006; Ramya et al. 2010; Sun et al. 2009; Zhang

et al. 2014; Zheng et al. 2010). However, the

traditional QTL mapping approach often locates

genomic regions containing polymorphisms that are

limited to the biparental population and with low

resolution. GWAS, as a complement to QTLmapping,

has rapidly become a promising approach to genetic

mapping based on linkage disequilibrium (LD).

Association mapping studies have many advantages

over traditional QTL mapping, including increased

QTL resolution, allele coverage, and potential use of

natural germplasm (such as landraces, elite cultivars,

and advanced breeding lines) (Buckler and Thorns-

berry 2002). In wheat, few studies have used associ-

ation mapping to dissect the genetics of end-use

quality traits (Breseghello and Sorrells 2006), yield

component traits (Yao et al. 2009), and disease

resistance (Tommasini et al. 2007).

Population structure and LD provide strategic infor-

mation for successful association mapping (Zhang et al.

2010). The presence of population stratification in

association mapping panels can result in nonfunctional

spurious associations between molecular markers and

traits (Flint-Garcia et al. 2003). The prevalence of LD in

targeted genomic regions is a prerequisite for associ-

ationmapping (Al-Maskri et al. 2012).Moreover, LD is

population specific, affected by many genetic factors

(Flint-Garcia et al. 2003), and highly variable across the

genome. The presence of population structure has been

widely documented in studies investigating the diver-

sity of elite crop germplasm, especially in self-

pollinating cereals (Hao et al. 2011). Therefore, an

understanding of the population structure and extent of

LD is a prerequisite for meaningful association map-

ping results.

To achieve high mapping resolution, GWAS require

a large number of molecular markers that cover the

whole genome at a sufficient resolution (Sajjad et al.

2012; Yao et al. 2009). Because single nucleotide

polymorphism (SNP) markers are abundant and evenly

distributed across most genomes, they satisfy the large

samples and high-density marker requirements of

GWAS (Gupta et al. 2008). Coupled with progress in

next-generation DNA sequencing, SNP detection and

genotyping can be conducted in a high-throughput and

cost-effective manner, which has enabled SNP markers

to be widely used in GWAS of many animals and

plants, including humans (Eric et al. 2011), rice (Huang

et al. 2010), and maize (Wilson et al. 2004). However,

the use of SNP markers in wheat GWAS is a challenge

because of wheat’s complex genomic architecture and

incomplete genome sequence (Sukumaran and Yu

2014). Recently, the 90 K iSelect SNP genotyping

array permitted a dramatic increase in the numbers of

gene-based SNP markers that can be used to construct

high-density linkage maps (Wang et al. 2014) and

conduct QTL analysis in durum wheat (Colasuonno

et al. 2014). GWAS using SNP markers for agronom-

ical traits including TKW has also been applied in

wheat (Zanke et al. 2015).

In the present study, we used the currently available

90 K Illumina iSelect SNP array (Wang et al. 2014) to

genotype and analyze a panel of 205 diverse Chinese

winter wheat lines. Our objectives were to (1)

determine the genetic diversity, population structure,

and LD extent of the association mapping population

using SNPmarkers and (2) identify molecular markers

associated with TKW and related traits in this mapping

population. The results of the present study can

facilitate marker-assisted breeding and reveal strategic

combinations of TKW and related traits in wheat.

Materials and methods

Plant materials

The winter wheat association mapping panel used in

this study was comprised of 205 genetically diverse

varieties or lines carefully chosen to represent genetic

174 Euphytica (2016) 212:173–185

123



stock used in the regions of China that grow winter

wheat. Among them, 203 varieties and lines came

from 10 provinces that are major winter wheat

production regions in China and the remaining two

varieties, used as founder parents, are from other

countries (Mexico and France). Of the 205 varieties

and lines, there were 77 bred varieties, 55 founder

parents, and 73 breeder’s lines. The 73 breeder’s lines

were specifically chosen from among varieties used in

Shandong provincial regional trials in 2012

(Table S1).

Experimental design and phenotypic trait

evaluation

The association mapping panel seeds were planted in

Tai’an (116�360E, 36�570N) and Dezhou (116�290E,
37�450N) for two consecutive years (2013 and 2014),

respectively. The experimental design followed a

completely randomized block design with two repli-

cates in each environment. All lines were grown in a

three-row plot with 2 m long and 25 cm row-to-row

distance. Crop production practices followed local

procedures. There was no damage attributable to

climate, disease, or pests during the growing seasons.

The measurement of KL, KW, KT, and TKW was

carried out after the materials were harvested, follow-

ing natural maturity. One thousand kernels of three

independent samples were weighed and the mean was

considered the 1000-kernel weight for each replicate

of each genotype. The kernel length, width, and

thickness were measured using an automatic color

seed counter SC-I (Zhejiang Sci-Tech University).

KDR was calculated as KDR = KL/KW.

DNA extraction

DNA was extracted from young leaf tissues of each

variety using the protocol recommended by Triticarte

Pty. Ltd (http://www.triticarte.com.au). DNA quality

was checked by electrophoresis on 0.8 % agarose gels,

and DNA concentration was determined with a

NanoDropND-1000 UV–Vis spectrophotometer

(NanoDrop Technologies, Wilmington, USA).

SNP markers and genotyping

The samples were genotyped using the recently

developed wheat 90 K Illumina iSelect array

comprising 81,587 gene-associated SNPs (Wang

et al. 2014). Genotyping was performed at the

University of California, Davis, Genome Center

following the manufacturer’s recommendations as

described by Akhunov et al. (2009). The genotyping

assays were carried out on the Illumina iScanReader.

Genotypic clusters for each SNP were determined

using the polyploid version of GenomeStudio software

(Illumina, http://www.illumina.com). The accuracy of

SNP clustering was visually checked, and incorrectly

clustered SNPs were manually adjusted. The SNPs

with a detection rate exceeding 0.8 and a minor allele

frequency (MAF) exceeding 0.05 were used for fur-

ther data analysis.

Data analysis

The basic genetic statistics, including total number of

alleles, gene diversity, MAF, and polymorphism

information content (PIC), were calculated with

Power Marker v 3.25 (Liu and Muse 2005). Pheno-

typic data analyses were performed using statistical

software SPSS version 17.0 (SPSS, Chicago, IL,

USA). Phenotypic correlation coefficients between

TKW and related traits were calculated separately for

each environment. Broad sense heritability was

calculated as described by Wyman et al. (1991).

Population structure analysis was performed using

the neighbor-joining (NJ) cluster analysis and STRUC-

TURE v 2.2 software (Pritchard et al. 2000) based on

the genotyping data obtained from unlinked SNP

markers in the population. In the former method, the

genetic distance between genotypes was computed

using Rogers (1972) genetic distances with Power

Marker v 3.25, and the cluster analysis was carried out

using the NJ tree method implemented in MEGA 4.0

(Tamura et al. 2007). In the STRUCTURE analysis,

five independent runs were performed with a K-value

(the putative number of genetic groups) varying from 1

to 15, with the length of burn-in period and the number

of MCMC (Markov chain Monte Carlo) generations

after burn-in both set to 100,000 under the ‘admixture

model.’ The most likelyK-value was determined by the

log probability of data [LnP(D)] and an ad hoc statistic

DK based on the rate of change of LnP (D) between runs

using successiveK-values as described by Evanno et al.

(2005). The maximum membership probability among

subgroups was applied to subdivide the accessions into

different subgroups.

Euphytica (2016) 212:173–185 175

123

http://www.triticarte.com.au
http://www.illumina.com


LD between SNP markers, including pairwise

estimates of the squared allele-frequency correlation

(r2) and the significance of each pair of loci, was

estimated by TASSEL3.0 (Bradbury et al. 2007). The

pair-wise significance was computed from 1,000

permutations. The r2 among loci was calculated

separately for unlinked loci on different chromosomes

and for linked loci on the same chromosome. Loci

were considered to be in significant LD when

p\ 0.001. A critical value for r2, used as evidence

of linkage, was derived from the 95th percentile

threshold of unlinked loci according to the method

described by Breseghello and Sorrells (2006). LD

decay scatter plots of syntenic r2 versus genetic

distance (cM) between markers were generated using

SPSS 17.0. The smothering second degree LOESS

curve was fitted and the point at which the LOESS

curve intercepted the critical r2 was determined to be

the average LD decay of the population.

Significant marker-trait associations (MTAs) were

identified using a mixed linear model (MLM) in

TASSEL3.0, which simultaneously accounted for

population structure and kinship. The population

structure (summarized by the Q matrix) was inferred

by the program STRUCTUTE v 2.2 and the kinship

matrix (summarized by the K matrix) was calculated

by software TASSEL3.0. The P value determined

whether a QTL was associated with the marker or

not. The R2 was used to evaluate the magnitude of

the MTA effects. SNPs with p B 0.001 were

considered to be significantly associated with indi-

vidual traits.

Results

Phenotypic data

Phenotypic variation in TKW and related traits within

the different environments are shown in Table S2. All

of the evaluated traits exhibited wide variation across

the association mapping populations in each of the

environments. Broad sense heritability of the five traits

ranged from 52.78 % for KDR to 72.02 % for KL,

indicating that both genetic and environmental factors

played roles in the expression of these measured traits.

Both absolute values of skewness and kurtosis were

less than 1.0, which indicates these traits are typical

quantitative traits regulated by multiple loci, and

phenotypic data were therefore suitable for GWAS

analysis.

To pinpoint the relationships between TKW and

related traits, correlation coefficients (r) among these

traits were calculated based on environment

(Table S3). Specifically, significant positive correla-

tions were observed between TKW and KL, between

TKW and KW, and between TKW and KT, whereas

significant negative correlations were observed

between TKW and KDR across all four environments.

The highest correlation coefficients were detected

between TKW and KW, while the lowest was between

TKW and KDR. The results indicated that KW was

most strongly correlated with TKW, followed by KT

and KL.

Molecular markers and consensus genetic map

Among 81,587 SNP markers on the 90 K wheat chip,

38,381 SNP markers (47.04 %) were polymorphic in

the association mapping population. When SNPs with

detection rates less than 0.2 or a MAF less than 0.05

were removed, a total of 32,432 SNPs remained. Of

these SNPs, 24,355 SNPs genetically mapped to the

wheat consensus linkage map constructed by Wang

et al. (2014) and were used for the subsequent study.

The distribution of 24,355 SNPs on each chromosome

are shown in Table S4. The total length of the map was

3674.16 cM, with a mean genetic distance of 0.15 cM

betweenmarkers. Chromosome 1B contained the most

markers (n = 2390), followed by Chromosome 5B

(n = 2187) and 2B (n = 1977), while chromosome

4D had the fewest loci (n = 78). Among the A, B, and

D genomes, the B genome contained the most loci

(n = 12,321) across a total length of 1150.47 cM,

followed by the A genome (n = 9523) with a total

length of 1252.51 cM, and the D genome (n = 2511)

with a length of 1271.18 cM. SNP density ranged from

0.48 cM-1 for chromosome 4D to 14.00 cM-1 for

chromosome 6B.

Genetic diversity

Using 24,355 SNP markers, genetic diversity of the

association mapping population was evaluated at the

genome level (Table S5). Among the 205 accessions,

48,710 alleles were detected at the 24,355 marker loci,

each with two alleles as expected. Approximately

60.33 % of SNPs (14,694/24,355) had an MAF more
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than 0.2, which were then selected as markers with

normal allele frequencies, and 9.63 % of SNPs (2346/

24,355) showed almost equal allele frequencies (with

MAF close to 0.5) for two alternative alleles (Fig. S1).

The SNP markers showed different levels of gene

diversity, and values ranged from 0.024 to 0.500 with a

mean of 0.337. The average PIC value was 0.277,

ranging from 0.047 to 0.375 with a peak distribution

between 0.35 and 0.38, and over 69 % of SNPs had a

PIC value of 0.20–0.40. Among the A, B, and D

genomes, the B genome had the highest PIC value and

gene diversity, followed by genomes D and A.

Population structure analysis

A total of 3852 unlinked SNP markers were selected

from 24,355 SNPs for population structure analysis. In

the NJ cluster analysis, 205 accessions clustered into

four groups (Fig. 1). Group 1 comprised 22 varieties

(lines) and was dominated by the wheat varieties from

Henan province. Group 2 consisted of 23 varieties

(lines) and was mainly comprised of varieties from

Hebei province. Group 3 was the largest group and

included 109 varieties or lines, most of which were

from Shandong province. Group 4 included 51 vari-

eties (lines) most from three provinces (Shanxi,

Jiangsu, and Ningxia provinces). The clustering

analysis based on the genotypic data generally corre-

sponded to known pedigrees, and the lines closely

related in the pedigree usually did cluster together. For

example, Lin4 (A53), which was derived from

Lumai23 (A22), clustered with Lumai23 in group 3.

Yannong19 (A32) and Yannong21 (A31), which were

both derived from Shan 82-29, clustered together (in

group 3). Furthermore, 73 wheat breeder’s lines were

scattered across the four groups.

In the STRUCTURE analysis, the DK value was

plotted against the number of hypothetical subgroups K,

with the highest DK observed for K = 4 (Fig. S2).

Accordingly, the 205 accessions were segregated into

four subpopulations with the maximum membership

probability (Fig. S3). Subpopulations 1–4 were respec-

tively comprised of 43, 32, 105, and 24 varieties or lines,

which was consistent with the NJ cluster analysis result.

Linkage disequilibrium analysis

Like the above population structure analysis, 3852

unlinked SNP markers were also used to evaluate the

LD extent of the association mapping panel

(Table S6). Across all 3852 loci, a total of 5784,214

locus pairs (including 144,177 linked locus pairs and

5640,037 unlinked locus pairs) were detected in the

mapping population. Of these locus pairs, 355,184

(6.14 %) locus pairs were associated at the p\ 0.001

level. Among linked locus pairs, 34,616 (24.01 %) of

144,177 locus pairs were in LD at the p\ 0.001 level,

with an average r2 of 0.21 (ranging from 0.043 to1, or

complete LD). Higher LD was observed in linked

locus pairs than in unlinked locus pairs. Only 320,568

unlinked locus pairs (5.68 % of 5640,037) were in

LD at the p\ 0.001, and r2 values varied from 0.044

to 1 with a mean of 0.11. Some differences were

observed in the LD extent among the A, B, and D

genomes. The B genome contained the largest

percentage of significant markers (27.75 %), fol-

lowed by the A genome (21.44 %) and the D genome

(17.86 %).

To reveal LD decay distances in the association

mapping population, we generated LD decay scatter

plots of syntenic r2 versus genetic distance (cM) and

estimated LD decay distances for the whole genome as

well as the A, B, and D genomes (Fig. 2). A critical

value of r2, or basal LD, was calculated from inter-

chromosomal LD analysis and was estimated to be

0.21 in this study. The point at which the LOESS curve

intercepts the critical r2 was determined as the average

LD decay of the population. Based on these criteria,

LD decay distance was about 2 cM for the whole

genome, and approximately 1.5, 1.8, and 11 cM for

the A, B, and D genomes, respectively (Table S6).

Extensive variability in the magnitude of r2 at a given

genetic distance was detected, which reflects the wide

local variation in the extent of LD extent across the

genomes.

Marker–trait associations

A total of 271 MTAs were detected for TKW and the

related traits across four environments. They were

distributed across all wheat chromosomes except for

3D, and explained 5.49–9.86 % of the phenotypic

variance (Table S7, S8). The highest number of MTA

was recorded for KDR (86), followed by KL (65), KT

(48), and KW (39), while the fewest MTA were

observed for TKW (33). Of these MTAs, eleven

markers showed highly significant associations with

TKW and related traits (p\ 0.0001), eight markers
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were detected in two or more environments, and

twelve MTAs were multi-trait MTAs (Table 1, 2).

Sixty-fiveMTAs for KLwere mapped to 9 of the 21

chromosomes and explained 5.55–9.78 % of the

phenotypic variance. Of these MTAs, four MTAs on

chromosomes 1B, 2B, and 3A showed highly signif-

icant associations with KL (p\ 0.0001) explaining

8.04 % to 9.78 % of variation in the trait. Two MTAs

(RAC875_c291_696 and RAC875_c291_647) on

chromosome 1B were detected in two environments

and accounted for 6.83–8.26 % of the phenotypic

variance in each environment. One MTA

(Ku_c9210_1059) on chromosome 2D showed up in

three different environments explaining 6.18–6.34 %

of the phenotypic variance, which suggests this MTA

could be considered a stable marker for the trait.

Moreover, a locus harboring ten MTAs for KL was

detected on chromosomes 3A (91 cM), which can

therefore be regarded as a strongly associated region

for KL.

Fig. 1 Neighbor-joining (NJ) tree for the association panel based on SNP marker
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Thirty-nine MTAs for KWwere mapped onto 17 of

the 21 chromosomes and explained 5.56–8.18 % of

the phenotypic variance. Of them, one MTA (Kukri_r-

ep_c107605_164) on chromosome 6D showed a

highly significant association with KW, explaining

8.18 % of trait variation.

Forty-eightMTAs forKTwere identified on12of the

21 chromosomes, which explained 5.59–7.96 % of the

phenotypic variance. Of them, two MTAs on chromo-

some 4B showed highly significant associations with

KT (p\0.0001) and explained 7.88 % and 7.96 % of

trait variation, respectively. One stable marker

(BS00110611_51) was detected in two environments

on chromosomes 2B and explained 5.86 % and 6.38 %

of trait variation in each environment. Furthermore, a

strongly associated region harboring six MTAs for KT

was noted on chromosome 1D (39 cM).

Eighty-six MTAs for KDR were identified on 17 of

the 21 chromosomes, explained 5.49–9.79 % of the

phenotypic variance. Of these MTAs, three highly

significant association MTAs (p\ 0.0001) were

detected on chromosomes 1A, 2B, and 4B that

explained 9.79, 8.65, and 8.24 % of trait variation,

respectively. Three stable markers (Excal-

ibur_c30234_130, RFL_Contig2765_1200, and

RFL_Contig3175_749) were detected on chromosome

6A and explained 5.61–5.90 % of the phenotypic

variance in each environment. Moreover, the strong

association region harboring 21 MTAs for KDR was

noted on chromosome 6A (137 cM).

Fig. 2 Linkage disequilibrium (LD, r2) decay plot of signifi-

cant r2 values and genetic distance (cM) (P\ 0.001) of locus

pairs on A, B, D and whole genomes in the association panel.

The inset provides a more detailed view of the LD decay

characteristics over a 20 cM genetic distance; the horizontal line

indicates the critical value of r2
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Table 1 Highly significant (p\ 0.0001) or stable association MTAs and QTL reported in the literature in the same region for TKW

and related traits in four environments

Trait Markera Alleles Chr. Position R2 (%) Reported in literature

KL Tdurum_contig10108_246 A(130)/C(75) 2B 132 9.78(E1) Ramya et al. (2010)

RAC875_c17479_359 A(121)/G(45) 3A 93 8.39(E1)

RAC875_c291_696 C(20)/T(45) 1B 99 7.04(E1), 8.26(E2) Cui et al. (2015)

RAC875_c291_647 A(189)/G(16) 1B 99 6.83(E1), 8.04(E2) Li et al. (2015)

Ku_c9210_1059 C(113)/T(84) 2D 83 6.45(E2), 6.18(E3),

6.34(E4)

Breseghello and Sorrells

(2006)

KW Kukri_rep_c107605_164 C(189)/T(16) 6D 153 8.18(E4)

KT wsnp_Ex_c4125_7456528 G(169)/T(35) 4B 115 7.96(E1) Li et al. (2015)

Tdurum_contig67399_676 A(91)/G(114) 4B 36 7.88(E2) Li et al. (2015)

BS00110611_51 C(28)/T(177) 2B 132 5.86(E2), 6.38(E3)

KDR Kukri_c18608_729 G(65)/T(137) 1A 156 9.79(E4)

Tdurum_contig10108_246 A(130)/C(75) 2B 132 8.65(E1)

Kukri_c59197_207 A(22)/G(183) 4B 6 8.24(E4) Li et al. (2015)

Excalibur_c30234_130 A(121)/G(84) 6A 137 5.90(E1), 5.61(E2) Cui et al. (2015)

RFL_Contig2765_1200 A(121)/G(84) 6A 137 5.90(E1), 5.61(E2) Cui et al. (2015)

RFL_Contig3175_749 G(121)/T (84) 6A 137 5.90(E1), 5.61(E2) Cui et al. (2015)

TKW BS00023893_51 A(67)/C(115) 6A 86 7.32(E1), 9.86(E2),

8.13(E4)

Zhang et al. (2014)

wsnp_BQ161779D_Ta_2_1 C(78)/T(183) 6D 86 7.79(E2) Wang et al. (2012)

E1, E2, E3, E4, represent Tai’an 2013, Dezhou 2013, Tai’an 2014, Dezhou 2014, respectively

KL kernel length, KW kernel width, KT kernel thickness, KDR kernel diameter rate, TKW thousand kernel weight
a Marker in bold typeface represent highly significant MTA (p\ 0.0001), and marker underlined indicate stable MTA

Table 2 Multi-trait MTAs for TKW and related traits in four environments

Marker Chr. Position Alleles Marker R2

TKW KL KW KT KDR

tplb0043a07_1411 1B 110 C(114)/T(59) 6.31(E3) 7.22(E2)

wsnp_BE445431A_Td_2_1 2A 125 G(180)/T(24) 5.88(E2) 6.46(E2)

Tdurum_contig10108_246 2B 132 A(130)/C(75) 9.78(E1) 8.65(E1)

BS00110611_51 2B 132 C(28)/T(177) 6.59(E1) 7.36(E1)

Ku_c9210_1059 2D 83 C(113)/T(84) 6.45(E2,E3) 5.69(E3)

RAC875_c17479_359 3A 93 A(121)/G(45) 5.57(E1) 8.39(E1)

Tdurum_contig4974_355 4B 61 C(100)/T(105) 5.67(E2) 6.97(E2)

CAP12_c4704_232 4B 85 A(15)/G(190) 5.74(E2) 7.42(E4)

wsnp_Ex_c18107_26909127 5A 106 A(17)/G(188) 6.83(E1) 5.62(E1)

wsnp_Ex_c16045_24471413 5B 184 C(56)/T(149) 6.30(E1) 6.47(E1)

Tdurum_contig4658_418 7B 119 C(34)/T(171) 5.79(E1) 6.30(E1)

D_contig06359_118 7B 56 C(107)/T(98) 5.90(E2) 7.18(E2)

E1, E2, E3, E4, represent Tai’an 2013, Dezhou 2013,Tai’an 2014, Dezhou 2014, respectively

KL kernel length, KW kernel width, KT kernel thickness, KDR kernel diameter rate, TKW thousand kernel weight
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Thirty-three MTAs for TKW were detected on 10

of the 21 chromosomes and accounted for 5.50 % to

9.86 % of the phenotypic variation. One highly

significant MTA (p\ 0.0001) on chromosome 6D

was detected, and explained 7.79 % of the variation in

TKW. One stable marker (BS00023893_51) on chro-

mosome 6A was detected in three environments,

which accounted for 7.32, 9.86, and 8.13 % of the

phenotypic variances in each environment. Moreover,

one strong association region harboring six MTAs was

noted on chromosome 3A (88 cM).

Multi-trait MTAs for TKW and related traits were

detected in this study. Their chromosome positions

with their effect values are shown in Table 2. Five

MTAs distributed across chromosomes 2B, 2D, 5A,

and 5B showed a pleiotropic effect on KL and KDR.

Three MTAs that mapped to chromosomes 4B and 7B

were pleiotropic loci for KW and KDR. Similarly,

TKW and KT had MTA in common on chromosome

1B, TKW and KW had common MTA on chromo-

some 2A, TKW and KL shared MTA on chromosome

3A, and TKW and KDR had overlapping MTA on

chromosome 4B.

Discussion

Genetic diversity

Molecular markers have been used extensively to

detect variability in wheat genotypes and to evaluate

their genetic diversity (Hao et al. 2011). In this study,

24,355 SNP loci were used to estimate genetic

diversity in a mapping panel at the genome level.

The mean gene diversity and PIC were 0.340 and

0.277, respectively. The PIC values observed in our

mapping population were higher than previous esti-

mates of genetic diversity using SNP markers for a set

of US cultivars (PIC = 0.23; Chao et al. 2009). The

observed PIC values were similar to those of 287

advanced wheat accessions obtained from CIMMYT,

in which the mean genetic diversity value of 0.34 and

PIC value of 0.27 were obtained using 3848 SNP

markers (Lopes et al. 2014). These results indicate that

there was high genetic diversity in our mapping

population, which approximately reflected the genetic

diversity of Chinese winter wheat collections. Fur-

thermore, over 69 % of the SNPs in our association

mapping panel had PIC values of 0.20–0.40, which is

regarded as the suitable PIC range for genetic research

using molecular markers (Botstein et al. 1980). Our

results also demonstrated that genetic diversity differs

among the three wheat genomes; both the mean gene

diversity and PIC value were higher in genome B than

in genomes A and D, and similar trends were observed

in previous studies (Chen et al. 2012).

Population structure and LD

Structural analysis conducted with two complemen-

tary methods suggested that the elite wheat varieties

used in this work could be assigned to four subpop-

ulations. This is consistent with the general views on

the existence of genetic differences among wheat

varieties or landraces (Sorrells and Yu 2009). Indi-

viduals were unequally distributed among the four

subgroups, which indicated that there was a high

extent of population structure in our mapping popu-

lation. This may reflect the high number of bred

varieties and breeder’s lines, which shared one or more

founder parents in wheat breeding programs. Some

elite lines are commonly used in many crosses and

thus have a greater contribution to the population than

other lines in breeding populations (Würschum et al.

2011). Population structure is particularly important in

association mapping because it can cause spurious

associations between markers and traits (Flint-Garcia

et al. 2003; Pritchard et al. 2000). Numerous studies

have proven that spurious MTAs could be reduced by

treating the Q value (population structure) as a

covariate during the marker-trait association analysis

(Pritchard et al. 2000; Zhang et al. 2013). Conse-

quently, to eliminate the spurious associations result-

ing from population structure, the association model

MLM-Q-K in TASSEL3.0 was adopted in this study.

Moreover, in the present study, the population struc-

ture analysis was used to obtain general knowledge of

the biological background explaining the association

mapping panel structure. In particularly, we were

interested in the precise relatedness between lines

included in the association mapping population, which

is important not only for parental selection, but also for

breeding system design.

The LD decay distance determines the marker

density needed to effectively associate genotypes with

traits, and influences the precision of association

mapping (Cormier et al. 2014). Previous studies have

reported LD decay distances ranging from 5 to 10 cM
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in various wheat collections using SSR markers

(Breseghello and Sorrells 2006; Chen et al. 2012;

Hao et al. 2011; Zhang et al. 2010). Recently, a few

studies have revealed LD decay distances based on

SNP markers. Based on a study of 287 elite spring

wheat lines, the LD decay distance was approximately

5 cM in the D genome and 2 cM in the A and B

genomes using 18,704 SNP markers (Sukumaran et al.

2014). In another study of 225 European elite varieties

using 23,603 SNP markers, the mean LD decay

distances for genomes A, B, and D were 0.52 cM,

0.70 cM, and 2.14 cM, respectively (Cormier et al.

2014). In our study, the LD decay distances were about

2 cM for the whole genome and approximately 1.5,

1.8, and 11 cM for the A, B, and D genomes,

respectively. The above comparison shows that the

LD decay distance was short in our mapping panel,

which indicates the need for a higher marker density to

locate genes. For the A and B genomes, the SNP

density was sufficient with respect to LD decay.

However, for the D genome, the lower SNP density

may be compensated by the higher LD, but QTL

detection is expected to be less precise. Furthermore,

the average r 2 (0.21) values observed between linked

locus pairs were higher than those of previous studies,

e.g., a study of 94 elite common wheat varieties

(r2 = 0.05) (Hao et al. 2011) and a study of 90 Chinese

winter wheat varieties (r2 = 0.13) (Zhang et al. 2013).

The higher r2 observed in our study may be due to the

fact that our mapping panel included many bred

varieties and breeder’s lines. In plant breeding popu-

lations, LD is expected to be higher than in natural

populations due to the selection of favorable geno-

types and the shorter history of the germplasm (Reif

et al. 2011). High r2 values indicate that medium and

small effect QTLs can be detected, whereas low r2

values indicate that only QTLs with large effects can

be detected (Würschum et al. 2011). MATs with

medium and small effects were detected for TKW and

related traits in our study, which suggests strong-QTL

detection power and a high-mapping resolution.

Marker–trait associations

A fairly high number of significant loci were identified

in this study, suggesting that MTAs with medium and

small effects were detected for kernel weight-related

traits. Therefore, we should focus on highly significant

or stable MTAs and multi-trait MTAs for traits. A

broad-scale comparison of the MTA results of our

study and those of previous studies was performed

using chromosome arms owing to differences in

marker type and marker positions on different genetic

maps.

We detected several MTAs for KL on chromo-

somes 1B, 2B, 2D, and 3A. Previous studies have

reported QTLs for KL on chromosomes 1B, 2B, and

2D in different populations with SSR markers (Cui

et al. 2015; Ramya et al. 2010). The marker Tdu-

rum_contig4974_355, which was associated not only

with KW, but also with KDR in the current study, was

mapped to the short arm of chromosome 4B, similar to

the QTL region for KW reported by Li et al. (2015).

We detected the KT marker Tdurum_con-

tig67399_676 on the short arm of chromosome 5A,

which explained approximately 7.88 % of the trait

variation. Li et al. (2015) also detected a QTL with

significant effects on KT on chromosome 5A.

For TKW, we detected important MTAs on chro-

mosomes 1B, 2A, 3A, 4B, 6A, and 6D. The markers on

chromosomes 1B, 2A, and 3A are in pleiotropic

regions affecting kernel weight-related traits. Zhang

et al. (2015) also detected QTLs for TKW on

chromosomes 1B, 2A, and 3A using both uncondi-

tional and conditional mapping analyses. The marker

wsnp_BQ161779D_Ta_2_1 on chromosome 6D, a

highly significant MTA in present study, was detected

at similar location on the same chromosome by Wang

et al. (2012). The marker BS00023893_51 on chro-

mosome 6A, detected in two environments, was a

stable MTA. Previous studies have reported major

QTL for TKW on chromosome 6A (Huang et al. 2006;

Sun et al. 2009; Zhang et al. 2014). Notably, this MTA

was located near TaGW2, an important gene associ-

ated with TKW and KW located on chromosome 6A

(Su et al. 2011). These results indicated that the region

near TaGW2 on chromosome 6A may harbor a robust

QTL cluster for kernel-related traits, and should be a

focus of breeding programs. Interestingly, we also

detected a number of MTAs for kernel weight-related

traits that have not been described to date, some of

which are major loci that explain more than 9 % of the

observed genotypic variance (Table 1). These results

show that the association mapping approach used in

this study is a powerful tool to detect previously

unknown QTL.

We also detected multi-trait MTAs. Two markers

(Tdurum_contig4974_355 and CAP12_c4704_232)
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that were mapped to the short arm of chromosome 4B

and were separated by approximately 14 cM were

pleiotropic for KW and KDR and for TKW and KDR,

respectively. Previous studies have demonstrated

pleiotropic effects of QTLs on chromosome 4B for

TKW and kernel size (Huang et al. 2006; Gegas et al.

2010; Sun et al. 2009). The marker

wsnp_BE445431A_Td_2_1 on chromosome 2A was

associated with TKW and TK in the present study.

Patil et al. (2013) and Peng et al. (2003) reported

multi-trait QTL on chromosome 2A for grain yield,

TKW, KW, spikelet per spike, and kernels per spike in

tetraploid wheat. Furthermore, multi-trait MTA for

TKW and KT on chromosome 1B and multi-trait

MTA for KL and KDR on chromosome 2B were

observed in the same genomic region reported in

previous studies (Patil et al. 2013; Snape et al. 2007;

Zheng et al. 2010). These results confirmed that the

QTLs identified in this region on chromosomes 1B,

2A, 2B, and 4B have pleiotropic effects and are highly

likely also play key roles in determining wheat grain

yield, and also partially explained the genotypic

correlations of TKW and related traits, consistent

with the results of a correlation analysis in this study.

SNPs can be intergenic or intragenic, accordingly,

SNPs within a gene can directly affect protein

structure or gene expression. Gene-based markers

can be directly associated with genetic differences in a

panel of diverse lines used in LD-based association

mapping (Lu et al. 2009). Among SNP markers

detected in the current study, the highly significant or

stable MTAs and multi-trait MTAs, such as the four

highly significant markers for KL and the stable MTA

for TKW, can be used to develop cleaved amplified

polymorphic sequence markers for marker-assisted

selection and to identify kernel-related candidate

genes via bioinformatics analyses, such as multiple

sequence alignments and gene annotations.

In conclusion, we estimated the genetic diversity,

population structure, and LD decay rate in a winter

wheat association mapping panel. The SNP diversity

was higher and LD decay distance was shorter than

those of other wheat collections. Based on a GWAS,

we detected 271 MTAs for TKW and related traits in

four environments. The highly significant or

stable MTAs and multi-trait MTAs can be used to

develop cleaved amplified polymorphic sequence

markers for molecular marker-assisted breeding.

These results indicate that the association mapping

panel with 24,355 SNPs is robust for association

mapping for TKW and related traits.
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