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Abstract Genome-wide association studies (GWAS)

have been used widely to analyze the genetic control of

complex traits in crops. In the present study, seven

related phenotypic traits were analyzed in combination

to study their association with 41,101 SNPs in 201maize

inbred lines that had been evaluated in seven environ-

ments (year/location combinations) under water-stressed

(WS) or well-watered (WW) regimes. By comparing the

association signals with a fixed P value, GWAS showed

that the number of association signals identified varied

among traits and in different environments. Data that

were missing under the severe water stress treatment had

a great impact on the results of this GWAS. A total of

206 significant SNPs were associated with 115 candidate

genes for drought tolerance and related traits including

final grain yield, total number of ears per plot, kernel

number per row, plant height, anthesis-silking interval,

days to anthesis (DtA), and days to silking (DtS). Among

these, four genes were associated with at least two

different related traits, and six genes associated with

traits were detected in at least two environments under

water stress. Nine candidate QTL identified by GWAS

were also discovered, three of which co-located to a

consensus QTL region meta-analyzed by linkage map-

ping for drought tolerance. Some regulatory genes

related to abiotic stress responses might also make a

strong contribution to drought tolerance. The compre-

hensive information presented here regarding consensus

QTL combined with candidate genes derived from

GWAS provides an important reference tool for improv-

ing maize drought tolerance.
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Introduction

Maize (Zea mays L.) is the world’s largest cereal crop

for food, forage, oil, and raw material for the

production of energy (http://faostat.fao.org/, 2009).

Statistics have shown that overall growth in cereal

yields slowed in the 1990s. However, maize yields in

developing countries maintained their upward

momentum, while gains in wheat and rice yields

slowed markedly (http://www.fao.org/docrep/004/

y3557e/y3557e08.htm). This trend indicates that

maize will likely become the main staple crop for

ensuring future food security. However, drought and

other abiotic stresses often affect maize yield, espe-

cially in the rain-fed cultivation areas that account for

about 74 % of total crop-growing areas and in mar-

ginal areas into which farming continues to expand

(Biradar et al. 2009). Although drought stress might

happen whenever maize is grown without irrigation,

the plants area cutely susceptible to the negative

effects of drought stress immediately before and dur-

ing flowering (Agrama and Moussa 1996). When

drought stress occurs during this critical period, maize

plants stop growing and initiate a series of drought-

stress defense mechanisms to ensure survival. At the

same time, the length of the anthesis-silking interval

(ASI) increases significantly, and ear number, grain

number, and final grain yield decrease. Morphological

changes also occur, including reduced plant height,

leaf curling, and barren ears (Hao et al. 2011).

Drought tolerance is a complex trait whose expres-

sion includes changes in morphology, physiology, and

biochemistry. Identifying the functional polymorphic

variations lied on candidate genes is an efficient way to

enhance drought tolerance by marker selection in

maize and to improve crop yield in affected areas

(Hadiarto and Tran 2011; Zhang et al. 2011). Until

now, many quantitative trait loci (QTL) related to

drought tolerance have been identified on all maize

chromosomes by linkage mapping in populations

derived from crosses between two parents, and some

linked markers have already been used successfully

for selection in backcross breeding programs (Hao

et al. 2010; Liu et al. 2015b; Tuberosa and Salvi 2006).

Undoubtedly, QTL research has promoted our under-

standing of the mechanisms of drought tolerance in

general; Many genes that influence stress-tolerance

have been identified and their function analyzed in

transgenic plants (Yang et al. 2010) (http://www.

plantstress.com/). However, traits such as drought

stress tolerance that are under highly complex genetic

control are difficult to manipulate and have thus far

been deployed less often in improved cultivars.

Since the sequencing of the maize inbred lines B73

and Mo17, many new genes have been discovered.

Furthermore, numerous single nucleotide polymor-

phisms (SNPs) and insertion–deletion polymorphisms

(Indels) have been discovered by comparing the

sequences of 27 diverse inbred lines (Gore et al.

2009). Several SNP variants and Indels have been

linked to phenotypic traits such as adaptation to abiotic

stresses in plants (Rafalski 2002). In human genetics,

the development of SNP assays and the appropriate

statistical methods enabled genome-wide association

studies (GWAS) based on linkage disequilibrium (LD)

to scan for novel loci associated with human disease

phenotypes (Klein et al. 2005). GWAS is also a

powerful tool for analyzing quantitative traits in plants

that supplements QTLmapping in populations derived

from biparental crosses and has been used in a wide

range of crops (Yan et al. 2011). In maize and rice, a

metabolome-based GWAS was used to identify can-

didate genes involved in important metabolic traits

(Matsuda et al. 2015; Wen et al. 2014a, b). Another

GWAS corrected for population structure identified 42

SNPs in 33 genes associated with 126 trait 9 envi-

ronment 9 treatment combinations (Xue et al. 2013).

Further, GWAS of quantitative resistance to maize

rough dwarf disease (MRDD) in maize was performed

and identified SNPs and fragments within bin 8.03

associated with MRDD resistance (Liu et al. 2014).

With the MaizeSNP50 Genotyping BeadChip con-

taining 55,000 SNPs developed by Illumina Inc.,

complex heterotic traits can now be analyzed and

candidate genes affecting plant height can be studied

(Riedelsheimer et al. 2012; Weng et al. 2011). The

55,000 SNPs on the BeadChip are evenly spaced

markers that represent two-thirds of the 19,350 genes

predicted to exist in the maize genome, with from one

to 17 SNPs per gene (Weng et al. 2011; Xue et al.

2013; Yang et al. 2014). In the present study,

phenotypic data fora 201-line sub-group from a panel

of 284 diverse inbred lines evaluated for drought

responses in multiple environments were used with

results from the MaizeSNP50 BeadChip for GWAS.

With these high-density SNP markers and drought-

tolerance phenotypes for multiple environments,
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associated SNPs and some underlying genetic loci that

contribute to maize drought tolerance have been

revealed.

Materials and methods

Plant materials, growth conditions, and tissue

sampling for GWAS

A total of 201 diverse inbred lines (Hao et al. 2011;

Weng et al. 2011) from five representative maize

subpopulations in breeding programme, most of which

were derived from commercial Chinese hybrid parents

with clear pedigrees, were chosen for genotyping and

SNP calling based on our previous studies (Liu et al.

2015a; Xie et al. 2007; Zhang et al. 2011). Four lines

were added as replicated quality controls in six

independent BeadChip panels. All plant materials

were grown in the greenhouse under normal condi-

tions to the three-leaf stage only for sampling frozen

seedling leaves for genotyping. DNA was extracted

from each sample using the CTAB method (Murray

and Thompson 1980). Details regarding sample

preparation have been described previously in Weng

et al. (2011). The genomic DNAs of four common

inbred lines (Qi319, Huangzao4, Ye478, and Dan340)

were used as control sand were genotyped twice to

evaluate genotyping quality. SNP genotyping was

performed by EmeiTongde (Beijing) using the Illu-

mina MaizeSNP50 BeadChip (Illumina, Inc.) (Liu

et al. 2015a).

Field evaluation and selection criteria for drought

tolerance

In the present study, a sub-group of 201 lines was used

for GWAS of drought tolerance, which was evaluated

by phenotyping plants in the field and designed as an

alpha lattice design in seven environments (designated

as 2006HN, 2007HN, 2008HN, 2007XJ, 2008XJ1,

2008XJ2, and 2009XJ) under either a WW or WS

regime, as described in detail in Zhang et al. (2011).

The investigation method for agronomical and mor-

phological traits followed the standard of new variety

selection used in regional trials of China and after

detailed phenotypic analysis, seven traits including

final grain yield (GY) of each plot, total number of ears

per plot (EarN), kernel number per row (KerN) of ear,

plant height (PlaH), and ASI [calculated from days to

anthesis (DtA) and days to silking (DtS)] were chosen

as the representative phenotypic traits related to

drought tolerance, as described in detail in Zhang

et al. (2011). Repeatability (w2) was calculated for all

of the traits, in which environment was defined as a

field 9 year combination, and measured as: w2 ¼
r2G=½r2G þ r2GE=n

� �
þ r2e= nrð Þ�, where r2G is genotypic

variance, r2GE represents genotype-by-environment

interaction, r2e stands for error variance, n is the

number of environments, and r is the number of

replications (Xue et al. 2013). Correlations between

GY and other traits were calculated using SPSS

Statistics 19 software (IBM SPSS Inc.). For statistical

purposes, the data for each of the phenotypes were

divided into 10 classes (n) with spacing of 0.5 standard

deviations. The Shannon–Weaver index (H0) was used

to calculate the diversity of each trait: H0 ¼ �
Pn

i¼1

pi ln pi, where pi is the relative proportion of entries

belonging to the ith level of a particular trait (Wald-

man and Shannon 1948).

GWAS and statistical analysis of drought

tolerance-related traits

The software PLINK (Purcell et al. 2007) was used to

estimate LD as the parameter r2 (r2 C 0.1) between all

SNPs on each chromosome with less than 20 %

missing data. PowerMarker 3.25 and STRUCTURE

version 2.3 were used to calculate SNP alleles (Liu and

Muse 2005) and population structure, respectively.

Kinship was measured with SPAGeDi (Hardy and

Vekemans 2002) using 5000 SNPs with minor allele

frequencies (MAF) C 0.2. STRUCTURE was set to

K = 5 according to results of our previous study and

run three times with a burn-in period of 500,000

iterations and 500,000 replications (Liu et al. 2015a).

SNPs with low MAF (\5 %) were excluded, which

left 41,101 high-quality SNPs for use in the associa-

tion analysis. Average marker density was one marker

every 50 kb and 53.48 % of SNPs were within a 10-kb

interval of the neighboring markers. A mixed linear

model (MLM) implemented in the program TASSEL

version 5.0 (Bradbury et al. 2007) was used for GWAS

with 41,101 high-quality SNPs (MAF C 0.05) and

SNPs with -log10(P) C 4.0 were selected for candi-

date gene analysis. Two significant associated SNPs

on the same chromosome within a distance of less than
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6 kb were combined as a single candidate QTL. The

physical distances between SNPs were based on the

Maize B73 RefGen_v2. GO analysis to predict the

functions of genes underlying each SNP was per-

formed using the online analysis tool on the AgriGO

website (http://bioinfo.cau.edu.cn/agriGO/).

Results

Phenotypic analysis of related traits for assessing

drought tolerance responses under well-watered

and water-stressed conditions

Drought stress had relatively negative impacts on each

trait. The average performance across environments of

the seven abovementioned traits is shown in Table 1.

GY under drought in each plot varied greatly and

exhibited a large standard deviation, with an average

value of 594.32 g under both watering regimes and

much lower GY under drought, with an average value

of 345.41 g. These data indicated that this collection

of natural populations was sufficiently diverse for the

subsequent GWAS using GY as a major trait for the

analysis of drought tolerance. PlaH under the WS

treatment was also lower than normal, with a reduction

in average PlaH of 48.89 cm under water stress.

Additionally, under WS conditions, ASI increased in

duration and other yield component traits all

decreased, which showed that drought had an adverse

influence on yield in many different ways. In contrast,

ASI was longer and w2 decreased observably under

WS conditions, which was expected because drought

stress tends to reveal genetic variation in ASI

(Almeida et al. 2013). More severe stress results in

longer ASI, which might reflect the sensitivity and

drought-adaptive nature of this trait. Yield component

values decreased, as did repeatability, which implied

that the plants under the WS regime had experienced

varying degrees of drought and that the performance

of these traits could indicate drought response as

selection criterion for drought tolerance. The seven

traits were significant different between inbred lines or

environments under WW and WS conditions

(Table S1). Because some GY data for susceptible

lines was missing due to evaluation under severe

natural drought stress conditions, not all of the

phenotypes investigated were subsequently used in

GWAS.

There were relatively strong correlations between

GY and other yield component traits, except for ASI

under the WS condition, as expected. Correlation

coefficients between traits are shown in Table 2.

Correlations between GY and DtS, EarN, KerN, and

PlaH under WS were relatively higher and significant,

while the correlation between GY and DtA under WS

was lower than under the WW condition. The

frequency distributions of these six traits are shown

in Fig. S1. Overall, the frequency distributions of traits

in different treatments are close to normal (|v| B 1),

except for GY under the WS condition and ASI, The

lack of normality for these two traits resulted from

missing data in several environments. However, data

for the other five traits were entirely concentrated in

standard deviation classes 4–7 (68.27–72.80 % of

entries). Data for 77.96 % of the entries for PlaH under

the WS condition were concentrated in standard

deviation classes 3–7. Thus, the remaining data met

the requirements for the genetic analysis of quantita-

tive traits (Table 1). The diversity of each trait under

these two distinct watering treatments was calculated

using the Shannon–Weaver index, which indicated

that there was abundant diversity in these seven traits

in our inbred lines (Fig. 1).

Genome-wide association of markers with seven

major phenotypic traits related to maize drought

tolerance

To determine the exact contribution of each trait to

drought tolerance, seven representative phenotypic

traits measured under both WW and WS conditions in

seven environments were chosen to evaluate the

feasibility of GWAS in maize, as in Zhang et al.

(2011). Using a MLM that combined population

structure and kinship data, a total of 206 significant

marker-trait associations were identified for seven

maize traits under both watering regimes

(P B 1 9 10-4) and significant association signals

varied among these seven traits under both watering

regimes in these seven environments (Fig. 2;

Table S2). Most SNPs detected were associated with

flowering time. A total of 38 SNPs were associated

with DtA, 63 SNPs were associated with DtS, and 38

SNPs were associated with ASI. A total of 92 SNPs

were detected under the WS treatment, and 113 were

detected under the WW treatment, while 15 SNPs

were detected under both watering conditions.
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Moreover, five SNPs were related to two different

phenotypic traits and six SNPs were detected in at

least two environments under WS (Table S3). By

searching for functional annotations regarding the

genes in which each SNP is located, a total of 115

candidate genes were identified, including 75

genes of known function. The genes detected under

the WS condition were involved in fewer processes

than were those detected under the WW condition.

SNPs in genes involved in multicellular organismal

Table 1 Performance of

seven maize traits across

seven environments

GY grain yield, EarN total

ears number per plot, KerN

kernel number per row,

PlaH plant height, ASI

anthesis-silking interval,

DtA days to anthesis, DtS

days to silking, WW well-

watered regime, WS water-

stressed regime, Skew

skewness, kurt kurtosis

Trait Treatment Max Min Average SD WS/WW Skew Kurt w2

PlaH WS 261.40 62.67 148.39 42.57 0.75 0.25 -0.73 0.52

WW 299.70 70.00 197.28 38.68 -0.06 -0.48 0.78

ASI WS 21.00 -6.00 4.75 3.10 1.36 1.28 2.46 0.64

WW 17.00 -3.50 3.50 2.54 1.76 5.31 0.89

DtA WS 107.00 51.00 70.73 7.97 1.00 0.45 0.69 0.81

WW 104.00 49.50 70.50 7.26 0.09 0.61 0.85

DtS WS 107.00 54.00 74.59 7.78 1.02 0.36 0.67 0.79

WW 105.00 52.00 73.38 8.14 0.21 0.43 0.84

KerN WS 34.15 2.00 16.48 5.27 0.79 0.52 0.00 0.61

WW 41.14 3.48 20.93 5.26 -0.06 0.12 0.89

EarN WS 21.00 1.00 8.95 4.02 0.72 0.39 -0.36 0.61

WW 24.50 1.50 12.37 3.70 -0.31 0.29 0.96

GY WS 2015.00 6.67 345.41 352.02 0.41 1.96 2.96 0.41

WW 2505.00 30.00 843.23 490.51 0.73 -0.04 0.78

Table 2 Phenotypic

correlations between seven

maize traits under WW

(above diagonal) and WS

(under diagonal) conditions

*, ** Significance at

P\ 0.05 or 0.01,

respectively

DtA DtS ASI PlaH KerN EarN GY

DtA 1 0.95** 0.20** 0.46** -0.16* -0.08* -0.15*

DtS 0.93** 1 0.44** 0.46** -0.22** -0.12* -0.21*

ASI -0.15* 0.12 1 0.11 -0.27** -0.17* -0.29**

PlaH 0.51** 0.51** -0.01 1 0.22** 0.21** 0.31**

KerN -0.06 -0.10 0.08 0.26** 1 0.44** 0.77**

EarN -0.18* -0.22* -0.04 0.01 0.40** 1 0.71**

GY -0.20** -0.25** -0.07 0.18* 0.57** 0.63** 1

0.00

0.50

1.00

1.50

2.00

2.50

PlaH ASI DtA DtS KerN EarN GY

S
ha

nn
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r 
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x

WS WWFig. 1 Comparison of

Shannon–Weaver indices

for seven maize traits under

WS or WW conditions
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processes, macromolecular complexes, responses to

stimuli, and biological regulation were not identified

under WS conditions. This could be because some

biological processes related to energy consumption

might have slowed in the plants during adaptation to

drought stress. SNPs in genes involved catalysis were

relatively more abundant under WS conditions

(Fig. 3).

Identification of candidate genes derived

from QTL mapping that are related to drought

tolerance in maize

Among the 206 significant associations we identified,

a total of 92 SNPs were associated with 61 genes under

the WS condition. Among these, five SNPs including

PZE-108108866, PZE-108117143, PZE-110050326,

PZE-110051604, and SYN1030 were related to both

DtA and DtS, and were located within the four genes

GRMZM2G107498, GRMZM2G171716, GRMZM2G

397788, and GRMZM2G107491, respectively (both

SNPs PZE-108117143 and PZE-110050326 were located

within thegeneGRMZM2G171716) (TableS3).However,

only one gene, GRMZM2G107491, has an annotated

function; it is a zinc finger CCCH-type domain-

containing protein ZFN-like 2, which is related to

abiotic stress inOryza sativa and Arabidopsis thaliana

(Wang et al. 2008).The functions of the other three

identified genes need to be explored further to test their

roles in abiotic stress tolerance.

Another six SNPs showed significant associations

with drought response phenotypes in more than one

environment (Table S3). PUT163a169259221125 was

associated with PlaH; PZE-103126852 and PZE-

103126857 were associated with DtA; and PZE-

110050326, PZE-110051604, and PZE-110051621

were associated with DtS to significant degrees in at

least two different environments (Table S3). The gene

GRMZM2G315769 is associated with DtA, contains

two SNPs (PZE-103126852 and PZE-103126857),

and encodesa CBL-interacting serine/threonine-pro-

tein kinase 15 that has been related to salt tolerance

and ABA metabolism in rice, sorghum, and Arabidop-

sis (Chen et al. 2013; Gu et al. 2010; Guo et al. 2015;

Pandey et al. 2015; Xiang et al. 2007).

Fifteen significant SNPs were revealed under both

WW and WS conditions (Table S4). The SNPs

SYN26509, SYN26514, and PZE-110017902 are

associated with GRMZM2G040968, which encodes

pyruvate, phosphate dikinase, a key enzyme in gluco-

neogenesis and photosynthesis. The SNP PZE-

110017983 is associated with an aldehyde dehydro-

genase gene, GRMZM2G331368, which plays an

important role in stress responses (Huang et al. 2008).

2006HN

2008HN

2008XJ1

2009XJ

0
1
2
3
4
5
6
7

Fig. 2 The number of significant associations identified using

different -log10 (P value) thresholds for seven traits related to

drought tolerance under both regimes and seven environments.

For each phenotype, the numbers of distinct peaks of association

that were significant at nominal P value thresholds (color scale)

are shown. In this figure, the seven environments are designated

as 2006HN, 2007HN, 2008HN, 2007XJ, 2008XJ1, 2008XJ2,

and 2009XJ, respectively. The phenotypic traits are abbreviated

as grain yield (GY), total ears number per plot (EarN), kernel

number per row (KerN), plant height (PlaH), anthesis-silking

interval (ASI), days to anthesis (DtA), and days to silking (DtS),

respectively. (Color figure online)
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Finally, nine candidate QTL distributed on nearly

every maize chromosome were identified (Table 3) in

the present study. Three of these were located in the

consensus QTL for drought tolerance that had previ-

ously been detected by meta-analysis of linkage

mapping data (Hao et al. 2010; Li et al. 2010). These

hot spots are now even more credibly related to

drought tolerance and should be studied further.

Combined with the physical coordinates of the con-

sensus genomic regions based on the B73 maize

reference sequence version 2, 19 of the 115 associated

genes identified in our study overlapped mQTL (meta-

QTL; which are derived by combining results from

previous QTL reports into consensus genomic regions

Fig. 3 GO analysis of

significant associated SNPs

detected by GWAS. a The

genes detected under theWS

condition; b the genes

detected under the WW

condition
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associated with trait variation)(Fig. 4). Among these

19 genes, eight have annotated functions and most

are involved in abiotic stress regulation, protein

synthesis, and transportation. These genes include

proteinase inhibitor 12, a eukaryotic proteinase

inhibitor that can inhibit serine peptidases belong-

ing to the S1 family (Rawlings et al. 2004), a

kinesin motor that might play a role in organelle

transport (Brady 1995), a VHS subgroup gene

involved in intracellular membrane trafficking

(Misra et al. 2000), and a ribosomal protein L5.

The transcript GRMZM2G107114_P01, which con-

tains SNPPUT-163a-148967626-627, encodes a

cytoplasmic anti-proliferative protein known as

prohibitin, which might be related to maize devel-

opment (Wen et al. 2014a, b). The functions of

other genes identified here that are related to stress

responses need to be further explored. Certain

regulatory genes related to abiotic stress-response

traits might contribute strongly to drought tolerance,

because several of the SNPs with high -log10
(P) values identified here were all associated with

regulatory genes.

Discussion

The importance of secondary traits for analyzing

maize drought tolerance

Drought tolerance is difficult to measure and define.

Plant breeders know that plant secondary traits are

important indicators of stress tolerance and that their

evaluation can help breeders to make selection

decisions to improve stress tolerance. According to

previous studies (Fischer and International Rice

Research Institute 2003; Zhang et al. 2011), selection

for secondary traits should proceed with the following

points in mind: traits should be (1) heritable and

variable, (2) genetically correlated with grain yield,

and (3) easy and inexpensive to measure. Secondary

traits such as flowering time, plant architecture, and

yield components have been widely used for evaluat-

ing drought tolerance among different species (Ca-

bello et al. 2014; Gomez et al. 2010; Lu et al. 2011;

Trijatmiko et al. 2014). The present study evaluated a

highly diverse maize germplasm collection in which

flowering time, yield components, and final GY varied

Table 3 Candidate QTL associated with drought tolerance identified by GWAS

No. Chr. SNP Position Candidate gene Function

Left Right

1 1 SYN35039 SYN35041 192278356–192281694 GRMZM2G019806 Helix-loop-helix DNA-

binding

2 2 SYN18368 SYN18369 219554914–219554997 GRMZM2G155849 Cyclin-like F-box

3 3 PZE-103087821 PZE-103087822 141919832–141919862 GRMZM2G174249 Concanavalin A-like

lectin/glucanase

4 3 PZE-103126852 PZE-103126857 182444667–182446866 GRMZM2G315769 Sodium:dicarboxylate

symporter/CBL-

interacting serine/

threonine-protein

kinase 15

5 5 SYN3700 PUT-163a-71328889-

3180

215235057–215236168 GRMZM2G101571 Target SNARE coiled-coil

region

6 6 SYN11615 SYN11613 77659356–77661610 GRMZM2G342243 Harpin-induced 1

7 8 SYN1030 PZE-108108866 160930651–160936029 GRMZM2G107491 U2 auxiliary factor small

subunit/zinc finger CCCH

type domain-containing

protein ZFN-like 2

8 10 PZE-110036801 PZE-110036805 70074866–70075041 NA NA

9 10 PZE-110051617 PZE-110051621 97242285–97242839 GRMZM2G099172 unknown

Two significant associated SNPs on the same chromosome separated by a distance of less than 6 kb were combined as a single

candidate QTL
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significantly, especially under WS conditions. More-

over, there were also correlations between GY and

other traits, except for ASI under WS conditions, a

result similar to that of Xue et al. (2013), which

indicates that these secondary traits are good predic-

tors of drought tolerance (Table 2). EarN instead of

KerN in WS treatments, was the most closely corre-

lated agronomic trait with GY, indicating EarN was

greatly impacted by WS conditions. The correlations

between GY and DtA or DtS became closer under WS

and the GWAS result also indicated that most of the

significant SNPs detected were associated with DtA

and DtS. The detection of these SNPs might indicate

that control of flowering time could help improve

maize drought tolerance and that these SNPs will be

useful for the further identification of genetic loci

controlling drought tolerance.

The number of distinct peaks of significant associ-

ation signals identified for each phenotype using

gradual P value thresholds is shown in Table 4. The

number of signals identified in each of seven environ-

ments varied greatly and the signal intensities for all

seven traits varied. Missing data under severe water

stress had a great impact on the GWAS. The level and

duration of water stress should be better controlled to

avoid missing data that can interfere with genetic

analysis. Quantile–quantile plots (Fig. 5) showed that

variation was reduced and more accurate results were

obtained compared with the GLM method, which

indicates that kinship could effectively reduce false

positives that occur due to population stratification and

relatedness between individuals, as also shown by

other research (Akhatar and Banga 2015; Gajardo

et al. 2015; Gouy et al. 2015). Due to missing data in

some environments or the absence of variation among

populations, association analysis was not performed

for all traits across all seven environments in our

study.

Fig. 4 Meta-QTL for

drought tolerance and

significant SNPs distributed

on the maize chromosomes.

From outside to inside, the

circles represent the 10

maize chromosomes, SNPs,

candidate QTL identified in

our research, and the

consensus QTL detected by

Li et al. (2010) and Hao et al.

(2010). All of the positions

refer to the B73 RefGen_v2.

The positions of consensus

QTL DCQ1 to DCQ39 were

transformed using the online

tool Genome Browser at the

MaizeGDB (http://www.

maizegdb.org/). MQTL1 to

mQTL79 are the same loci

as those published in Li et al.

(2010)
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GWAS for identifying associations between genes

and responses to abiotic stress in maize

Following the development of high-throughput auto-

mated sequencing and the completion of the genome

sequences of many plant species, GWAS technology

has been widely used for the genetic interpretation of

many important plant phenotypes (Atwell et al. 2010;

Liu et al. 2014; Xue et al. 2013). This application

depends on the identification of large numbers of

molecular markers such as SNPs across entire plant

genomes. It also depends on the precise phenotyping

of traits in multiple environments. Thus, the mai-

zeSNP50 BeadChip used in our study has been useful

for GWAS of traits related to abiotic stress tolerance

(Weng et al. 2011). If the size of the maize genome is

estimated as 2500 Mb, the 56,000 SNPs on the SNP50

BeadChip result in an average of one SNP per 44,642

base pairs. And although the density of one SNP per

500 bases on the Arabidopsis chip is considerably

higher than the density on themaize SNP50 BeadChip,

it is lower than the SNP density commonly used in

human studies (Atwell et al. 2010). Further, the 30-kb

window (with an average LD decay of*27.7 kb) was

selected to fall within the estimated window for LD

decay in our association panel, which was estimated as

44 kb. The genes within windows of this size were

identified in the MaizeGDB (http://gbrowse.

maizegdb.org/cgi-bin/gbrowse/maize_v1/) according

to the positions of the closest flanking SNPs

(P B 1 9 10-4) or supporting intervals. Many studies

have shown that most SNPs associated with pheno-

types are located very close to a genetic variant that

influences the trait (Lu et al. 2012). Although there is a

marked reduction in the number of associations of

moderate significance (for example at P = 10-5)

Table 4 Significant SNP-trait associations for seven maize traits

Trait 2006HN 2007HN 2008HN 2007XJ 2008XJ1 2008XJ2 2009XJ Total SNPs Genes

PlaH

WW – 3 0 0 4 0 2 24 22 19

WS 12 0 – 1 2 – 0

ASI

WW – 1 – 7 13 2 1 38 36 25

WS 2 – 0 1 0 3 8

DtA

WW – 0 0 7 9 6 3 38 30 23

WS 0 – 5 5 3 – 0

DtS

WW – – 2 7 25 1 0 63 44 28

WS 0 – 5 6 16 – 1

EarN

WW – 5 0 3 – 0 0 14 14 8

WS 1 0 2 3 0 0 0

KerN

WW – 2 – 4 0 1 1 17 17 16

WS 4 0 – 1 1 2 1

GY

WW – 2 – 3 – 0 0 12 12 8

WS 0 2 – 0 2 2 1

Total 206 175 127

The phenotypic traits are abbreviated as GY grain yield, EarN total ears number, KerN kernel number per row, PlaH plant height, ASI

anthesis-silking interval, DtA days to anthesis, DtS days to silking. Treatments are abbreviated as WW well-watered, WS water

stressed, ‘‘–’’ indicates that the trait was not analyzed due to missing data. All of the associations were measured at P B 1 9 10-4
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across phenotypes, an excess of highly significant

associations persists (or has even become greater).

Prediction accuracies ranging from 0.71 to 0.81 for

SNPs on the SNP50 BeadChip have been verified in

285 inbred lines and their hybrid testcrosses with two

testers for complex, highly polygenic traits (Riedel-

sheimer et al. 2012). Using the same maize SNP50

BeadChip, other SNPs associated with drought toler-

ance have previously been detected (Xue et al. 2013);

however, the SNPs revealed in that experiment and the

present study differ. As with linkage mapping, the

variation that results from the use of diverse of plant

materials and environments indicates the complexity

of environmental effects on drought tolerance pheno-

types that are controlled by multiple genes. However,

GWAS and QTL mapping are complementary tech-

niques that can compensate for each other’s limita-

tions during the analysis of complex traits (Korte and

Farlow 2013), such as when these methods were

combined to study water-logging tolerance in maize

seedlings (Zhang et al. 2013).

Significant marker-trait association signals related

to drought tolerance further identified by mapping

The goal of GWAS is to resolve quantitative traits to

their causal genetic loci and is typically followed by

further functional analysis of genes that might be key

metabolic regulators affecting traits of interest. For

instance, GWAS has identified SNPs in genes affect-

ing ABA levels in maize floral tissues during drought

stress in a study that identified 1229 SNPs in 540

candidate genes. SNPs significantly associated with

maize drought tolerance were detected in the maize

homologues of a MADS-box gene, a phaseic acid

biosynthetic gene, a pyruvate dehydrogenase kinase

gene, and an aldehyde oxidase gene (Setter et al.

2011). Using the same SNP assay and detailed

phenotyping in 80 maize inbred lines under water

stress, Hao et al. (2011), associated 29 SNPs in or near

dhn1, ivr1, myb, and other genes related to drought

tolerance response that were associated with at least

two phenotypic traits in at least one environment.

Similarly, 49 other significant SNPs associated with

drought tolerance have been discovered on all maize

chromosomes except chromosome 6 by GWAS using

the Illumina chip (Farfan et al. 2015; Xue et al. 2013).

Xu et al. (2014) reported that most of the non-

synonymous SNPs related to phenotypic variation in

drought tolerance in that study were located in bin

1.07. Combined with our results, these studies iden-

tified SNPs distributed on all chromosomes, with the

most (39 SNPs) on chromosome 10 and the fewest (8

SNPs) on chromosome 6 (Fig. 4). Meta-analyses

detected consensus QTL (Hao et al. 2010; Li et al.

2010), including nine candidate QTL for drought

tolerance in maize, that were also identified in this

study by GWAS.A total of 118 QTL related to drought

tolerance have been found dispersed on all maize

chromosomes, which will help to reveal candidate

genes. Some hotspots have also identified in bins 1.06,

3.06, 6.05, and 10.04 using 203 QTL for secondary

traits under WW and WS conditions (Fig. 3). Among

these, an *8-Mb hotspot in bin 3.06 has been

associated with drought tolerance in tropical maize

(Almeida et al. 2014). These results indicate that the

Fig. 5 Quantile–quantile plot for associations with ASI in the well-watered condition in Xinjiang in 2007 (2007XJ). a, b The differing

results when associations were calculated with a GLM or a MLM
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hotspot regions related to drought-tolerance are not

evenly distributed. In addition, some studies have

indicated that bin 1.03 (Hao et al. 2010) and bin 1.07

(Xu et al. 2014) might contain some genes related to

drought tolerance. Our study also detected five SNPs

in bin 1.07, but did not detect any significant signals in

bin 1.03, which could be a false-negative result

according to our Manhattan plot (Fig. 6). Further

research could focus in more detail on these two

regions.

Molecular markers associated with Vitamin A

deficiency had been validated to efficiently increase

proA carotenoid concentration in maize, and two

functional markers associated with drought resistance

were also been identified useful in MAS, which the

markers were derived from linkage and association

mapping (Babu et al. 2012; Liu et al. 2015b). For most

complex quantitative traits such as drought tolerance

and grain yield, transgenic strategies have not yet been

very successful for genetic improvement. However,

genomic selection and targeted genome editing should

improve the prospects for engineering such traits after

GWAS (Morrell et al. 2011). Traditional marker-

assisted selection has also been relatively ineffective

for complex traits. Because genomic selection predicts

performance based on information from all markers, it

can predict trait performance more accurately than can

single associated loci (Jannink et al. 2010). The

analysis in finer detail of regions that we had

previously scanned by linkage mapping and identifi-

cation by GWAS of associations between important

loci and drought tolerance, will enhance breeding

efforts for improved drought tolerance. For example,

the drought related SNPs can be used as function

makers in marker assisted selection (Li et al. 2012; Liu

et al. 2015b; Pan et al. 2012; Xu et al. 2012). The

control of drought tolerance is complex, and many

genes with minor effects are involved. So our next

steps following GWAS will include more detailed

sequencing and evaluation of genomic regions that

influence drought tolerance to different degrees, and

joint analyses to find support for candidate genes

associated with drought tolerance.
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