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Abstract Heavy metal (HM) toxicity is a consider-

able challenge that the current agricultural production

systems and human population face worldwide.

Among the HMs with pronounced toxic effects,

cadmium (Cd) potentially contaminates a range of

vital agricultural resources including soil and water

together with severely impacting crop performance.

Besides, gradual accumulation of Cd in food chain

poses a global threat to food safety and environmental

sustainability. Plants are equipped with meticulously

orchestrated physiological and molecular mechanisms

to respond and acclimatize to Cd-challenged scenar-

ios. However, limited understanding about the HM

toxicity mechanism involving metal uptake/transport,

associated candidate gene (s) or QTLs and signaling

crosstalk has greatly constrained breeding capacities

to improve plants for HM tolerance. In the context,

quantifying genetic variation for Cd tolerance accom-

panied by appropriate breeding schemes allowing the

most efficient utilization of the estimated variation

should be essentially undertaken. Concurrently,

efforts are needed to facilitate fast-track introgression

of genomic segments harboring candidate gene(s)/

QTL for Cd tolerance to high yielding yet Cd-

susceptible backgrounds. Advances in plant molecular

biology have introduced refined techniques and

methods to pinpoint genetic factors describing plant

Cd tolerance. Ancillary to conventional breeding and

marker assisted selection methods are modern trans-

genic technologies that offer attractive means to

precisely interrogate the relevant molecular networks

and manipulate the key Cd-related genes in plants.

Keywords Heavy metal � Cadmium � Tolerance �
Genomics � QTL � Genetic engineering � MAS

Introduction

HM toxicity is an important crop production constraint

that substantially impacts the twenty-first century

agriculture along with presenting a global threat to

human health (Sanitá di Toppi and Gabbrielli 1999;

Benavides et al. 2005; Nawrot et al. 2006; Satarug

et al. 2010; Hossain et al. 2012a; Hasanuzzaman and

Fujita 2012; Hasanuzzaman et al. 2012, 2013; Gill

et al. 2013). Key contributors to growing HM toxicity

include rapid industrialization, indiscriminate mining,

heavy discharge of wastewater/effluents and geolog-

ical activity (Foy et al. 1978; Mishima et al. 2004;

Nagajyoti et al. 2010; Arao et al. 2010). From the

human health perspective, Cd toxicity has received
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considerable attention in recent years (Alloway1995)

with Cd ranking seventh among the top 20 toxins

(Yang et al. 2004; Gill and Tuteja 2011). Equally

important in this context is the Cd toxicity caused by

the excessive use of phosphate/nitrogenous fertilizers,

atmospheric deposition, contaminated irrigation/rain

water and application of sludge (Saito 2004; Arduini

et al. 2006; Singh et al. 2006; Kikuchi et al. 2007; Arao

et al. 2010; Li et al. 2011). This in turn results in a

dramatic accumulation of Cd in human food chain

(Grant et al. 2008). The first instance of ‘Itai-itai’ (a

human disease caused by Cd toxicity) was recorded in

Japan from the inhabitants of the area surrounding

Jinzu river basin (Ishihara et al. 2001; Kobayashi et al.

2008). Since then, Cd toxicity is reported to cause

various disorders like renal dysfunction, osteoporosis

and cancer (Nordberg et al. 1997; Nowrot et al. 2006;

Honda et al. 2010; Satarug et al. 2010).

HMs gain entry to the human food chain through

contaminated irrigation water and food crops such as

rice (Watanabe et al. 1996, 2004; Grant et al. 2008). For

example, 9.5 % of the paddy fields in Japan were

known to be Cd-contaminated (Asami 1984). Similarly,

nearly 13,000 ha agricultural land covering various

provinces in China is reported to be Cd-contaminated

(Zhang and Huang 2000; Liu et al. 2009). Limei et al.

(2008) reported two highly Cd toxic prone areas in

Chenzhou region in China covering approximately

320,000 km2. Similarly, a total of 1,700,000 ha land

accounting for 7.3 % of the cultivated area in Guang-

dong Province in China was found to be severely

impacted by Cd-toxicity (Shu 1997; Yang et al. 2006).

As reported from various parts of the world including

Japan, the USA and South East China, rice predomi-

nantly serves to incorporate Cd into human food chain

given the fact that it constitutes the major staple

worldwide (Watanabe et al. 1996, 2000, 2004; Shimbo

et al. 2001; Tsukahara et al. 2003; Jarup 2003; Cheng

et al. 2006; Egan et al. 2007; Ueno et al. 2009a, b).

Notably, people from South and South East Asian

countries remain immensely vulnerable to chronic Cd

toxicity which as mentioned above is largely ascribed

to their greater reliance on rice-based diets (Watanabe

et al. 2004; Cheng et al. 2006; Meharg et al. 2013).

With regard to the permissible level of Cd for human

consumption, the Codex Alimentarius Commission/

World Health Organization has standardized the

maximum allowable concentration of Cd to be 0.4,

1, 0.2 and 0.2 mg kg-1 in case of polished rice grain,

unpolished rice, wheat and soybean, respectively

(Codex 2006; WHO 2001; Codex Alimentarius Com-

mission 2001; Commission of the European Commu-

nities 2008; CODEX STAN 193-1995 2009). However,

in Japan, the concentrations of Cd in polished rice grains

and flour were found to be 50 and 19 ng g-1, respec-

tively (Shimbo et al. 2001). By analyzing rice grains

sampled from nearly 500 Cd-contaminated fields in

Western Thailand, Simmon et al. (2005) have reported

grain Cd concentrations enhancing up to 7.7 mg kg-1.

Additionally, the authors also found that the Cd content

ranged from 0.5 to 284 mg kg-1 Cd contaminated soil

of the given zone. In view of the worldwide occurrence

of Cd toxicity, a comprehensive list of crops and

countries influenced by Cd toxicity is presented in

Table 1.

Taking note of the escalating impact of Cd toxicity

on human health and crop productivity, here we offer

an overview on breeding important crops against Cd

toxicity. An emphasis is laid to capture the underlying

physiological and molecular mechanisms in plants

(under the Cd-toxic scenario) and the potential of

genomics-aided breeding strategies to incorporate Cd

tolerance in plants. Finally, we underscore wide-

ranging applications of modern omics technologies

enabling fast-track recovery of Cd-tolerant cultivars.

Impact of Cd accumulation on plants

Cd exerts negative impacts on plants when it accu-

mulates beyond the range i.e. 5–10 lg Cd g-1 leaf dry

weight, thus causing cell death (White and Brown

2010). Several biological and physiological pathways

in plants are reported to be impaired by Cd toxicity

which include photosynthesis (Greger et al. 1994;

Alcantara et al. 1994; Mobin and Khan 2007; Gill et al.

2012), metabolism of carbohydrate, nitrogen, phos-

phorus, and sulphur (Sanitá di Toppi and Gabbrielli

1999; Gill et al. 2012; Balestrasse et al. 2003; Gill and

Tuteja 2011), chlorophyll biosynthesis (Stobart et al.

1985), Calvin cycle (Sandalio et al.2001), Co2 fixation

(Perfus-Barbeoch et al. 2002). Besides, Cd-toxicity

substantially alters the function of plasma membrane

due to lipid peroxidation (Fodor et al. 1995), induces

oxidative stress (Balestrasse et al. 2004; Mohanpuria

et al. 2007; Gill and Tuteja 2010) and ultimately

results in cell death (Sanitá di Toppi and Gabbrielli

1999; Garnier et al. 2006; Michele et al. 2009).
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Table 1 List of important food crop and countries affected by cadmium toxicity

Crop Country Area/province/city

affected by Cd toxicity

Remarks References

Potato Japan – 10 % of Cd utake in human occur via potato in

year 2004

UNEP (2008)

Potato European – Cd concentration in potato was 0.14 mg kg-1,

10 times higher permissible limit

EFSA (2009)

Rice Korea Sambo mine area Cd concentration in rice remained 121 lg/d Jung and Thornton (1997)

Rice Korea – – Watanabe et al. (1989)

Rice Tiwan – Cd concentration in rice remained[ 50 ng g-1 Watanabe et al. (1989)

Rice Japan – Cd concentration in rice remained[ 50 ng g-1

Cd concentration in rice remained 5.70 ng g-1

Watanabe et al. (1989,

1996)

Rice Japan – – Izuno et al. (2000)

Rice Japan – Cd concentration in rice 50 ng/g and Shimbo et al. (2001)

Rice China – – Nordberg et al. (2002)

Rice Japan Jinzu river basin Cd concentration ranged 0.02–1.06 mg kg-1 in

rice

Watanabe et al. (2002),

Matsuda et al. (2003)

Rice Japan Northern- and southern-

most Hokkaido and

Okinawa Prefecture

– Tsukahara et al. (2003),

Chiyoda et al. (2003)

Rice Japan Kakehashi river basin

and Jinzu river basin

Cd con. 0.02–1.06 lg/g and 0.11–0.67 ng g - 1 Nogawa et al. (2004)

Rice China Wu Jiang River basin

Guangdong Province,

southern China

1,700,000 ha area is highly contaminated by

heavy metal including Cd

Yang et al. (2006)

Rice Japan Kakehashi river basin

and Jinzu river basin

– Uetani et al. (2006),

Kobayashi et al. (2008)

Rice Japan – 44 % of Cd utake in human occur via rice in year

2004

UNEP (2008)

Rice China Chenzhou City

(Shizhuyuan,

Jinshiling,

Yaogangxian,

Baoshan and

Huangshaping mine

sites)

Cd concentration in soil ranged

2.72–4.83 mg kg-1
Limei et al. (2008)

Rice China – – Wu et al. (2008)

Rice China Chenzhou City Cd con. in soil was 2.72 and 4.83 mg kg-1 and

in rice 0.01–4.43 mg kg-1
Zhai et al. (2008)

Rice China – – Zhen et al. (2008)

Rice China Zhejiang (Taizhou) 31 % of sampled rice contains Cd above

permissible limit

Fu et al. (2008)

Rice China Fujian 11 % of sampled rice contains Cd above

permissible limit

Xie et al. (2008)

Rice Italy Rosate, near Milan Cd concentration in soil remained 0.96 mg kg-1 Cattani et al. (2008)

Rice China Hunan Province 65 % of rice were polluted due to Cd toxicity William et al. (2009), Kong

(2014)

Rice South China – 70 % of sampled rice contains Cd above

permissible limit

Zhang et al. (2009)

Rice Japan – Data from 2000 to 2009 suggested Cd enter into

human body 3.0 lg kg-1 body weight per

week via mostly rice intake

http://www.maff.go.jp/j/

syouan/nouan/kome/k_

cd/cyosa/pdf/-cdtds.pdf
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Table 1 continued

Crop Country Area/province/city

affected by Cd toxicity

Remarks References

Rice China Zhejiang Province

(Jiaoweibao,

Nanbaixiang Yantou)

– Liang et al. (2012)

Rice China Taizhou and Hangzhou,

Lechang

Cheng et al. (2006), Yang

et al. (2006)

Rice Western

Thailand

– Cd concentraion in rice grain was

0.05–7.7 mg kg-1
Simmon et al. (2005)

Rice Sri Lanka Anuradhapura district

North Central

Province

– Bandara et al. (2007),

Meharg et al. (2013)

Rice Thailand Mae Sot District, Tak

Province

– Teeyakasem et al. (2007),

Honda et al. (2010)

Rice Thiland Mae Sot District, Tak

Province

Cd concentration in rice remained 0.12–1.27 mg

Cd kg-1
Sriprachote et al. (2012)

Rice (Sri Lanka) Anuradhapura and

Polonnaruwa

Cd concentration in agricultural soil was

1.8–2.4 mg kg-1
Bandara et al. (2010)

Rice Bangladesh – Cd concentration in raw rice grain remained

33.1 lg kg-1
Khan et al. (2010)

Rice Japan Hokuriku region – Osada et al. (2011)

Rice China Guangdong Province Cd concen. in soil remained from zero to

3.94 mg kg-1
Zhang et al. (2011)

Rice Bangladesh – Cd concentration in rice grain remained

1.31 mg kg-1
Meharg et al. (2013)

Rice China Zhejiang Province

(Jiaoweibao,

Nanbaixiang and

Yantou)

– Liang et al. (2012)

Rice Ghana Cd concentration in rice grain remained

0.27 mg kg-1
Meharg et al. (2013)

Rice Sri Lanka – Cd concentration in rice grain remained

0.80 mg kg-1
Meharg et al. (2013)

Rice China – – Lam et al. (2013)

Rice China Nanjing City Cd concentration was more 3.3 % than

permissible amount

Fang et al. (2014)

Rice China Dabaoshan Mine Cd concentration in soil sample was

4.42 mg kg-1
Wang et al. (2014c)

Rice China Wanshan mining area in

Guizhou Province

– Li et al. (2014)

Rice Australia – Cd concentration in rice was 7.5 lg kg-1 Rahman et al. (2014)

Rice China Guangdong Province Lives of 100 million inhabitants are under threat

owing to contamination of soil by heavy metal

including Cd

Wang and Bjorn (2014b)

Soybean Canada – Cd concentrain remained 3–4 time above the

permissible limit

Shute and Macfie (2006)

Soybean Thailand Mae Sot District, Tak

Province

Cd concentration remained 0.07–0.80 mg kg-1 Sriprachote et al. (2012)

Soybean Japan – Concentration of Cd remains 0.2 mg kg-1 in

one-sixth of soybean seed

Haque et al. (2014)
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Cd signaling, uptake, transport and detoxification

in plants

Plants are endowed with exquisite abilities to cope

HM toxicity via meticulously coordinated physiolog-

ical and molecular mechanisms involving activities

like regulation of HM uptake and transport, chelation,

compartmentalization and storage (Briat and Lebrun

1999; Clemens 2001, 2006; Hall 2002; Pollard et al.

2002).

Roots constitute the key sensing site in plants

through which Cd enters into plant, and Cd stress is

perceived by signaling molecules in the root cell wall

(Blinda et al. 1997; Hall 2002; Polle and Schuetzen-

duebel 2003; Dalcorso et al. 2010; Chmielowska-Bąk

and Deckert 2012). Cd mediates generation of reactive

oxygen species (ROS) subsequent to its entry into the

plant root cells (Chmielowska-Bak et al. 2014 and

references therein) which in turn induces mitogen-

activated protein kinase (MAPK) cascade (Jonak et al.

2004; Yeh et al. 2007; Liu et al. 2010a; Ye et al. 2013;

Chmielowska-Bak et al. 2014) along with impacting

calcium (Ca)-cadmodulin system (Suzuki et al. 2001;

Yeh et al. 2007) and a range of stress-related hormones

like jasmonic acid, ethylene, abscisic acid and sali-

cylic acid (Dalcorso et al. 2008; Rodrı́guez-Serrano

et al. 2009; Stroinski et al. 2013; Chmielowska-Bak

et al. 2013, for details see Chmielowska-Bak et al.

2014). Accompanying this, the activated transcription

factors (TFs) trigger a set of metal detoxification genes

(reviewed by Dalcorso et al. 2010; Verbruggen et al.

2009; Gallego et al. 2012; Chmielowska-Bak et al.

2014). In some cases, the activated genes encode

various transporters located in plasma membrane

(Thomine et al. 2000) which successively guide

removal of excessive Cd from the cell (Dalcorso

et al. 2010). Alternatively, the activated genes might

produce phytochelatin synthase (PCS) enzyme (Cle-

mens et al. 1999; Ha et al. 1999) which uses

glutathione as substrate to generate sulphur containing

phytochelatins (PCs) (Grill et al. 1987, 1989; Steffens

1990; Rauser 1995; Salt and Rauser 1995; Clemens

et al. 1999; Cobbett 2000; Cobbett and Goldsbrough

2002; Hall 2002; Gill and Tuteja 2011). Ultimately,

these PCs compartmentalize the toxic Cd into vac-

uoles from cytoplasm through creating Cd-phy-

tocheletin sulphide complex (Salt and Rauser 1995;

Dalcorso et al. 2010). Also, metal binding Cys-rich

peptides i.e. metallothioneins (MTs) encoded by MT

genes are reported to be involved in protecting plants

from toxicity under Cd stress (Zhou and Goldsbrough

1994; Prasad 1999; Hall 2002) by facilitating Cd

sequestration to vacuoles (Hall 2002; Clemens 2006;

Dalcorso et al. 2010).

The pathways that explain Cd uptake and transport

in plants involve (i) Cd-uptake from soil, an event

regulated by various transporters located in root

plasma membrane, for example OsIRT1, OsIRT2

(Nakanishi et al. 2006), OsNramp1 (Takahashi et al.

2011), OsHMA3 (Ueno et al. 2010; Ishikawa et al.

2011; Miyadate et al. 2011) in rice (ii) sequestration of

Cd from cytoplasm into root vacuole via ABC type

transporter or through Cd2?/H? antiport activity such

as observed in oat (Salt and Rauser 1995; Salt and

Wanger 1993) (iii) xylem loading of Cd through

‘‘symplastic (intracellular)’’ or ‘‘apoplastic (extracel-

lular)’’ pathway (Salt et al. 1995) under the influence

of transporters like OsNramp5 (Sasaki et al. 2012),

OsHMA2 (P1B-type ATPases) in rice (Nocito et al.

2011; Takahashi et al. 2012a, b; Satoh-Nagasawa et al.

2012) and AtHMA4 in Arabidopsis (Mills et al. 2005;

Verret et al. 2004; Wong and Cobbett 2009) (iv)

transportation of Cd from xylem to phloem i.e. root to

shoot (Riesen and Feller 2005; Fujimaki et al. 2010)

and finally (v) translocation of Cd to grain which is

regulated by transporters like OsLCT1 in rice

(Uraguchi et al. 2011) (for details see Uraguchi and

Fujiwara 2012, 2013; Clemens et al. 2013; Gallego

Table 1 continued

Crop Country Area/province/city

affected by Cd toxicity

Remarks References

Wheat Japan Central and Southern – Kubo et al. (2008

Wheat Japan – Cd concentration in flour 19 ng g-1 surveyed

from year 1998–2000

Shimbo et al. (2001)

Wheat Canada – Cd concentration remained

0.060–0.145 mg kg-1 in durum wheat

Gao et al. (2013)
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et al. 2012). A variety of transporters with their roles in

Cd transportation are presented in Table 2. In recent

years, several research groups have successfully

untangled important pathways and mechanisms vital

to Cd accumulation and transportation in plants.

However, a comprehensive examination of contribu-

tions of TFs, miRNAs, and epigenetic changes in

imparting Cd tolerance in plants remains to be

undertaken (Chmielowska-Bak et al. 2014).

Harnessing genotypic variation for Cd toxicity

tolerance

The workable strategies applied so far to address Cd

toxicity in plants have focused on selecting potential

genotypes that (i) demonstrate low metal uptake

(Ueno et al. 2009a, b) (ii) capable of phytoremediation

whereby HM is extracted from contaminated soils and

accumulated in plant shoot (Lasat 2002; Tripathi et al.

Table 2 List of transporter gene involved in Cd transport in various plant species

Crop Transporter gene Gene

product/transporter

Probable function References

Arabidopsis AtNramps AtNramps Transport of Cd Thomine et al. (2000)

Arabidopsis AtHMA4 AtHMA4 Regulates Cd loading in xylem Verret et al. (2004), Mills et al.

(2005), Mills et al. (2010)

Arabidopsis HMA4 HMA4 Involved in Cd transport Courbot et al. (2007)

Arabidopsis AtPDR8 AtPDR8 Involved in pumping out Cd Kim et al. (2007)

Arabidopsis AtMRP6/AtABCC6 AtMRP6/

AtABCC6

Regulation of Cd transport Gaillard et al. (2008)

Arabidopsis AtHMA3 AtHMA3 Vacuolar storage of Cd Morel et al. (2009)

Arabidopsis ATPases, HMA2 and

HMA4

HMA2 and HMA4 Root to shoot translocation of Cd Wong and Cobbett (2009)

Arabidopsis AtNRAMP6 AtNRAMP6 Regulate Cd transport Cailliatte et al. (2009)

Arabidopsis Heavy Metal ATPase

3 (HMA3)

HMA3 Leaf Cd accumulation Chao et al. (2012)

Arabidopsis AtABCC1 and

AtABCC2

AtABCC1 and

AtABCC2

Sequestration of Cd Park et al. (2012)

Barley HvHMA2 HvHMA2 Involved in Cd transport Mills et al. (2012)

Noccaea

caerulescens

NcNramp1 NcNramp1 Controls transport of Cd from root

to shoot

Milner et al. (2014)

Populus HMA5 HMA5 Cd transport Migeon et al. (2010)

Rice OsZIP1 OsZIP1 Transport Cd Ramesh et al. (2003)

Rice Mutant of OsHMA2 OsHMA2 Restrict transport of Cd Satoh-Nagasawa et al. (2012)

Rice OsLCT1 OsLCT1 Transport Cd into grain Uraguchi et al. (2011)

Rice OsHMA1, OsHMA2 OsHMA1,

OsHMA2
Transports Cd from root to shoot Takahashi et al. (2012a, b)

Rice OsHMA3 OsHMA3 Controls transport of Cd from root

to shoot and overexpression

causes reduction in Cd

accumulation

Ueno et al. (2010), Miyadate

et al. (2011), Takahasi et al.

(2012b), Sasaki et al. (2014)

Rice OsNRAMP5 OsNRAMP5 Transport Cd Ishimaru et al. (2012)

Rice Nramp5 Nramp5 Uptake of Cd Sasaki et al. (2012)

Rice OsMTP1 OsMTP1 Translocation of Cd Yuan et al. (2012)

Rice OsNRAMP1 OsNRAMP1 Involved in transport of Cd from

root to shoot

Tiwari et al. (2014)

Thlaspi

caerulescens

TcHMA4 TcHMA4 Involved in Cd transport Bernard et al. (2004)
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2007; Murakami et al. 2007, 2009; Ibaraki et al. 2009;

Takahashi et al. 2014).

Hence, identification of low Cd accumulating

genotypes from a wider germplasm collection includ-

ing wild types and landraces sets the initial step while

progressing towards developing Cd-tolerant cultivars.

Promising accessions with enhanced capacity of low

Cd accumulation have been identified in various crops

including rice (Liu et al. 2003a, b; He et al. 2006;

Grant et al. 2008), wheat (Cakmak et al. 2000; Zhang

et al. 2002), flax (Li et al. 1997, 2002), non oil seed

sunflower (Li et al. 1997, 2002), barley (Chen et al.

2007) and soybean (Vollmann et al. 2014). A brief

update on the studies that measured variation for Cd

accumulation/tolerance in different crops is presented

below in a crop-wise manner:

Rice

A 23-fold difference was observed for Cd concentra-

tion among 49 rice cultivars (Arao and Ae 2003).

Additionally, the authors found LAC23 (An African

upland cultivar) as a promising genotype with lesser

grain Cd accumulation. Similarly, Liu et al. (2007)

also noted Cd concentration in polish rice varying

from 0.14 to 1.43 mg kg-1. Variable Cd concentration

ranging from 0.06 to 0.99 mg kg-1 was evident in a

set of 38 brown rice cultivars, with authors concluding

that the ‘indica’ type cultivars have greater ability to

accumulate Cd than the ‘japonica’ types (He et al.

2006). A similar observation was made by Ueno et al.

(2009a). Genetic variation (0.004–0.057 mg kg-1)

was observed for grain Cd across 110 rice hybrids

(Shi et al. 2009). Concentrations varying from 0.14 to

1.43 mg kg-1 were also noted in grain of polished rice

by Liu et al. (2005). Subjecting 43 rice cultivars under

Cd exposure ranging between 1.75 and 1.85 mg kg-1

resulted in the selection of 30 pollution safe genotypes

(Yu et al. 2006).

Based on the variable response of rice genotypes to

Cd toxicity as assessed in terms of yield loss, two

genotypes viz. Shanyou 63 and Yangjing 9538 were

found to exhibit significant reduction in yield loss (up

to*9 %) in comparison to Yangdao 6 and Wuyunjing

7 that witnessed almost 50 % yield loss (Huang et al.

2008). An analysis conducted under two different rice

growing soils unearthed notable genotypic differences

for Cd uptake and grain partitioning between hybrid

rice and super rice along with presence of significant

differences between the two soils and soil 9 cultivar

interactions (Gong et al. 2007). By analyzing trials of

152 genotypes grown across 12 different locations in

China, Cao et al. (2014a) indentified three genotypes

Xiushui817, Jiayou08-1 and Chunyou689 accumulat-

ing low grain Cd.

The difference reported for Cd accumulation in rice

genotypes is credited to the accumulation of Cd in

grain than in any other organ of the plant (Liu et al.

2007). However, genotypic variations evident in 146

rice accessions accounted this variability to shoot Cd

accumulation (Kojima et al. 2005; Ebana et al. 2008;

Ueno et al. 2009a). In a similar fashion, Ueno et al.

(2009a) reported a 13-fold difference in shoot Cd

concentrations between the highest and lowest Cd

accumulating rice genotypes. Besides, genotypic

variations were also measured based on ‘root to shoot’

translocation of Cd in rice (Ueno et al. 2009b, 2011;

Uraguchi et al. 2009). Sub cellular distribution of Cd

was recorded to vary among rice genotypes (Liu et al.

2014). Similarly, better root growth under Cd-chal-

langed hydroponic condition as exhibited by the

genotypes ‘Subhadra’ and ‘Sankar’ furnished clues

to understand the tolerance mechanism (Rout et al.

2000). Cao et al. (2015) compared effects of varying

Cd levels (up to 100 mg kg-1) and soil added GSH on

different growth stages (seedling and elongation) of

two cultivars (Bing97252: tolerant and Xiushui63:

susceptible). On GSH application to Cd-treated soil,

the authors found that only Bing97252 could show

enhanced yield at seedling stage while grain Cd-

accumulation was significantly hampered in both

cultivars. These findings advocated augmenting the

Cd-tolerant cultivars with externally supplied GSH to

adequately address Cd-toxicity in plants. Owing to

their ability to show remarkable phytoextraction, some

genotypes enable removal of adequate quantities of Cd

from the contaminated soils. For instance, a rice

cultivar ‘Chokoukoku’ was found to extract 883 g Cd

from one hectare of Cd-affected soil (Murakami et al.

2009).

Wheat

Grain Cd content was reported to differ significantly in

both durum wheat (Meyers et al. 1982; Penner et al.

1995; Clarke et al. 1997) and bread wheat (Greger and

Löfstedt 2004), and according to Gao et al. (2013)

durum wheat grains accumulate greater Cd than the

Euphytica (2016) 208:1–31 7
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hexaploid. Based on the screening, Clarke et al. (2002)

identified a durum line ‘8982-TL-L’ as low Cd

accumulating type. With regard to the accumulation

of Cd in root and shoot, durum wheat genotypes ‘Kyle’

and ‘Arcola’ showed differential Cd accumulation at

flowering and ripening stages under hydroponic

condition (Chan and Hale 2004). Variability was also

observed with respect to translocation of Cd from root

to shoot in durum wheat (Clarke et al. 1997; Cakmak

et al. 2000; Harris and Taylor 2013) and bread wheat

(Cakmak et al. 2000). Isogenic lines of durum wheat

had notable differences for Cd uptake and transloca-

tion (Harris and Taylor 2001, 2004; Hart et al. 2006).

Significant genotypic variation exists in Japanese

wheat for Cd tolerance as was reported by Kubo

et al. (2008) while analyzing a set of 237 accessions.

Five accessions AS623321, AS623402, AS623194,

AS623186, and AS623173 of Aegilops tauschii were

reported to be tolerant to Cd stress (Qin et al. 2015).

Apart from phenotypic screening, marker assisted

selection (MAS) using ‘usw47’ (a co-dominant DNA

marker) helped categorize 314 durum lines into low

Cd accumulators (165 lines), high Cd accumulators

(144 lines) and heterogeneous (five lines) (Zimmerl

et al. 2014). The potential of these accessions which

possess greater tolerance to Cd stress could be

thoroughly realized during introgression breeding that

intends to develop Cd tolerant wheat cultivars.

Soybean

Soybean genotypes differing in their capacities to

accumulate Cd were described by various researchers

(Arao et al. 2003; Sugiyama et al. 2011; Salazar et al.

2012; Vollmann et al. 2014). For example, pot and

field experiments by Arao et al. (2003) led to the

discovery of low Cd accumulating soybean cultivar

‘En-b0-1-2’. Recently, Wang et al. (2014a) reported

difference in the extent of root Cd accumulation

between two soybean cultivars i.e. Westag97 and AC

Hime. Likewise, SSR marker assayed over 48 soybean

genotypes has helped establish discrimination

between low and high Cd accumulating lines (Voll-

mann et al. 2014).

Other crops

In potato, a 3-fold less storage of Cd in cultivar

Kennebec than Wilwash was attributable to the

difference in partitioning of Cd (Dunbar et al. 2003).

An emphasis on lesser accumulation of Cd helped Liu

et al. (2009) to declare ‘Lvxing 70’ cultivar of Chinese

cabbage as tolerant of the total 40 genotypes screened.

Likewise, cultivars of Brassica rapa L. ssp. chinensis

including New Beijing 3 and Fengyuanxin 3 (Liu et al.

2010b), Hangzhouyoudonger, Aijiaoheiye 333, and

Zaoshenghuajing (Chen et al. 2012) were reported to

manifest tolerance against Cd toxicity. Low Cd

accumulating genotypes were discovered in other

crops such as Beitalys and Shang 98-128 in barley

(Chen et al. 2007) and AC Sterling in safflower

(Pourghasemian et al. 2013). Under Cd-stressed

hydroponic condition, mungbean genotypes ‘K-851’,

‘LGG-407’ and ‘PDM-116’ showed better root

growth, thereby these can be presumed to possess

tolerance mechanism for the Cd toxicity (Rout et al.

2000). As described here, the existing genetic varia-

tion that explains variable extent of Cd accumulation

within a crop species opens an exciting avenue for

crop breeders to increasingly breed low Cd accumu-

lating or Cd tolerant cultivars.

Understanding the genetic make-up of Cd

tolerance and genomics assisted improvement

for Cd tolerance

Recent advancements in plant genomics including

high throughput DNA marker assays have allowed the

construction of genetic linkage maps, thereby offering

a high-resolution genetic framework to precisely

locating gene/QTL(s) that confer HM tolerance in

crops (Ueno et al. 2009a, b; Ishikawa et al. 2005, 2010;

Sato et al. 2011; Benitez et al. 2012).

In rice, a set of putative QTLs on chromosomes 3, 6

and 8 was identified from the chromosome segment

substitution lines (CSSL) constructed in the genetic

background of Koshihikari and particularly, the DNA

markers on chromosome 3 viz. S1513 and R663

enabled differentiating low Cd accumulating CSSLs

viz. SL-207 and SL-208 (Ishikawa et al. 2005).

Similarly, Xue et al. (2009) mapped 22 QTLs for Cd

tolerance and accumulation at seedling stage in rice.

Shoot and root traits were found to be directly linked

with these QTLs (Table 3). A major QTL governing

transport of Cd from root to shoot was mapped on

chromosome 11 using F2 population (Badari

Dhan 9 Shwe War) in rice (Ueno et al. 2009a).
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Likewise, a large effect QTL explaining 85.6 %

phenotypic variance (PV) was detected from an F2

population in rice derived from Anjana Dhan 9 Nip-

ponbare, and the QTL accounting for higher Cd

accumulation was mapped on short arm of chromo-

some 7 (Ueno et al. 2009b). Importantly, for the given

QTL the authors also pinpointed a candidate genomic

region residing within the interval RM21238–

RM7153. Xue et al. (2009) also located a QTL on

the chromosome 7 for Cd accumulation in rice,

however, this QTL was different from the one

identified earlier by Ueno et al. (2009b) on the same

chromosome. A novel QTL qGCd7 explaining up to

35.5 % PV for grain Cd content was also mapped on

short arm of chromosome 7 in rice (Ishikawa et al.

2010). Recently, a major QTL for Cd accumulation

detected on chromosome 7 from Anjana Dhan 9 Nip-

ponbare population was found to lie in close associ-

ation with markers RM21260 and RM21268 (Ueno

et al. 2010). More imporatnly, the authors have

eventuallycloned the causative gene OsHMA3 respon-

sible for low Cd accumulation.

By using back cross inbred lines (BILs: Koshi-

hikari 9 Jargan) in brown rice, a new QTL qCdp7

controlling Cd accumulation was reported on chro-

mosome 7 placed within the marker interval

RM21160–RM3635 (Abe et al. 2011). Further, a

QTL qCdT7 governing Cd translocation was identified

on chromosome 7 in a rice population derived from the

cross Cho-Ko-Koku 9 Akita 63 (Tezuka et al. 2010).

Notably, the causative gene that concerns the QTL on

chromosome 7 was found to be recessive in nature.

Recently, Abe et al. (2013) reported a qlGCd3 gene

responsible for Cd reduction flanked by QTL-Hd6

(Takahashi et al. 2001) and marker RM16153 on

chromosome 3 in BC4F3 lines derived from CSSL

(LAC23 9 Koshihikari). Apart from the QTLs

detected on chromosome 7 and 3, a QTL qLCdG11

(linked with the markers NBLAC61 and NBLAC63)

for reduced Cd content was mapped on chromosome

11 in a recombinant inbred line (RIL) population

(Fukuhibiki 9 LAC23) (Sato et al. 2011). Recently,

five main effect QTLs on chromosomes 3, 5, 9, 10 and

11 were identified in rice which governed Cd accu-

mulation in shoot and grain (Yan et al. 2013).

Likewise, SSR markers were employed in durum

wheat for mapping Cdu1 gene that is responsible for

Cd uptake (Knox et al. 2009). Wiebe et al. (2010) also

found a major locus (Cdu1) on 5B chromosome inT
a
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durum wheat that governed grain Cd concentration. In

case of soybean, SSR markers based genetic linkage

analysis facilitated mapping of low Cd accumulating

QTL on LG-K (Jegadeesan et al. 2010), and this QTL

exerted substantially higher effect on phenotype i.e. up

to 57.3 %. Of the seven SSR markers reported as

linked with locus (Cda1), the three SSR markers i.e.

SatK147, SacK149 and SattK152 were found to be

very tightly associated with the low Cd accumulating

locus (Cda1). Recently, four QTLs were detected in

Raphanus sativus on different chromosomes viz. 1, 4,

6, and 9 affecting Cd accumulation in roots whereas

shoot Cd accumulation was reported to be controlled

by two QTLs (Xu et al. 2012). Furthermore, a major

effect QTL qRCd9was mapped in Raphanus sativus in

the vicinity of DNA markers NAUrp011_754 and

EM5me6_286 (Xu et al. 2012). An updated list of

QTLs contributing tolerance to toxic metals is avail-

able at PLANTSTRESS site (http://www.plantstress.

com/biotech/index.asp?Flag=1).

In recent years, predictive DNA markers have

gained wider acceptanceto allow speedy selection of

desirable phenotypes (He et al. 2014). The modern

genomic tools especially the trait-linked functional

DNA markers hold tremendous relevance to crop

breeding schemes including the development of high-

yielding genotypes with improved stress resilience.

Notable instances illustrating the marker assisted

transfer of Cd tolerance are reported in rice (Ishikawa

et al. 2005, 2010, 2012; Abe et al. 2013). For example,

CSSLs viz. SL-207 and SL-208 showing low Cd

accumulation were developed by placing QTLs from

Kasalath in the background of Koshihikari. Con-

versely, the other CSSLs viz. SL-215, SL-217 and SL-

218 derived from the same cross exhibited greater Cd

accumulation (Ishikawa et al. 2005). A major effect

QTL qGCd7 explaining higher grain Cd accumulation

(flanked by SSRs RM6728 and RM7273) was vali-

dated in the background of Sasanishiki (Ishikawa et al.

2010). Recently, Ishikawa et al. (2012) have reported

rice cultivars containing mutant gene ‘osnramp5’

linked with the markers RM8007 and RM3635, can

facilitate in distinguishing rice cultivars containing

low grain Cd.

The paramount importance of rice chromosomes 7

and 11 is evident from multiple QTL studies that

intended to illuminate the genetic landscape of Cd

tolerance in rice. The exceptionally high PVs

accounted to these QTLs [QTLs on chromosome 7:

35.5 % PV (Ishikawa et al. 2010) and 85.6 % PV

(Ueno et al. 2009a)] provide evidence for their robust

candidature for downstream analyses. A causative

gene OsHMA3 from the candidate genomic region on

chromosome 7 was successfully cloned in rice through

analyzing F2 (Anjana Dhan 9 Nipponbare: Ueno

et al. 2010) and F2:3 (Cho-Ko-Koku 9 Akita 63:

Miyadate et al. 2011) using a map-based cloning

approach. On the other hand, the discrepancies

observed across different QTL studies regarding the

number and genomic locations of the detected QTLs

can be credited to several factors like experimental

design, number of mapping individuals, genetic map

saturation, trait-variation (between parental geno-

types), plant’s growth stage and parts/tissues chosen

for phenotyping assay (grain and shoot in case of Cd

accumulation) etc. (Erickson et al. 2004; Xue et al.

2009; Ishikawa et al. 2009; Ueno et al. 2009b).

In durum wheat, a random amplified polymorphic

DNA (RAPD) marker OPC20 (Penner et al. 1995)

remains crucial for practicing MAS, which led to the

development of several Canadian cultivars including

Strongfield (Clarke et al. 2005), Eurostar (Clarke et al.

2009a), Brigade (Clarke et al. 2009b) and CDC

Verona (Pozniak et al. 2009). Likewise, low Cd

containing cultivar CDC Vivid was developed in

durum wheat using a sequence characterized amplified

region (SCAR) marker ScOPC20 (Pozniak 2013).

Also, suitability of the two sequence-specific DNA

markers i.e. CAPS (usw47) and SCAR (ScOPC20) in

distinguishing low and high Cd genotypes was

successfully demonstrated in durum wheat (Zimmerl

et al. 2014).

In soybean, derived CAPS (dCAPS: Gm-dCAPS-

HMA1) marker linked with the cd1 QTL controlling

seed Cd concentration, can play important role in

distinguishing high seed Cd accumulating genotypes

(Benitez et al. 2012). The candidate gene ‘GmHMA1’

underlying this QTL has been also cloned (Benitez

et al. 2012). Similarly, implications of Cda1 locus and

SSR (Sack149) marker for distinguishing low seed Cd

in soybean has been discussed by Vollmann et al.

(2014).

Molecular breeding to improve Cd stress tolerance

in plants is in infancy stage; however it is gradually

gaining momentum with the availability of the high-

throughput methods which expand the array of

breeder-friendly DNA markers or candidate gene(s)/

QTLs. To this end, as was reported recently in
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Aegilops tauschii (Qin et al. 2015) increasing imple-

mentation of genome scale techniques like genome-

wide association studies (GWAS) dramatically

improves scope for genomics assisted breeding.

Emerging genomics technologies for discovering

candidate markers/genes for Cd tolerance

Advances in next generation sequencing (NGS) tech-

niques have heralded a technological shift from

microarray to high-throughput transcriptome or RNA

Sequencing (RNA-Seq) enabling genome wide can-

didate gene(s) and their expression patterns accessible

to the research community (Verbruggen et al. 2013;

Halimaa et al. 2014). Employing cDNA-AFLP anal-

ysis, Fusco et al. (2005) reported 52 genes in Brassica

juncea associated with cellular metabolism, photo-

synthetic activity, TFs and stress response under Cd

stress. In response to Cd stress, a global expression

analysis revealed up-regulated expression of 65 genes,

whereas 338 genes showed down-regulation in plants

(Kovalchuk et al. 2005). Similarly, transcriptome

analysis in rice unearthed a set of 1172 Cd-responsive

regulatory genes (Lin et al. 2013). In barley, microar-

ray-based transcript profiling of a Cd-tolerant geno-

type (Weisuobuzhi) and a Cd-sensitive genotype

(Dong17) uncovered a set of 91 Cd-responsive genes

showing up and down regulation (Cao et al. 2014b).

These genes were found to be associated with Cd

detoxification through producing catalase against ROS

and sequestering Cd into vacuoles. Occurrence of

some common genes has been suggested which

encode proteins to negate the detrimental effects

associated with inflated levels of ROS and chaperons

in plants (Suzuki et al. 2001; Sharma and Dietz 2009;

Hossain et al. 2012a; Lin et al. 2013). Transcriptome

profiling of bark tissue of Populus 9 canescens with

Affymetrix poplar genome array revealed significantly

altered expression of transcripts involved in

microstructural and physiological processes condi-

tioning Cd toxicity (He et al. 2013). Further, this study

showed active roles of 43 hub genes in regulating Cd

response in bark tissue. Likewise, whole genome-

microarray analysis facilitated the identification of

nine Cd responsive genes corresponding to putative

QTL regions in Populus (Induri et al. 2012). Impor-

tantly, the genes encoding metal transporter and

glutathione-S-transferase were also recovered from

the given QTL interval. In chickpea, a large-scale set

of 1579 ESTs was produced from Cd treated roots of

genotype ‘Pusa1105’ and subsequently, 914 unigenes

were obtained by analyzing the EST assembly (Gaur

et al. 2014). A genome wide transcriptome profiling

was performed in Arabidopsis in order to yield greater

insights into plant’s response to Cd toxicity (Herbette

et al. 2006; Mendoza-Cózatl et al. 2011). Recently,

RNA-Seq analysis of Cd-treated and non treated rice

seedling revealed various transcripts associated with

heavy metal detoxification, signal transduction and

metal transport causing Cd tolerance (Oono et al.

2014). Similarly, transcriptome analysis of Sedum

alfredii Hance (belonging to the Crassulaceae family)

hyperaccumulating ecotype with Roche 454 and

Illumina/Solexa suggested up- and down-regulation

of 110 and 123 contigs, respectively (Gao et al. 2013).

The regulatory micro RNA (miRNAs) engaged in

molecular mechanism underlying HM tolerance in

various plants is worth mentioning (Ding and Zhu

2009; Mendoza-Soto et al. 2012; Fang et al. 2013;

Srivastava et al. 2013). To this end, NGS technology

has helped greatly to elucidate the HM toxicity related

regulatory miRNAs, their expression patterns and

concerned mRNA targets in plants (Zhou et al. 2012;

Yu et al. 2012; Xu et al. 2013). Microarray based

profiling of Cd-stressed rice resulted in the detection

of 19 miRNAs. Importantly, the target genes of the

given miRNAs were found to encode TFs and stress

responsive proteins (Ding et al. 2011). Similarly,

microarray analysis of soybean genotypes ‘Huaxia3’

(Cd-tolerant) and ‘Zhonghuang 24’ (Cd sensitive)

uncovered a set of 26 Cd responsive miRNA (Fang

et al. 2013). Differential expression of 13 conserved

miRNAs was investigated under Cd-stressed condi-

tions in Brassica napus (Huang et al. 2010). In a

similar way, application of deep sequencing in B.

napus following Cd treatment profiled a total of 84

conserved and non conserved miRNAs expressed in

root and shoot (Zhou et al. 2012). In Raphanus sativus,

known (15) as well as novel (8) Cd stress responsive

regulatory miRNA families were discovered through

transcriptome analysis (Xu et al. 2013).

Concerning proteome dynamics in response to Cd

stress, considerable changes in proteins participating

in mitochondrial protein import and maturation, and

those contributing to nitrogen metabolism were

noticed in Populus tremula L (Sergeant et al. 2014).

Further, differential expressions of both stress and
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primary metabolism related proteins were noted in

relation to Cd toxicity in poplar (Kieffer et al. 2008,

2009; Durand et al. 2010). Based on root proteomic

analysis using MALDI-TOF/TOF MS, Wu et al.

(2013) reported enhancement of proteins involved in

anti-oxidant defenses and anti-stress protection under

Cd exposure in Solanum torvum. Similarly, 36 leaf and

root proteins were found to be both up and down

regulated following Cd stress in rice as demonstrated

by Lee et al. (2010) using MALDI-TOF MS analysis.

Proteomic analysis of rice root treated with Cd showed

higher accumulation of GSH and phytochelatins,

leading to Cd tolerance (Aina et al. 2007). While

investigating the Arabidopsis leaf proteome under Cd-

stressed situation, up regulation was observed for

proteins associated with oxidative stress, protein

metabolism, photosynthesis and energy production

(Semane et al. 2010). In soybean, a combined

proteomic and metabolomic analysis of cultivar ‘En-

rie’ showed a set of proteins playing significant role in

Cd-chelating pathway and lignin biosynthesis (Ahsan

et al. 2012). Likewise, leaf proteomic analysis in

soybean under Cd stress using cultivars Harosoy (high

Cd accumulator), Fukuyutaka (low Cd accumulator)

and their RILs indicated higher accumulation of

photosynthesis related proteins, glutamine synthetase

facilitating Cd detoxification and an increase in

antioxidant enzymes (Hossain et al. 2012b). Changes

in expression levels of 14 proteins were reported from

flax (tolerant versus susceptible genotypes) as a

response to Cd toxicity (Hradilová et al. 2010) and a

proposition was established that the tolerance to Cd

might be due to up-regulation of ferritin and glutamine

synthetase enzyme under Cd stress. Up regulation of

proteins associated with sulfur assimilation, redox

homeostasis and xenobiotic detoxification was also

predicted as a plant’s response to counter Cd toxicity

in B. junceae by applying fluorescence two-dimen-

sional difference gel electrophoresis (2-D DIGE) and

quantitative proteomic assay (iTRAQ) (Alvarez et al.

2009).

It is evident from the above discussion that there

exist some common genes across different plant

species which are regulated under HM stress (Zhao

et al. 2009; Lin et al. 2013). Some of these candidate

genes involved in manifestation of Cd tolerance are

listed in Table 4. Evolving cutting-edge functional

genomic tools including digital expression analysis

(DGA) are likely to enrich researchers in

comprehending the molecular mechanism describing

plant’s response to Cd stress, thereby broadening the

range of candidate genes or functional genetic variants

for incorporating Cd tolerance in plants.

Engineering Cd tolerance in plants using

transgenic technologies

Genetic engineering (GE) permits overcoming the

restrictions posed by the sexual incompatibility in

plants, and noteworthy achievements were made

towards developing commercially viable transgenics

against biotic and abiotic stress across a range of crops

(Daniell et al. 2002; Ashraf 2010; Ahmad et al. 2012).

To impart tolerance against metal toxicity, transgenic

technology has been applied to manipulate specific

genes including cation exchanger genes (Guo-ming

et al. 2012 and references therein) which encode

tonoplast-localized Cd transporters (Koren’kov et al.

2007a, b), plasma membrane based HM transporter

(Ishimaru et al. 2012; Ovecka and Takac 2014; Sasaki

et al. 2014), PCS genes and the genes encoding HM

binding peptides participating in sequestration of HM

into vacuoles or chelating them in cytoplasm (Zhu

et al. 1999; Picault et al. 2006; Shukla et al. 2012).

Further, development of genetically engineered hyper-

accumulating plants capable of extracting HMs from

the metal contaminated soils stands to be one of the

most attractive and environmental-friendly

approaches (Zhu et al. 1999; Doucleff and Terry

2002; Krämer 2005; Tripathi et al. 2007; Krämer

2010; Maestri et al. 2010; Rascio and Navari-Izzo

2011; Chen et al. 2013). Table 5 provides a list of

transgenes that are known to confer tolerance to Cd

toxicity in different plants. In addition to the transge-

nes related to Cd tolerance, a comprehensive list of

transgenes relating to the other metals is available at

PLANTSTRESS site (http://www.plantstress.com/

biotech/index.asp?Flag=1).

Utilizing the root vacuolar sequestration of Cd2? by

Arabidopsis CAtion eXchangers (CAXs) genes, trans-

genic tobacco was developed with the CAX4 and

CAX2 genes driven by CaMV35S promoter, and the

resultant transgenics exhibited substantially higher

transport and selectivity of Cd?2 into root tonoplast

(Koren’kov et al. 2007a). Similar results of AtCAX4

and AtCAX2 genes encoding divalent cation/proton

antiporters causing higher accumulation of Cd into
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root tonoplast were demonstrated in tobacco (Kor-

enkov et al. 2007b), whereas engineering of AtCAX4

and AtCAX2 genes with root-selective promoters

resulted in lower Cd accumulation in tobacco leaves

which in turn caused lowering in upload of Cd into

shoots (Korenkov et al. 2009). Overexpression of

yeast protein YCF1 gene into Arabidopsis resulted in

the manifestation of Cd tolerance by means of

sequestering Cd into vacuoles (Song et al. 2003).

Given the active role of transporters in imparting HM

tolerance (Table 2), overexpression of OsHMA3 gene

(a member of the heavy metal ATPase: HMA) family

conferred tolerance to rice against Cd via compart-

mentalizing Cd into roots (Sasaki et al. 2014).

Exploring the potentiality of phytoremediation, Sty-

losanthes hamata SHST1 gene encoding for a high-

affinity sulfate transporter was transferred into B.

juncea, thus leading to greater Cd accumulation in

roots (Lindblom et al. 2006). Likewise, overexpres-

sion of ATP sulfurylase in B. juncea caused enhanced

Cd tolerance at seedling stage (Wangeline et al. 2004).

Phytochelatins, sulphur rich metal binding pep-

tides, play significant role in achieving tolerance

against Cd mentioned earlier. Introduction of AtPCS1

gene into plastid of Arabidopsis under the control of

CaMV35S promoter enhanced PCs in transgenic lines

under Cd stress. By contrast, overexpression of this

gene in cytosol resulted in lower Cd tolerance (Picault

et al. 2006). Similarly, Cd tolerance was manifested in

plants (harboring AtPCS gene) transformed using an in

planta protocol. Examples include crops like rice

(Venkataramaiah et al. 2011), B. juncea (Gasic and

Korban 2007a) and tobacco (Pomponi et al. 2006).

Likewise, transgenic of tall fescue containing Phrag-

mites australis Phytochelatin Synthase (PaPCS) gene

showed higher synthesis of PCs, thereby offering Cd

Table 4 Selective list of candidate genes (only contributing Cd tolerance) in response of cadmium stress under transcriptome and

proteome analysis in various plant species

Crop Candidate gene Putative function References

Arabidopsis At5g44070 Phytochelatins synthesis Herbette et al. (2006)

At5g44070 PCS synthesis

At1g17190 and others GSH S-transferase

Arabidopsis At2g30860 Glutathione S-transferase phi 9 Semane et al. (2010)

Barley Contig15264_at, Contig20831_at Glutathione S-transferase (GST) Cao et al. (2014b)

HV_CEb0004O15r2_s_at Glutathione S-transferase (GST)

Contig9764_at Glutathione S-transferase (GST)

Phytochelatin synthetase-like protein

Brassica FG567250 ABC transporter Zhou et al. (2012)

CD826328 Metal transporter Nramp1

GT073274 Metal transporter Nramp1

Radish Glutathione S-transferase 5 (GST5)

Phytochelatin synthase 1

Phytochiletins synthesis Xu et al. (2013)

Rice OsGSTU22a and OsGSTU19a Glutathione-S-transferase (GST) Lin et al. (2013)

Os02t0585200-01a Metal ion transporter (HMA family) Oono et al. (2014)

Os04t0571600-01a Metal ion transporter (MatE family)

Os01t0972200-00a Metal ion transporter (Zip family)

Populus fgenesh4_pg.C_LG_III001134 Multidrug resistance-associated protein;

ATP-type transporter

Induri et al. (2012)

Sedum alfredii Sa_Contig14529 Metal transporter Nramp4 Gao et al. (2013)

Sa_Contig03765 Metal transporter Nramp2

Sa_Contig30461 Metal transporter Nramp3

Soybean Glyma03g40280.2 Copper/zinc superoxide dismutase 1 Fang et al. (2013)

Glyma03g40280.3 Copper/zinc superoxide dismutase 1

a Only candidate gene showing fold changes greater than 5 are taken
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ü
h

n
le

n
z

et
al

.
(2

0
1

4
)

A
ra
b
id
o
p
si
s

N
ic
o
ti
a
n
a
ta
b
a
cu
m

(v
.

X
an

th
i)

0
.2

5
l

M
C

d
C

l 2
A
tH
M
A
4

H
M

A
4

C
aM

V
3

5
S

?
L

o
w

er
in

g
in

C
d

u
p

ta
k

e
an

d

ac
cu

m
u
la

ti
o
n

S
ie

m
ia

n
o

w
sk

i
et

al
.

(2
0

1
4
)

B
ac

te
ri

a
A
ra
b
id
o
p
si
s

–
G
a
m
m
a
-E
C
S

G
lu

ta
m

y
l

cy
st

ei
n

e

sy
n

th
as

e

A
ct

in

re
g

u
la

to
ry

se
q
u
en

ce

(A
2

)

2
In

cr
ea

se
d

le
v
el

o
f
c-

E
C

-r
el

at
ed

p
ep

ti
d
es

ca
u
se

s
se

n
si

ti
v
it

y
to

C
d

L
i

et
al

.
(2

0
0

5
)

B
ra
ss
ic
a
ju
n
ce
a

A
ra

b
id

o
p
si

s
(e

co
ty

p
e

C
o
lu

m
b

ia
)

5
0
lM

C
d
(N

O
3
) 2

B
jM

T
2

M
et

al
lo

th
io

n
ei

n
C

aM
V

3
5
S

?
P

ro
d
u

ce
s

ty
p
e-

2
M

T
an

d
d

et
o

x
if

y

C
d

Z
h

ig
an

g
et

al
.

(2
0

0
6
)

B
ra
ss
ic
a
ju
n
ce
a

A
ra
b
id
o
p
si
s

an
d

T
o

b
ac

co

1
0
lM

C
d
(N

O
3
) 2

B
jC
d
R
1
5

b
Z

IP
tr

an
sc

ri
p

ti
o

n

fa
ct

o
r

C
aM

V
3

5
S

?
R

eg
u
la

ti
o

n
o

f
C

d
u

p
ta

k
e

an
d

tr
an

sp
o

rt
in

ro
o

t

F
ar

in
at

i
et

al
.

(2
0

1
0
)

16 Euphytica (2016) 208:1–31

123



T
a

b
le

5
co

n
ti

n
u

ed

S
o

u
rc

e
o

f
g

en
e

T
ra

n
sf

o
rm

ed
p

la
n

t

sp
.

(a
cc

es
si

o
n

)

C
o

n
ce

n
tr

at
io

n

o
f

C
d

u
se

d

N
am

e
o

f

g
en

e

N
am

e
o

f
th

e

p
ro

te
in

P
ro

m
o

te
r

u
se

d

O
u

tc
o

m
e

C
o

m
m

en
ts

R
ef

er
en

ce

B
ac

te
ri

a
E

as
te

rn
co

tt
o
n
w

o
o
d

–
E
C
S

G
am

m
a-

g
lu

ta
m

y
lc

y
st

ei
n
e

sy
n

th
et

as
e

–
?

A
cc

u
m

u
la

te
s

ex
ce

ss

C
d

/p
h

y
to

re
m

ed
ia

ti
o

n
o

f
C

d

L
eB

la
n

c
et

al
.

(2
0

1
1
)

C
er
a
to
p
h
yl
lu
m

d
em

er
su
m

L
.

T
o

b
ac

co
(c

v
.

P
et

it

H
av

an
a)

5
0

,
1

0
0

,
2

0
0

,

3
0

0
lM

C
d
C

l 2
an

d

3
0

0
lM

C
d
C

l 2

C
d
P
C
S
1

P
h

y
to

ch
el

at
in

sy
n

th
as

e

C
aM

V
3

5
S

?
In

cr
ea

se
in

P
C

s
p
ro

d
u
ct

io
n

ca
u

se
d

h
ig

h
er

ac
cu

m
u

la
ti

o
n

o
f

C
d

S
h

u
k

la
et

al
.

(2
0

1
2
)

E
sc
h
er
ic
h
ia

co
li

B
ra
ss
ic
a
ju
n
ce
a

(a
cc

es
si

o
n

n
o

.

1
7

3
8
7

4
)

0
.0

5
,

0
.0

7
5

,
o

r

0
.1

0
m

M

C
d
S

O
4

g
sh
I

G
am

m
a-

g
lu

ta
m

y
lc

y
st

ei
n
e

sy
n

th
et

as
e

C
aM

V
3

5
S

?
S

eq
u
es

tr
at

io
n

o
f

ex
ce

ss
C

d
Z

h
u

et
al

.
(1

9
9

9
)

–
B
ra
ss
ic
a
ju
n
ce
a

–
(E
C
S
)

an
d

(G
S
)

G
am

m
a-

g
lu

ta
m

y
lc

y
st

ei
n
e

sy
n

th
et

as
e

g
lu

ta
th

io
n

e

sy
n

th
as

e

C
aM

V
3

5
S

?
P

C
s

an
d

g
lu

ta
th

io
n

e
as

si
st

ed
in

h
ig

h
C

d
ac

cu
m

u
la

ti
o
n

th
er

eb
y

h
el

p
in

g
in

C
d

p
h

y
to

re
m

ed
ia

ti
o
n

B
en

n
et

te
et

al
.

(2
0

0
3
)

–
B
ra
ss
ic
a
ju
n
ce
a

(a
cc

es
si

o
n

n
o

.

1
7

3
8

7
4

)

–
A
T
P su
lf
u
ry
la
se

A
T

P
su

lf
u
ry

la
se

C
aM

V
3
5
S

?
D

et
o

x
ifi

ca
ti

o
n

o
f

C
d

b
y

su
lf

u
r-

ri
ch

co
m

p
o

u
n
d

s

W
an

g
el

in
e

et
al

.

(2
0

0
4
)

–
N
ic
o
ti
a
n
a
ta
b
a
cu
m

L
.

(W
is

co
n
si

n
3
8
)

0
.6

m
g

C
d

l-
1

(H
is

C
U

P
)

P
o

ly
h

is
ti

d
in

e

cl
u

st
er

an
d

m
et

al
lo

th
io

n
ei

n

C
aM

V
3

5
S

?
H

ig
h
er

ac
cu

m
u

la
ti

o
n

o
f

C
d

an
d

re
si

st
an

ce
fo

r
C

d

P
av

li
k
o

v
a

et
al

.

(2
0

0
4
)

G
ly
ci
n
e
m
a
x

–
0

.3
–

0
.4

m
M

C
d
C

l 2

G
m
O
A
S
T
L
4

O
-A

ce
ty

ls
er

in
e

(t
h

io
l)

ly
as

e

C
aM

V
3

5
S

?
H

ig
h
er

ac
cu

m
u

la
ti

o
n

o
f

th
io

l

co
m

p
o

u
n
d

s
ca

u
se

s
C

d

to
le

ra
n

ce

N
in

g
et

al
.

(2
0

1
0
)

H
u

m
an

B
ra
ss
ic
a
n
a
p
u
s

1
0

0
lM

C
d

C
l 2

M
T

-I
I

M
et

al
lo

th
io

n
ei

n
-I

I
C

aM
V

3
5
S

?
S

eq
u
es

tr
at

io
n

o
f

ex
ce

ss
C

d
M

is
ra

an
d

G
ed

am
u

(1
9

8
9
)

L
yc
iu
m

ch
in
en
se

N
ic
o
ti
a
n
a
ta
b
a
cc
u
m

–
L
ch
E
R
F

E
R

F
C

aM
V

3
5

S
?

In
cr

ea
se

in
h
ig

h
er

G
S

H
g
en

e

ex
p

re
ss

io
n

ca
u

se
C

d
to

le
ra

n
ce

G
u

an
et

al
.

(2
0

1
5

c)

L
yc
iu
m

ch
in
en
se

A
ra
b
id
o
p
si
s
th
a
li
a
n
a

–
L
cG

S
H
S

G
lu

ta
th

io
n

e

sy
n

th
as

e

–
?

C
d

to
le

ra
n

ce
d

u
e

to
ex

ce
ss

ac
cu

m
u
la

ti
o
n

o
f

g
lu

ta
th

io
n
e

G
u

an
et

al
.

(2
0

1
5

b
)

N
ic
o
ti
a
n
a

ta
b
a
cc
u
m

N
ic
o
ti
a
n
a
ta
b
a
cc
u
m

3
0

0
lM

C
d

S
O

4
N
tU
B
Q
2

U
b
-e

x
te

n
si

o
n

p
ro

te
in

–
?

C
d

to
le

ra
n

ce
d

u
e

to
in

cr
ea

se
d

ac
ti

v
it

y
o

f
2

0
S

p
ro

te
as

o
m

e

L
ee

an
d

H
w

an
g

(2
0

1
5
a)

N
ic
o
ti
a
n
a

ta
b
a
cc
u
m

N
ic
o
ti
a
n
a
ta
b
a
cc
u
m

5
0
lM

C
d

S
O

4
N
tH
b
1

N
o

n
-s

y
m

b
io

ti
c

cl
as

s
1

h
em

o
g

lo
b

P
h

o
sp

h
o

g
ly

ce
ra

te

k
in

as
e

(P
G

K
)

?
In

cr
ea

se
C

d
to

le
ra

n
ce

re
d
u
ci

n
g

N
O

L
ee

an
d

H
w

an
g

(2
0

1
5
b

)

Euphytica (2016) 208:1–31 17

123



T
a

b
le

5
co

n
ti

n
u

ed

S
o

u
rc

e
o

f
g

en
e

T
ra

n
sf

o
rm

ed
p

la
n

t

sp
.

(a
cc

es
si

o
n

)

C
o

n
ce

n
tr

at
io

n

o
f

C
d

u
se

d

N
am

e
o

f

g
en

e

N
am

e
o

f
th

e

p
ro

te
in

P
ro

m
o

te
r

u
se

d

O
u

tc
o

m
e

C
o

m
m

en
ts

R
ef

er
en

ce

O
ry
za

sa
ti
va

N
ic
o
ti
a
n
a
ta
b
a
cu
m

(c
v

X
an

th
i)

0
.1

m
m

o
l/

L

C
d
C

l 2
�2

.5
H

2
O

R
C
S
1

A
cy

to
so

li
c

cy
st

ei
n

e
sy

n
th

as
e

C
aM

V
3

5
S

?
D

et
o

x
ifi

ca
ti

o
n

o
f

C
d

b
y

ex
ce

ss

su
lp

h
u

r
co

m
p

o
u

n
d

s

H
ar

ad
a

et
al

.
(2

0
0

1
)

–
O
ry
za

sa
ti
va

1
0

m
g

k
g
-

1
C

d
O
sP
C
S
1

P
h

y
to

ch
el

at
in

sy
n

th
as

e

Z
M

M
1

?
L

o
w

er
ac

cu
m

u
la

ti
o
n

o
f

C
d

in

g
ra

in

L
i

et
al

.
(2

0
0

7
)

O
ry
za

sa
ti
va

–
–

O
sN

R
A
M
P
5

O
sN

R
A

M
P

5

tr
an

sp
o

rt
er

–
?

In
cr

ea
se

s
h
ig

h
tr

an
sl

o
ca

ti
o
n

o
f

C
d

in
to

sh
o

o
t

Is
h

im
ar

u
et

al
.

(2
0

1
2
)

O
ry
za

sa
ti
va

L
.

A
ra
b
id
o
p
si
s
th
a
li
a
n
a

(C
o

l-
0

)

7
5
lM

C
d

C
l 2

O
sD

E
P
1

C
y

st
ei

n
e

ri
ch

G

p
ro

te
in

c
su

b
u

n
it

–
?

P
ro

d
u

ce
s

cy
st

ei
n

e
ri

ch
co

m
p

o
u

n
d

ca
u

si
n

g
re

m
o

v
al

o
f

C
d

io
n

s

K
u

n
ih

ir
o

et
al

.
(2

0
1

3
)

O
ry
za

sa
ti
va

T
al

l
F

es
cu

e
1
5
0
lM

C
d

C
l 2

P
a
P
C
S
a
n
d

P
a
G
C
S

P
h

y
to

ch
el

at
in

sy
n

th
as

e

G
lu

ta
m

y
l

cy
st

ei
n

e

sy
n

th
et

as
e

C
aM

V
3

5
S

?
P

ro
d
u

ce
s

ex
ce

ss
P

C
s

th
er

eb
y

h
el

p
in

g
in

C
d

to
le

ra
n

ce

Z
h

ao
et

al
.

(2
0

1
4
)

O
ry
za

sa
ti
va

(A
n
ja

n
a

D
h
an

)

–
–

O
sN

R
A
M
P
5

O
sN

R
A

M
P

5

tr
an

sp
o

rt
er

–
?

H
ig

h
tr

an
sl

o
ca

ti
o
n

o
f

C
d

T
ak

ah
as

h
i

et
al

.

(2
0

1
4
)

P
h
ra
g
m
it
es

a
u
st
ra
li
s

A
g
ro
st
is
p
a
lu
st
ri
s

0
.1

5
m

M
C

d
C

l 2
P
a
G
C
S

G
lu

ta
m

y
l

cy
st

ei
n

e

sy
n

th
et

as
e

C
aM

V
3

5
S

P
ro

d
u

ce
s

ex
ce

ss
P

C
s

Z
h

ao
et

al
.

(2
0

1
0
)

P
h
ra
g
m
it
es

a
u
st
ra
li
s

–
–

O
sH

M
A
3

O
sH

M
A

3

tr
an

sp
o

rt
er

–
V

ac
u
o
la

r
se

q
u
es

tr
at

io
n

o
f

C
d

S
as

ak
i

et
al

.
(2

0
1

4
)

S
ty
lo
sa
n
th
es

h
a
m
a
ta

B
ra
ss
ic
a
ju
n
ce
a

(a
cc

es
si

o
n

n
o

.

1
7

3
8
7

4
)

1
0

m
g

/l
C

d
as

C
d
S

O
4

S
H
S
T
1

S
u

lp
h

at
e

tr
an

sp
o

rt
er

C
aM

V
3

5
S

–
H

ig
h
er

ac
cu

m
u

la
ti

o
n

o
f

C
d
/h

el
p

in
p
h
y
to

re
m

ed
ia

ti
o
n

L
in

d
b

lo
m

et
al

.

(2
0

0
6
)

T
ri
ch
o
d
er
m
a

vi
re
n
s

N
ic
o
ti
a
n
a
ta
b
a
cu
m

(c
v
.

H
av

an
a

4
2

5
)

1
0

,
5

0
,

1
0

0
an

d

2
0

0
lM

C
d

T
vG

S
T

G
lu

ta
th

io
n

e

tr
an

sf
er

as
es

C
aM

V
3

5
S

?
G

lu
ta

th
io

n
e

tr
an

sf
er

as
es

h
el

p
s

in

re
d

u
ci

n
g

o
x

id
at

iv
e

st
re

ss

in
d

u
ce

d
b

y
C

d

D
ix

it
et

al
.

(2
0

1
1
)

T
ri
ti
cu
m

a
es
ti
vu
m

O
ry
za

sa
ti
va

(D
o
n

g
ji

n
)

1
0

0
–

3
0

0
l

M

C
d
C

l 2

T
a
H
sf
A
4
a

H
ea

t
sh

o
ck

tr
an

sc
ri

p
ti

o
n

fa
ct

o
r

–
?

U
p

re
g
u

la
ti

o
n

o
f

M
T

g
en

es

ca
u

se
s

to
le

ra
n

ce
fo

r
C

d

S
h

im
et

al
.

(2
0

0
9
)

T
ri
ti
cu
m

a
es
ti
vu
m

O
ry
za

sa
ti
va

L
.

(c
v

.

Z
h

o
n
g

h
u

a1
1

)

2
5

0
an

d

5
0

0
m

M

C
d
C

l 2

T
a
P
C
S
1

P
h

y
to

ch
el

at
in

sy
n

th
as

e

C
aM

V
3

5
S

-
O

v
er

ex
p

re
ss

io
n

o
f

th
e

g
iv

en
g

en
e

ca
u

se
s

se
n

si
ti

v
it

y
to

C
d

W
an

g
et

al
.

(2
0

1
2
)

T
ri
ti
cu
m

a
es
ti
vu
m

T
o

b
ac

co
0

.0
5

m
M

C
d
(N

O
3
) 2

L
C
T
1

–
C

aM
V

3
5

S
?

P
ro

te
ct

iv
e

ac
ti

o
n
o
f

C
a
?

2

ca
u

se
s

lo
w

ac
cu

m
u

la
ti

o
n

o
f

C
d

A
n

to
si

ew
ic

z
an

d

H
en

n
in

g
(2

0
0

4
)

Y
ea

st
A
ra
b
id
o
p
si
s

(C
o

lu
m

b
ia

ec
o

ty
p

e)

7
0
lM

C
d

C
l 2

Y
C
F
1

Y
ea

st
p

ro
te

in
C

aM
V

3
5

S
?

H
ig

h
er

ac
cu

m
u

la
ti

o
n

o
f

C
d

S
o

n
g

et
al

.
(2

0
0

3
)

?
Im

p
ro

v
em

en
t

in
C

d
to

le
ra

n
ce

d
u

e
to

o
u

tc
o

m
e

o
f

tr
an

sf
o

rm
at

io
n

ev
en

t

-
N

eg
at

iv
e

ef
fe

ct
o

n
p

la
n

t
d

u
e

to
o

u
tc

o
m

e
o

f
tr

an
sf

o
rm

at
io

n
ev

en
t

18 Euphytica (2016) 208:1–31

123



tolerance (Zhao et al. 2014). Conversely, expression of

wheat TaPCS1 gene caused sensitivity in rice for Cd

toxicity due to higher accumulation of Cd in shoots

(Wang et al. 2012).

Transformation of Agrostis palustris with Phrag-

mites australis gamma-glutamylcysteine synthetase

(PaGCS) gene showed higher accumulation of Cd in

transgenics than the wild types (Zhao et al. 2010).

Higher PC accumulation was reported in transgenic B.

juncea caused by the overexpression of gamma-

glutamylcysteine synthetase (ECS) and glutathione

synthetase (GS) enzymes (Bennett et al. 2003).

Similarly, tobacco plants engineered with rice gene

RCS1 (a cytosolic cysteine synthase gene) were found

to accumulate PCs to a greater extent as a means to

counter Cd toxicity (Harada et al. 2001).

Given the role of MT (metal binding peptides),

early reports on transgenic B. napus and Nicotiana

tabacum harboring human metallothionein-II (MT-II)

gene provided evidences about unaffected root and

shoot growth under Cd stress (Misra and Gedamu

1989). Tobacco plants engineered with a yeast MT

(combined with a polyhistidine tail) also showed

enhanced level of tolerance to Cd toxicity (PavlÍková

et al. 2004). Tolerance against Cd was noticed in

Arabidopsis seedlings that contained transgenic B.

juncea 2 metallothionein (BjMT2) gene under the

control of 35S promoter (Zhigang et al. 2006).

Similarly, overexpression of barley peroxisomal

ascorbate peroxidase gene (HvAPX1) in Arabidopsis

also provided Cd tolerance (Xu et al. 2008). Sanjaya

et al. (2008) also reported that overexpression of

Arabidopsis thaliana tryptophan synthase beta 1

(AtTSB1) gene in Arabidopsis and tomato offered Cd

tolerance in both, highlighting the involvement of

tryptophan in case of Cd toxicity.

In regards to the role of TFs in HM toxicity,

transformation of tobacco and Arabidopsis with B.

juncea (BjCdR15) bZIP TF garnered a higher toler-

ance level against Cd (Farinati et al. 2010). More

recently, RNAi-led suppression of OsNRAMP5 gene

in rice cultivar Anjandhan increased the accumulation

of Cd in the shoots (Takahashi et al. 2014). Thus, the

RNAi technology can serve as a potential genetic

means for the removal of toxic Cd from the Cd-

polluted paddy fields. To reduce Cd toxicity in future,

HM accumulating genes could also be harnessed from

a range of plant species such as Pteris vittata (Ma et al.

2001; Meharg 2002), Pityrogramma calomelano

(Visoottiviseth et al. 2002), Arabidopsis halleri and

Thlaspi caerulescens (Bert et al. 2002; Baker and

Whiting, 2002; Lombi et al. 2001; Zhao et al. 2002;

Roosens et al. 2003), Sedum alfredii (Lu et al. 2008)

which intrinsically accumulate greater quantities of

metals (Rascio and Navari-Izzo 2011). Transgenic

research aiming to decipher the genetic control of Cd

tolerance thus far has been confined to model plant

species like Arabidopsis and some non edible plant

species. Nevertheless, transgenic technology needs to

be rapidly extended to field crops to expedite the

development of Cd tolerant crop cultivars.

Conclusion and future prospects

In the face of indiscriminate industrialization, HM

toxicity becomes one of the most important abiotic

stresses that the plants and human beings encounter

alike. Several researchers have underlined the alarm-

ing consequences of this toxic element being increas-

ingly accumulated in the agricultural resources viz.

soil, irrigation water and crop as an outcome of

anthropogenic activities (Mishima et al. 2004; Naga-

jyoti et al. 2010; Arao et al. 2010). Besides manifest-

ing detrimental impacts on plant yield, Cd

accumulated in food crops enters into human food

chain, thus posing a great challenge to food safety and

human health (Ueno et al. 2009a, b). To mitigate the

risk of Cd toxicity, measurement of genotypic varia-

tion is warranted which eventually enables discovery

of low Cd accumulating or the tolerant genotypes from

the large germplam pool. Further, modern plant omics

technologies combined with genetic improvement

schemes will facilitate the identification of crucially-

important QTLs/candidate genes contributing to Cd

tolerance and also, the transfer of desirable QTL

alleles or causative genes into agronomically superior

yet Cd susceptible cultivars. Additionally, GE tech-

niques will greatly aid in precisely improving the Cd

tolerance related genes across the plant kingdom.

Besides, the GE can potentially be applied as a

phytoremediation tool to effectively remove Cd from

the contaminated soil (Takahashi et al. 2014). We

hope that the novel plant breeding methods strengthed

by modern technological interventions will help

address the enormity of global Cd toxicity in soil

and crops, thereby protecting human lives from Cd

related disorders worldwide.
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