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Abstract Epistasis refers to the phenotypic effects

of interactions between alleles of different loci.

Statistical detection of such interactions remains to

be the subject of presented studies. A method based on

mixed linear model was developed for mapping QTLs

with digenic epistasis. Reliable estimates of QTL

additive and epistasis effects can be obtained by the

maximum-likelihood estimate methods. Likelihood

ratio and t statistics were combined for testing

hypotheses about QTL effects (additive and epistasis

effects). Monte Carlo simulations were conducted for

evaluating the unbiasedness, accuracy and power for

parameter estimation in QTL mapping. The results

indicated that the mixed-model approaches could

provide unbiased estimates for effects of QTLs.

Additionally, the mixed-model approaches also

showed high accuracy in mapping QTLs with epistasis

effects. The information obtained in this study will be

useful for manipulating the QTLs for plant breeding

by marker assisted selection.

Keywords Additive-by-additive interaction effect �
Estimation � Homozygous lines � Mixed-model �
Monte Carlo simulation study

Introduction

Quantitative traits are showing continuous variation in

segregating populations. For a long time it has been

assumed that quantitative traits are controlled by

multiple genetic factors each having a small effect on

the expression of the trait, known as the multiple factor

hypothesis (East 1916). However, this hypothesis

remained largely hypothetical for most of the last

century as it was impossible to unravel the genetic

basis of quantitative traits at the whole genome level

using classical genetic methods. Recent advances in

genome research involving a number of molecular-

marker techniques and the availability of high-density

molecular linkage maps, together with developments

in analytical methods (Lander and Botstein 1989;

Zeng 1994), facilitated the analysis of the genetic basis

of quantitative traits at a single-locus level.

Main effects and epistatic effects of QTLs are

important genetic components of quantitative traits.

Epistasis refers to the phenotypic effects of interac-

tions among alleles at multiple loci. Our current

understanding of biochemical and physiological

genetics, as well as the regulation of gene expression,

strongly suggests the ubiquity of interactions among
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gene products. There were also substantial interests in

the classical quantitative genetics of epistasis, defined

as the deviation from additivity of the effects between

alleles of different loci (Cockerham 1954). Epistasis or

the additive-by-additive interaction between loci on a

genome that controls a quantitative trait is of great

interest to geneticists (Eta-Ndu and Openshaw 1999;

Gao and Zhu 2007; Kang et al. 2009; Zuo and Kang

2010; Binh et al. 2011; He et al. 2011). Strong

interactions between QTLs have also been observed in

maize (Lukens and Doebley 1999) and soybean (Lark

et al. 1995). Recent genetic analyses using molecular

markers in several plant species have clearly shown

that, in addition to single locus QTLs, epistatic

interactions play an important role on the genetic

basis of quantitative traits (Lark et al. 1995; Maughan

et al. 1996; Li et al. 1997; Yu et al. 1997; Poelwijk

et al. 2011; Krajewski et al. 2012; Bocianowski 2012c,

2013, 2014).

In the previously paper (Bocianowski 2012a) was

described the simulation study investigated a compar-

ison between two estimation methods of the additive-

by-additive (epistasis) effect: one, using only pheno-

typic data, and the other, which additionally takes into

account the genotypic marker data. The main assump-

tion was that the QTLs were located at marker

positions. The shortcoming associated with the anal-

yses of epistatic interactions published in previous

studies (Bocianowski 2012a) is that the calculations

were directly based on markers that are located at

certain distances away from the QTLs involved in the

epistases. The estimated effects are therefore biased

depending on the distances between the marker loci

and the QTLs. In this paper the method based on

interval mapping was developed for mapping QTLs

with additive and/or digenic epistasis effects. The

analysis is based on a mixed linear-model approach,

and put together the QTL main effects and digenic

interactions that are possible with a two-locus data set

in the same model (Wang et al. 1999).

A mixed model is a statistical model containing

both fixed effects and random effects, that is mixed

effects. These models are useful in a wide variety of

disciplines in the biomedical, agricultural, physical,

biological and social sciences (Parisseaux and Ber-

nardo 2004; Yu et al. 2005b; Arbelbide et al. 2006;

Aulchenko et al. 2007; Yang et al. 2007). They are

particularly useful in settings where repeated

measurements are made on the same statistical units,

or where measurements are made on clusters of related

statistical units. Because of their advantage to deal

with missing values, mixed effects models are often

preferred over more traditional approaches such as

repeated measures analysis of variance. Mixed models

can account for relationships among inbreds and for

unbalanced data, and can incorporate marker data

(Parisseaux and Bernardo 2004). A mixed-model

procedure represents an in silico approach for gene

mapping because it exploits phenotypic and genomic

databases that are already available (Grupe et al.

2001).

The aim of the study reported in this paper was to

compare two estimation methods for the parameters

connected with the additive and additive-by-additive

interaction gene action, i.e. the genotypic method,

which is based on marker observations, and the

phenotypic method, traditionally used in quantitative

genetics, based on the only phenotypic observations. A

mixed linear model approach was used to detect QTLs

with main effects and QTLs involved in digenic

interaction. The comparison was performed by the

Monte Carlo simulation study.

Materials and methods

Plant material

For simplicity, we use a biparental homozygous

(doubled haploid or recombinant inbred) lines popu-

lation, from a cross between two homozygous lines. If

in the experiment we observed n significantly different

plant lines, we obtain an n-vector of phenotypic mean

observations y = [y1 y2 … yn]0 and q n-vectors of

marker genotype observations Ml, l = 1, 2,…, q. The

i-th element (i = 1, 2,…, n) of vector Ml is equal to

-1 or 1, depending on the parent’s genotype exhibited

by the i-th line.

Genetic models

In the first step of the selection, a mixed linear model

for the simultaneous search of two interacting QTLs

(Qi between flanking markers Mi- and Mi?, and Qj

between flanking markers Mj- and Mj?) can be

expressed as follows (Wang et al. 1999):
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yk ¼ lþ aixGik
þ ajxGjk

þ aaijxGGijk
þ
X

f

uMfk
eMf

þ
X

l

uMMlk
eMMl

þ ek; ð1Þ

where yk denotes the phenotypic value of a quantita-

tive trait measured on the k-th individual (k = 1, 2,…,

n); l denotes the population mean; ai and aj denote the

additive effects (fixed) of the two putative QTLs (Qi

and Qj) respectively; aaij denotes the additive 9 addi-

tive epistatic effect (fixed) between Qi and Qj; xGik
, xGjk

and xGGijk
denote coefficients of QTL effects derived

according to the observed genotypes of the markers

(Mi-, Mi? and Mj-, Mj?) and the test position (Wang

et al. 1999); eMf
�N 0; r2

M

� �
denotes the random

effect of marker f with indicator coefficient uMfk
(-1

for mfmf and 1 for MfMf); eMMl
�N 0; r2

MM

� �
denotes

the random effect of the l-th marker interaction

(between marker Kl and marker Ll) with indicator

coefficient uMMlk
(-1 for MKMKmLmL or mKmKMLML

and 1 for MKMKMLML or mKmKmLmL); and

ek �N 0; r2
e

� �
denotes the random residual effect.

The inclusion of eMf
and eMMl

in the model is

intended to absorb the additive and epistatic effects of

background QTLs (additional segregating QTLs other

than the loci examined) for controlling the noise

caused by these background QTLs.

Markers and marker pairs selected in the first step

were subjected to backward stepwise selection in the

second stage. The final model is as follows:

yk ¼ lþ
Xp

t¼1

atxGtk
þ
Xp�1

t¼1

Xp

t0¼tþ1
t0 6¼t

aatt0xGGtt0k

þ
Xh

g¼1

X

f

uMfk
eMf
þ
Xh0

g0¼1

X

l

uMMlk
eMMl

þ ek;

ð2Þ

where p, g, g0, h and h0 [ {1,…, q}. In the case of the

large number of markers, selection of markers chosen

for model (1) can be made independently inside all

linkage groups; next, markers chosen in this way can

be put in one group and subjected to the second step of

selection. Model (2) can be written as a matrix form of

the mixed linear model:

y ¼ 1lþ Xbþ Zcþ UMeM þ UMMeMM þ ee; ð3Þ

where y denotes n-dimensional vector of phenotypic

values, 1 denotes the n-dimensional vector of ones, l
denotes the general mean, X denotes (n 9 p)-dimen-

sional matrix which columns are markers, b denotes

the p-dimensional vector of unknown fixed effects of

the form b0 ¼ a1a2. . .ap½ �, Z denotes a matrix which

columns are products of some columns of matrix X, c
denotes the vector of unknown fixed effects of the

form c0 ¼ aa1;2 aa1;3. . .aap�1;p

� �
, eM �N 0; r2

MRM

� �

denotes a random vector of marker effects,

eMM �N 0; r2
MMRMM

� �
denotes a random vector of

interaction effects, ee�N 0; r2
e I

� �
denotes the n-

dimensional vector of random variables such that

E(ei) = 0, Var(ei) = r2, Cov(ei, ej) = 0 for i = j, i,

j = 1, 2,…, n, UM and UMM denote known incidence

matrices, RM and RMM denote known symmetric

matrices of incidence coefficients that can be obtained

from the linkage relationships between the main-effect

markers and between the pairs of interacting markers,

respectively (Wang et al. 1999). The distribution of y

is:

y�N Gb;Vð Þ; ð4Þ

where:

G ¼ 1 X Z½ �; ð5Þ

b0 ¼ l b0 c0
� �

; ð6Þ

V ¼ r2
MUMRMU

0

M þ r2
MMUMMRMMU

0

MM þ r2
e : ð7Þ

The likelihood function (L) for the parameters of

effects b and variance components in model (1) is:

L ðb;VÞ¼ ð2pÞ�
n
2 Vj j�

1
2exp �1

2
y�Gbð Þ0V�1 y�Gbð Þ

� �
;

ð8Þ

When variance components of the model are known

and if G is of full rank matrix, the estimate of b is given

by (Searle 1982)

b̂ ¼ G0V�1G
� ��1

G0V�1y: ð9Þ

The total additive effect of genes influencing the

trait (ag) is defined as the sum of values of individual

QTL effects. The total additive-by-additive epistasis

effect of genes influencing the trait (aag) is defined as

the sum of values of individual pairs’ effects. The

coefficient of determination were used to measure how
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the model (2) fitted the data and, in this study, was the

amount of the phenotypic variance explained by total

QTLs with additive effects and QTL-pairs with

epistatic effects (R2).

Phenotypic estimation

Estimation of the additive gene effect and additive-by-

additive interaction of homozygous loci (epistasis)

effect on the basis of phenotypic observations y

requires identification of groups of extreme lines, i.e.

lines with the minimal and maximal expression of the

observed trait (Choo and Reinbergs 1982). The group

of minimal lines consists of the lines which contain,

theoretically, only alleles reducing the value of the

trait. Analogously, the group of maximal lines

contains the lines which have only alleles increasing

the trait value. In this paper we identify the groups of

extreme lines using the quantile method (Bocianowski

et al. 1999), in which lines with the mean values

smaller (bigger) than 0.03 (0.97) quantile of the

empirical distribution of means are assumed as

minimal (maximal) lines. The choose the quantiles

0.03 and 0.97 is results of previously study (Bocia-

nowski et al. 1999). The total additive effect ap of all

genes controlling the trait and the total additive-by-

additive interaction effect aap may be estimated by the

formulas (Bocianowski and Krajewski 2009; Bocia-

nowski 2012b)

âp ¼
1

2
Lmax � Lmin

� �
ð10Þ

and

aa
^

p ¼
1

2
Lmax þ Lmin

� �
� L; ð11Þ

where aap denotes total additive-by-additive interac-

tion effect estimated on the basis of only phenotypes

observations, Lmin and Lmax denote the means for the

groups of minimal and maximal lines, respectively,

and �L denotes the mean for all lines.

Simulation studies

In the Monte Carlo simulation studies comparing the

‘‘phenotypic’’ (ap and aap) and ‘‘genotypic’’ (ag and

aag) estimates of the additive and additive-by-additive

interaction of QTL effects the following variants of

assumed parameters were adopted. The number of

QTLs affecting the trait was 5 (each with an additive

effect of 2) (a = 10). The true value of total epistatic

interaction effect was set to 5 (aa = 5) and the total

mean value of the trait to 100. A total of 200

homozygous lines and 210 markers were analyzed.

Markers were located in ten linkage groups (LG). LG

contained 21 markers. Distances between markers

were all equal (10 centiMorgans, cM). Distances

between markers were used to calculation of recom-

bination fractions as r = 1-d/100, where d denotes

distance between markers. The number of QTL–QTL

pairs with additive-by-additive epistatic effects affect-

ing the trait was assumed to be 1, 2, 5 or 10. The QTLs

were (i) distributed over the whole genome (each QTL

was in a different LG), or (ii) located in one LG. QTLs

were located in the middle of two markers (5 cM to

each of both). Effects of particular pairs of genes were

assumed to be: (i) equal for all pairs, or (ii) one QTL–

QTL pair effect was much larger than the other (for

two pairs: 4 and 1; for five pairs: 2, 1, 1, 0.5 and 0.5; for

ten pairs: 1.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4 and

0.4). The error variance was equal to 5, 10 or 15. A

total of 5,000 data sets containing the vector of

phenotypic observations and vectors of marker geno-

type observations were generated for each combina-

tion of the parameters. For each data set the additive

effect estimates âjp and âjg as well as the additive-by-

additive interaction effect estimates âajp and âajg,

j = 1, 2,…, 5000, were calculated by the methods

presented above. Additionally, the coefficients of

determination R2
j were estimated. Then, mean values

of parameter estimates âp, âg, âap and âag for each

series were calculated, together with the mean squared

errors. Mean value of R2 was calculated. All statistical

analyses were conducted with the statistical software

package GenStat 15th edition.

Results

Tables 1, 2 and 3 show results of simulation per-

formed to compare the estimates of the additive and

epistatic effects obtained by the genotypic and

phenotypic methods with situations where error vari-

ances were equal to 5, 10 and 15, respectively. The

phenotypic estimate of additive effect was less than

10, the true value, only for 10 QTL–QTL pairs. The

genetic estimates of additive effects were bigger than
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10 for 1, 2 and 5 pairs (except for five QTL–QTL pairs

with the error variance equal to 5). The phenotypic

estimates as well as the genotypic estimates of additive

effects were bigger when the QTL–QTL pairs were

located in one linkage group. The differences between

the phenotypic estimate and the genotypic estimate of

additive effects were always positive and were the

smallest when the ten QTL–QTL pairs were assumed.

Generally, differences between phenotypic and geno-

typic estimates were bigger when QTLs were located

in many LG.

The phenotypic estimate of additive-by-additive

effect was always bigger than 5, the true value (except

for ten QTL–QTL pairs with unequal effects in many

linkage groups). The genetic estimates of additive-by-

additive epistatic effects were bigger than 5 for 1 and 2

pairs as well as for 5 pairs where error variance was

equal to 10 and 15 (except for situation when five

QTL–QTL pairs with unequal effects were located in

the many linkage groups 5). The both (phenotypic and

genotypic) estimates of additive-by-additive epistatic

effects were bigger when the QTL–QTL pairs were

located in one linkage group as well as when the QTL–

QTL interaction effects were equal. The differences

between the phenotypic estimate and the genotypic

estimate of additive-by-additive effects were always

positive (except only one situation: for two QTL–QTL

pairs with unequal effects located in the many linkage

groups) and were the biggest when ten QTL–QTL

pairs were assumed.

In general, a decrease of the estimates was accom-

panied by an increase of their mean squared error

(Tables 1, 2, 3), because, larger estimates of additive

effect as well as the additive-by-additive effect are

more biased than smaller estimates. Variance

explained by the QTLs with additive and epistatic

effects ranged from 81 to 97 % (Tables 1, 2, 3).

Discussion

There are several different strategies to map quanti-

tative trait loci (Kearsey and Farquhar 1998), e.g.,

single-marker locus analysis (Liu 1998); simple

interval mapping (Lander and Botstein 1989); com-

posite interval mapping (Zeng 1993, 1994; Krajewski

et al. 2012); marker regression (Kearsey and Hyne

1994; Wu and Li 1994; Bocianowski and Krajewski

2009); Bayesian methods (Sillanpää and Arjas 1998);

and multiple interval mapping (Kao et al. 1999; Zeng

et al. 1999). The latter methods have been shown to

yield better power of QTL detection than interval

mapping and single-marker locus analysis (Liu 1998;

Piepho 2000). In this article we have demonstrated

Table 1 Phenotypic and genotypic estimates of the total additive effect and the total additive-additive interaction effect obtained in

the simulation study (error variance equal to 5)

Number of

QTL–QTL

interaction effects

QTL–QTL

interaction

effects

Number of

LG with

QTL

Estimate Mean

squared

error for

Estimate Mean

squared

error for

R2

âp âg âp–âg âp âg âap âag âap–âag âap âag

1 5 1 12.53 11.83 0.70 0.28 0.32 6.20 6.07 0.13 0.46 0.53 0.89

2 Equal 1 12.04 11.72 0.32 0.23 0.31 6.08 5.92 0.16 0.44 0.54 0.90

2 Equal Many 11.93 11.60 0.33 0.42 0.57 5.93 5.76 0.17 0.48 0.52 0.87

2 Unequal 1 11.99 11.68 0.31 0.43 0.55 6.02 5.82 0.20 0.39 0.60 0.91

2 Unequal Many 11.44 11.32 0.12 0.52 0.61 5.47 5.09 0.38 0.40 0.57 0.93

5 Equal 1 11.57 9.66 1.91 0.39 0.64 5.52 4.93 0.59 0.52 0.59 0.84

5 Equal Many 11.24 9.39 1.85 0.42 0.58 5.29 4.85 0.44 0.61 0.59 0.90

5 Unequal 1 11.12 9.48 1.64 0.44 0.57 5.46 4.90 0.56 0.45 0.78 0.88

5 Unequal Many 10.93 9.37 1.56 0.37 0.69 5.20 4.82 0.38 0.69 0.77 0.87

10 Equal 1 9.87 8.78 1.09 0.21 0.73 5.31 4.83 0.48 0.72 0.84 0.95

10 Equal Many 9.70 8.69 1.01 0.42 0.80 5.09 4.69 0.40 0.79 0.90 0.94

10 Unequal 1 9.76 8.70 1.06 0.39 0.98 5.02 4.28 0.74 0.80 1.07 0.93

10 Unequal Many 9.63 8.62 1.01 0.55 0.82 4.81 3.92 0.89 0.87 1.19 0.97
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how to use mixed model for analysis of the main

effects and epistatic effects of the QTLs. This study

illustrates the ability of the analysis to assess the

genetic components underlying the quantitative traits,

and demonstrates the relative importance of the

various components as the genetic basis of yield traits

in aimed population. Understanding the genetic

architecture of complex traits is a major challenge in

the post-genomic era, especially for QTL-by-QTL

interactions (Yang et al. 2007).

In the present study, a full-QTL model is proposed

for modeling the genetic architecture of complex trait,

which integrates the effects of multiple QTLs and

epistasis into one mapping system. The most-

Table 2 Phenotypic and genotypic estimates of the total additive effect and the total additive–additive interaction effect obtained in

the simulation study (error variance equal to 10)

Number of

QTL–QTL

interaction

effects

QTL–QTL

interaction

effects

Number

of LG

with QTL

Estimate Mean squared

error for

Estimate Mean squared

error for

R2

âp âg âp–âg âp âg âap âag âap–âag âap âag

1 5 1 12.66 11.93 0.73 0.26 0.32 6.33 6.11 0.22 0.39 0.52 0.94

2 Equal 1 12.38 11.80 0.58 0.31 0.41 6.13 6.02 0.11 0.40 0.63 0.86

2 Equal Many 12.11 11.72 0.39 0.39 0.37 6.08 5.82 0.26 0.36 0.52 0.91

2 Unequal 1 12.08 11.71 0.37 0.49 0.35 6.05 5.90 0.15 0.41 0.49 0.93

2 Unequal Many 11.91 10.97 0.94 0.58 0.62 5.61 5.70 -0.09 0.53 0.57 0.84

5 Equal 1 11.92 10.29 1.63 0.60 0.69 5.88 5.56 0.32 0.52 0.59 0.86

5 Equal Many 11.80 10.11 1.69 0.59 0.78 5.57 5.22 0.35 0.61 0.70 0.85

5 Unequal 1 11.63 10.02 1.61 0.53 0.62 5.70 5.08 0.62 0.49 0.71 0.86

5 Unequal Many 11.09 9.67 1.42 0.53 0.70 5.46 4.92 0.54 0.52 0.66 0.88

10 Equal 1 10.01 9.71 0.30 0.72 0.88 5.61 4.97 0.64 0.68 0.79 0.90

10 Equal Many 9.97 9.39 0.58 0.79 0.91 5.53 4.80 0.73 0.70 0.91 0.89

10 Unequal 1 9.98 9.50 0.48 0.98 1.07 5.29 4.32 0.97 0.59 0.98 0.95

10 Unequal Many 9.73 9.01 0.72 0.92 1.11 4.71 4.01 0.70 0.91 1.15 0.91

Table 3 Phenotypic and genotypic estimates of the total additive effect and the total additive–additive interaction effect obtained in

the simulation study (error variance equal to 15)

Number of

QTL–QTL

interaction

effects

QTL–QTL

interaction

effects

Number

of LG

with QTL

Estimate Mean squared

error for

Estimate Mean squared

error for

R2

âp âg âp–âg âp âg âap âag âap–âag âap âag

1 5 1 12.70 12.14 0.56 0.42 0.55 6.27 6.19 0.08 0.42 0.66 0.91

2 Equal 1 12.43 12.07 0.36 0.39 0.56 6.06 6.01 0.05 0.29 0.78 0.90

2 Equal Many 12.15 11.82 0.33 0.43 0.48 6.18 5.93 0.25 0.38 0.44 0.86

2 Unequal 1 12.10 11.69 0.41 0.51 0.70 5.94 5.82 0.12 0.42 0.50 0.85

2 Unequal Many 12.00 11.17 0.83 0.49 0.71 5.95 5.72 0.23 0.51 0.72 0.81

5 Equal 1 11.83 10.83 1.00 0.68 0.70 5.68 5.60 0.08 0.47 0.73 0.83

5 Equal Many 11.70 10.55 1.15 0.40 0.80 5.53 5.38 0.15 0.46 0.82 0.91

5 Unequal 1 11.09 10.62 0.47 0.67 0.78 5.57 5.12 0.45 0.46 0.68 0.83

5 Unequal Many 10.58 10.28 0.30 0.52 0.69 5.42 4.99 0.43 0.53 0.80 0.87

10 Equal 1 9.98 9.90 0.08 0.50 0.65 5.45 4.77 0.68 0.72 1.07 0.93

10 Equal Many 9.90 9.72 0.18 0.89 0.72 5.24 4.81 0.43 0.82 0.93 0.95

10 Unequal 1 9.87 9.47 0.40 0.94 1.03 5.14 4.50 0.64 0.79 1.01 0.91

10 Unequal Many 9.81 9.12 0.69 0.95 1.20 4.88 4.23 0.65 0.84 1.29 0.90
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important results obtained from the simulation study

show some stability of the properties of both methods

of estimation over different types of genetic material.

The lack of influence of error variance on estimation of

additive as well as additive-by-additive gene action

effects by both methods and on conclusions concern-

ing the comparison of proposed methods of estima-

tion, shows good prospect for application of our

conclusions for different plant species. Moreover, the

lack of influence of the number of linkage groups with

QTL shows a possibility of using those methods for

different genetic maps. In opposite, the number of

QTL–QTL interaction effects influence on additive-

by-additive gene action effects estimated by both

methods and on conclusions concerning the compar-

ison of proposed methods of estimation. Method

presented in this paper may be preferred method of

estimation of major and interacted QTLs for quanti-

tative traits in bi-parental segregation population,

because it provides results closer to the true values of

total additive effects and total epistatic effects than

previous methods based on fixed model (Bocianowski

2012b, c). The coefficients of determination of the

proposed model are larger than obtained by using

other methods: multiple interval mapping (Kao et al.

1999), penalized maximum likelihood (Zhang and Xu

2005).

Development of mixed linear model approaches

and its application in quantitative genetics will create

enormous challenges for quantitative geneticists in

dealing with complicated genetic problems (Xu and Yi

2000). Applications of mixed models to association

mapping and other genetic analyses in maize, wheat,

Arabidopsis, and potato panels demonstrate that

mixed models obtain fewer false positives and higher

power than previous methods including genomic

control, structured association, and principal compo-

nent analysis (Yu et al. 2005a; Boer et al. 2007;

Malosetti et al. 2007; Zhao et al. 2007; Zhang et al.

2008). Different mixed models have been proposed to

map QTLs in complex pedigrees. Crepieux et al.

(2004) proposed an identity by descent QTL mapping

method using plant breeding data for self-pollinated

crops. Crepieux et al. (2005) used this method to

identify one QTL for kernel hardness and two QTLs

for dough strength from data available in a wheat

breeding program. The random model approach

estimates a variance component associated with the

QTL and identifies the marker interval that most likely

contains the QTL. This approach allows a better

evaluation of the overall breeding value of an inbred

and the identification of genomic regions associated

with the trait (Arbelbide and Bernardo 2006).

A direct implication of epistasis, especially the

involvement of QTLs in the epistatic interactions, is

that the effects of the single-locus QTLs are mostly

dependent on the genotypes of other loci, and, as can

be seen from this analysis, the effect of a QTL can

sometimes be negated by the genotypes of a second

locus. Thus an attempt for utilization of the QTLs in

the breeding programs has to taken into account for

such epistatic effects. Epistatic effects have been

considered to be important for complex traits by

several researchers (Ma et al. 2005, 2007; Rebetzke

et al. 2007; Krajewski et al. 2012). Determining the

contribution of epistasis is important for understand-

ing the genetic basis of complex traits. Hence, genetic

models for QTL mapping assuming no epistasis can

lead to a biased estimation of QTL parameters

(Bocianowski 2013). A large number of epistatic

effects have recently been detected in rice (Oryza

sativa L.) using polymorphic markers in the whole

genome (Hua et al. 2002; Mei et al. 2003, 2005).

Epistatic effects have been found to be important in

the expression of dough rheological properties in a

wheat DH population (Ma et al. 2005).

Alternative for a mixed-model approach are: (1)

Bayesian approach (Meuwissen et al. 2001; Xu 2003;

Ter Braak et al. 2005), (2) penalized regression (Boer

et al. 2002; Zhang and Xu 2005) and (3) the use of

regularization paths (e.g., Hastie et al. 2001). How-

ever, results obtained on the basis of methods

presented in this paper we show unbiased prediction

of estimated parameters. We detected QTLs with

additive effects and epistatic effects for quantitative

trait using a homozygous lines population. The results

showed that both additive effects and epistatic effects

were important genetic bases of quantitative trait. The

total QTLs with additive effects and epistatic effects

explained more than 80 % of the phenotypic variation.

The information obtained in this study will be useful

for manipulating the QTLs for plant breeding by

marker assisted selection.
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