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Abstract The objectives of the study were to assess

genome wide association study (GWAS) for sugar-

cane on a panel of 183 accessions and to evaluate the

impact of population structure and family relatedness

on QTL detection. The panel was genotyped with 3327

AFLP, DArT and SSR markers and phenotyped for 13

traits related to agro-morphology, sugar yield, bagasse

content and disease resistances. Marker-trait associa-

tions were detected using (i) general linear models that

took population structure into account with either a Q

matrix from STRUCTURE software or principal

components from a principal component analysis

added as covariates, and (ii) mixed linear models that

took into account both population structure and family

relatedness estimated using a similarity matrix K*

computed using Jaccard’s coefficient. With general

linear models analysis, test statistics were inflated in

most cases, while mixed linear models analysis

allowed the inflation of test statistics to be controlled

in most cases. When only detections in which both

population structure and family relatedness were

correctly controlled were considered, only 11 markers

were significantly associated with three out of the 13.

Among these 11 markers, six were linked to the major

resistance gene Bru1, which has already been identi-

fied. Our results confirm that the use of GWAS is

feasible for sugarcane in spite of its complex polyploid

genome but also underline the need to take into

account family relatedness and not only population

structure. The small number of significant associations

detected suggests that a larger population and/or

denser genotyping are required to increase the statis-

tical power of association detection.

Keywords GWAS � Saccharum spp. � Population

structure � Family relatedness

Introduction

Sugarcane (Saccharum spp.) is a major industrial crop

in tropical and subtropical areas. It accounts for about

80 % of world production of sucrose and has become

an important source of renewable energy (FAOSTAT

2012). Average sugarcane yield has doubled in the last

50 years thanks to breeding and improved agricultural
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M. Gouy � Y. Rousselle � A. Anglade �
S. Royaert � S. Nibouche � L. Costet (&)

Cirad, UMR PVBMT, 97410 Saint-Pierre, La Réunion,
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practices (Gouy et al. 2013a), but still appears to be far

from achieving its theoretical potential (Waclawovsky

et al. 2010). Sugarcane is a semi perennial grass which

has the particularity to accumulate sucrose at high

concentrations into its stems. Sugarcane is clonally

propagated using stem cuttings and cultivated with

one plant crop and several ratoon crops, following

each annual harvest. Criteria taken into account by

breeders include sucrose yield, ratooning ability,

disease resistances and, more recently, quantitative

and qualitative fiber content for second-generation

production of cellulosic ethanol. The sugarcane

breeding process is expensive and time consuming

as it involves the creation of from hundreds of

thousands to a million F1 progenies each year (Mats-

uoka et al. 2009), followed by about 15 years of

selection. Accurate phenotypic selection in the first

stages of selection remains a challenge (Skinner 1971,

Kimbeng and Cox 2003). The first stages of selection

are applied to full-sib families without or with a

limited number of replicates due to the high number of

progenies, and environmental plot effects could mask

the intrinsic values of genotype. In these conditions,

individual genotypic values of most traits are difficult

to assess, and when based on a single plant or plot

without multi-crop or multi-locations, broad sense

heritability is low (Skinner et al. 1987). At these early

stages, the best support is family based selection, as

family based heritability is relatively high for most

traits. At these early stages of breeding programs, it is

greatly hoped that marker assisted selection will

improve the accuracy of selection. Molecular markers

are already used to describe genetic diversity, to

understand genome structure, to highlight the genetic

basis of physiological, developmental and morpho-

logical variation, and to detect the quantitative trait

loci (QTL) associated with agronomic traits (Gouy

et al. 2013a). As genotyping costs continue to decrease

(Prasanna et al. 2013), statistical association between

molecular markers and phenotypes has become a

widely used strategy to identify loci responsible for

genetic variation (Würschum 2012). Once QTL

effects are accurately estimated (across populations

and environments), marker assisted selection should

make it possible to identify elite genotypes early in the

breeding program. Ultimately, the usefulness of

molecular markers in breeding program will depend

on the total cost of the experiment (genotyping and

phenotyping of the calibration experiment plus

genotyping of the individuals under selection to

predict their phenotype) versus savings in time and

in money. Marker assisted selection could also

enhance response to selection, in particular for traits

that are difficult to improve using conventional

phenotypic selection. Many QTL studies have been

conducted on sugarcane, but most were based on bi-

parental progenies (Aitken et al. 2008; Aljanabi et al.

2007; Alwala et al. 2009; Da Silva and Bressiani 2005;

Hoarau et al. 2002; Ming et al. 2001; Pastina et al.

2012; Raboin et al. 2001; Nibouche et al. 2012; Costet

et al. 2012b). Progenies from bi-parental populations

have accumulated a limited number of recombination

events. This could result in the detection of QTLs that

cover many centiMorgan (cM) and could be located

far from the causative gene, leading to erroneous

estimation of marker effects (Zhu et al. 2008). The

more closely the markers are linked to the QTL

underlying the variation of the trait, the more efficient

the marker selection. Genome wide association stud-

ies, also known as linkage disequilibrium-based

studies, use diversity panels, e.g. germplasm or core

collections. The collections used in such approaches

have accumulated many recombination events from

several distinct lineages and consequently enable

high-resolution mapping (Nordborg and Tavaré

2002). The collections include large allelic diversity

as they usually contain a high proportion of natural

variation available for breeding purposes and allow

the simultaneous analysis of several traits (Yu and

Buckler 2006). However, genome wide association

studies must deal with more type I & type II errors

QTL studies. Control of type I error is a major concern

in genome wide association mapping as false marker-

trait associations can arise when population stratifica-

tion is not taken into account (Pritchard et al. 2000).

Population stratification generates covariance among

individuals, thereby biasing the estimation of allelic

effects (Lander and Kruglyak 1995). On the other

hand, if a locus is closely associated with genetic

stratification, controlling for population stratification

can result in false negatives (type-II errors). Empirical

studies have demonstrated that a causative locus can

disappear when population stratification is taken into

account in the analysis (Andersen et al. 2005; Cai et al.

2013; Zhao et al. 2011). Two parameters are usually

considered for population stratification (i) the popu-

lation structure corresponding to relationships among

subpopulations or cluster associated with local
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adaption or diversifying selection and (ii) the familial

relatedness corresponding to the relationship among

individuals from recent coancestry (Yu et al. 2006).

Population structure and familial relatedness could be

inferred using genome wide molecular data. Popula-

tion structure is often captured using a model-based

Bayesian clustering algorithm such as the one devel-

oped in the STRUCTURE software (Pritchard et al.

2000) to assign individuals to cluster (the Q matrix) or

using principal components coordinates of individuals

(PC matrix) of a Principal Component Analysis.

‘‘Familial relatedness’’ is generally estimated using a

Kinship matrix (K matrix) to define the degree of

genetic covariance between each pair of individuals.

General linear model can model population structure

by including covariates such as PC or Q matrix as fixed

effect. Mixed Linear model use a mixture of fixed

effects (using the PC or Q matrix as covariates) and

random effects (using the K matrix of pairwise kinship

coefficients) to model both population structure and

familial relatedness (Yu et al. 2006).

The genetics of current sugarcane cultivars are

extremely complex, they have a high polyploid

genome that result from their interspecific origin

between two polyploid ancestral species. The history

of sugarcane breeding is recent because all modern

sugarcane cultivars are interspecific hybrids deriving

from few crosses performed at the end of the 19th

century between the domesticated S. officinarum, a

sugar-producing species, and the wild S. spontaneum

species. Only a few parental founder accessions were

involved in these crosses (Roach 1989). Since then,

plant material has been exchanged between sugarcane

breeding centers and some important cultivars, such as

POJ2878 or NCO310, have been used extensively in

crosses and are consequently encountered in the

genealogy of many modern cultivars. In this situation

one can expect cryptic structuration of the population

of modern cultivars. Several studies have assessed the

genetic diversity and population structure in sugarcane

germplasm. Clear genetic structure was revealed in

studies that included individuals belonging to different

species or genera (modern cultivars Saccharum spp.,

S. officinarum, S robustum, S. sinense, S. barberi, S.

spontaneum, Miscanthus spp. and/or Erianthus spp.)

(Besse et al. 1998; Cordeiro et al. 2003; Tai and Miller

2002). However, both unstructured populations (Jan-

noo et al. 1999; Lu et al. 1994; Raboin et al. 2008) and

structured populations (Selvi et al. 2005; Singh et al.

2013; Wei et al. 2006; Wei et al. 2010) were reported

in studies that used panels composed of modern hybrid

accessions. The recent breeding history of sugarcane

cultivars, associated with the limited number of

founders, should be a source of linkage disequilibrium

(LD), and the potential of LD-based association

studies to identify marker-trait associations has

already been highlighted in sugarcane (Jannoo et al.

1999; Raboin et al. 2008). Nevertheless, only a few

studies have assessed the ability of association map-

ping in sugarcane to detect associations between

markers and traits including sugarcane yield (Wei

et al. 2010) and resistance to smut, to African stalk

borer, to pachymetra root rot, to leaf scald, and to Fiji

leaf gall (Butterfield 2007; McIntyre et al. 2005;

Raboin 2005; Wei et al. 2006,). Finally, although some

studies have demonstrated the feasibility of GWAS in

several plants through the identification of previously

known loci (Yu et al. 2006; Zhao et al. 2007; 2011),

this is not yet the case for sugarcane where to date, no

detected QTL has been confirmed as true positive.

The objectives of this study were thus to (i) evaluate

the impact of population structure on the phenotypic

variability on a diversity panel of 183 sugarcane

cultivars, and (ii) identify markers associated with 13

morphological, technological, agronomic and disease

resistance traits, using an association mapping

approach.

Materials and methods

Plant material

The present study was based on a 183 sugarcane

accession panel sampled from the REUb panel

described by Costet et al. (2012a, b). These accessions

were bred in 29 sugarcane breeding centers during the

curse of the last century. This panel is a representative

sample of sugarcane germplasm cultivated worldwide.

The 183 accessions cover a wide range of relatedness,

from full-sibs to individuals bred from distinct gene-

alogies (ESM 1).

Field trials and phenotyping

The experimental data used in this study are summa-

rized in supplementary material 2 (ESM2). The panel

was phenotyped for 13 agronomic traits: sucrose yield,
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stalk diameter, stalks number, stalk height, bagasse

content, brix of the juice, in vitro neutral detergent

fiber (NDF) of bagasse digestibility, flowering rate,

incidence of Sugarcane yellow leaf virus (SCYLV:

polerovirus causing yellow leaf disease), incidence of

Melanaphis sacchari (aphid vector of the SCYLV),

infection severity of brown rust (a fungal disease

caused by Puccinia melanocephala), infection sever-

ity of gumming (a bacterial disease caused by

Xanthomonas axonopodis pv. vasculorum) and inci-

dence of smut (a fungal disease caused by Sporisium

scitaminea). Five different locations scattered

throughout Reunion Island (Indian Ocean) were used

for phenotyping: Menciol, Bassin-Martin, La Mare,

Vue-Belle and Le Gol. The experimental design was

an alpha-lattice with three complete replications, each

containing incomplete blocks of 10 accessions. At

Menciol experimental station, the elementary plot was

composed of three rows four meters in length, with 1.5

meter inter-row spacing, in which 15 cuttings with

three buds were planted. The trials in the four other

locations are detailed in Gouy et al. (2013b). Yield-

related traits and flowering rate were phenotyped at

Bassin-Martin, Vue-Belle and La Mare, while in vitro

NDF of bagasse digestibility and diseases were

phenotyped at Menciol, Bassin-Martin and/or Le Gol

(ESM 1). Stalk diameter, number of millable stalks,

juice brix, bagasse content, in vitro NDF of bagasse

digestibility, SCYLV, rust infection severity and smut

incidence were measured as described in Gouy et al.

(2013b). Stalk height was the length of the millable

stalk. Sucrose yield produced per area was estimated

from the fresh biomass of the millable stalk weighed

on each plot, and from its sucrose content. The juice

ratio was estimated using a 500-g sample of fresh pulp

pressed using a hydraulic press. The sucrose content of

the resulting juice was estimated using a refractom-

eter. Stalk height and sucrose yield were phenotyped

at harvest. Flowering rate was measured at harvest by

counting the number of stalks with traces of previous

flowering, i.e. presence of a panicle axis. Aphid

incidence was scored at Bassin Martin every two

weeks for 14 weeks in the 2007–2008 cropping

season, for 20 weeks in the 2008–2009 cropping

season, and for 24 weeks for the 2009–2010 cropping

season, giving a total of 29 counts. At each observation

date, in each elementary plot, the lowest green leaf on

20 randomly selected stalks was inspected. A leaf was

recorded as being infested when at least one aphid was

present on it, and the percentage of infested leaves per

plot, i.e. aphid incidence, was computed. Weekly

aphid infestation data from the field trial were

computed as the percentage of infested leaves and

summarized by an area under incidence progress curve

(AUIPC) computed separately in each cropping sea-

son. Resistance to gumming was evaluated in 2012 at

Menciol and Bassin Martin station. The strain of

Xanthomonas axonopodis pv. vasculorum 3P 664,

isolated at the La Mare experimental station, was

grown for 24 h on a plate containing Wilbrink

medium. Bacteria were suspended in 0.01 M Tris

buffer (pH 7) to obtain a suspension of 109 bacteria/ml.

Inoculation was performed using the method

described by Rott et al. (2011). Symptoms were

recorded on all the stalks six months after inoculation

using a symptom severity scale ranging from 0 to 6,

where 0 = no symptoms, 1 = one chlorosis line;

2 = more than one chlorosis line, 3 = chlorosis of

one or several leaves, 4 = leaf necrosis, 5 = dead

stalk.

Statistical analysis of traits

To predict vectors of genetic values (ĝ) used for

genome wide association mapping, phenotypic data

were analyzed using linear mixed models and general-

ized linear mixed models. A mixed linear model was

used for normally distributed traits as: sucrose yield,

stalk diameter, stalk number, stalk height, in vitro

NDF digestibility, bagasse content, brix and aphids

AUIPC. The model can be written as follows:

y ¼ Xbþ Z1bþ Z2gþ Z3gt þ e ð1Þ

where y is the vector of phenotypic observations for

each trait, b is a vector of fixed effects related to the

experimental design including fixed effects of loca-

tion, year cycle and replication, b is the vector of

random incomplete block effects within each replica-

tion *Nð0; Ir2
bÞ, g is the vector of random effects of

genotypes *Nð0; Ir2
gÞ, gt is the vector of random

effects of interaction between genotypes and location

or year *Nð0; Ir2
gtÞ, and e is the vector of residual

error of the model *Nð0; Ir2
eÞ. X, Z1, Z2 and Z3 are

incidence matrices, and I is the identity matrix. These

linear mixed models were computed using the lme4

package (Bates et al. 2013) and convergence was

checked for each analysis. Broad-sense heritability at
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the experimental design level and coefficients of

genetic variation were calculated for the normally

distributed traits according to Gallais (1990). The four

disease-related traits and the flowering rate were

analyzed with generalized linear mixed models,

because of their non-Gaussian distributions. We used

the R package MCMCglmm (Hadfield 2010) with

Markov chain Monte Carlo (MCMC) routines to fit

multi-response generalized linear mixed models. The

models used were the standard threshold model with

probit link function for both gumming and rust scores, a

binomial model with logit link function for the

incidence of the Sugarcane yellow leaf virus and

flowering rate, and an over-dispersed Poisson model

with a log link function for the incidence of smut. Each

model was run for 50,000 MCMC simulation iterations.

We discarded the first 15,000 cycles as burn-in after

checking the stability of posterior values. We checked

for convergence of model parameter estimates by

inspecting the trace plots of the MCMC iterations and

autocorrelation plots. We chose a thinning interval of

10 iterations, which resulted in 3,500 posterior distri-

bution samples of model parameter estimates. Because

the variance components of the four diseases traits were

transformed in the link function scale, the heritabilities

of these traits could not be estimated.

Genotyping

AFLP genotyping was performed using the AFLP�

Analysis System I (Invitrogen) according to the

manufacturer’s recommendations. Thirty-six primer

pair combinations were used. AFLP digestions, liga-

tions and amplifications were performed as described

in Hoarau et al. (2001). Fluorescent labeling was used

and electrophoresis was performed on a 3130xl

Genetic Analyzer (Applied Biosystems). The AFLP

fingerprints were analyzed visually using GelCompar

II software (Applied Maths BVBA). For SSR analysis,

two primer pairs corresponding to mSSCIR4 and

mSSCIR164 loci were used (Raboin et al. 2006).

Fluorescent labeling and electrophoresis were per-

formed as for AFLP. Whole genome profiling was

enriched with DArT markers (Heller-Uszynska et al.

2011). Total DNA was sent to the commercial

company Diversity Arrays Technology Pty Ltd (Yar-

ralumla, Australia) for genotyping. The DArT, AFLP

and SSR markers were coded as presence/absence.

Low or high frequency markers (\0.05 and[0.95) or

markers with more than 10 % missing data were

removed. A total of 3,327 markers (1406 AFLP, 1892

DArT and 29 SSR) were obtained. We used the marker

R12H16_PCR located in the target region of the rust

resistance gene Bru1 (Asnaghi et al. 2000; Daugrois

et al. 1996; Costet et al. 2012a) as a diagnostic marker

of Bru1.

Estimation of population structure and family-

based relatedness

Two methods were used to assess the genetic structure

of the panel: the Bayesian clustering method imple-

mented in STRUCTURE software, version 2.3.4

(Pritchard et al. 2000), and principal component

analysis (PCA). Both methods were applied on a

subsample of 820 independent DArT markers, selected

from the whole DArT marker dataset. To test for

independence between each pair of markers, we used

Fisher’s exact test with Bonferroni correction for

multiple testing, i.e. a critical P value = 2.80 9 10-8.

This subsample was used to ensure homogeneous

coverage and avoid over-representation of genomic

regions that could bias the analysis (Patterson et al.

2006). Bayesian clustering was performed under the

admixture model considering allelic frequencies as

independent. No prior population information was

used. Allelic frequencies in each of the K clusters

(ranging from 1 to 20) were estimated after a burn-in

period of 30,000 cycles and 150,000 MCMC iterations.

The procedure was repeated 20 times for each K value

to assess the stability of each model. We computed the

quantity DK that allows the detection of the most likely

number of clusters K (Evanno et al. 2005), using the

online software STRUCTURE HARVESTER (Earl

and vonHoldt 2012). The most likely Q matrix was

computed under the CLUMPP program to find optimal

alignments (Jakobsson and Rosenberg 2007). The most

likely Q matrix was computed under the CLUMPP

program to find optimal alignments (Jakobsson and

Rosenberg 2007). PCA provides a useful description of

the genetic variation between genotypes (Price et al.

2006) and can reveal family relatedness (McVean

2009; Patterson et al. 2006). The PCA was computed,

using the R package FactoMineR, version 1.14 (Hus-

son et al. 2010), after standardization of marker scoring

and setting missing data to zero (Patterson et al. 2006).

We tested the significance of the first 100 principal

components (PC) using the Tracy-Widom test
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(Patterson et al. 2006) with the R package EigenCorr,

version 0.2 (Lee et al. 2011).

Some GWAS methods (Yu et al. 2006) use a

Kinship matrix estimated from marker data, which

defines the degree of genetic covariance between pairs

of individuals (see below). In this approach, the

kinship coefficients are computed from the probability

of identity by state between pairs of individuals,

adjusted by the probability of identity by state between

random individuals. Such a kinship statistic cannot be

computed for polyploids like sugarcane genotyped

with dominant markers (Hardy and Vekemans 2002).

Instead, we used a genetic similarity matrix, K* (Yu

et al. 2006). Previous studies have demonstrated that

genetic similarity is correlated with the coefficient of

parentage based on pedigree data (Lima et al. 2002;

Plaschke et al. 1995; Tinker et al. 1993). We computed

the similarity matrix K* using the subsample of 820

independent DArT markers defined above. The K*

matrix was computed with the DARwin software

(Perrier and Jacquemoud-Collet 2006) using Jaccard’s

similarity coefficient.

Effect of population structure on phenotype

The effect of population structure on trait variability

was assessed on the vector of predicted genetic values

(ĝ) obtained with the linear mixed models (1).

The effect of population structure was estimated

with a linear model written as follows:

ĝ¼Ybþ e ð2Þ

where ĝ is the vector of predicted genetic values for

each trait, b the vector of fixed effects related to

population structure, and e the vector of residual error

of the model *Nð0; Ir2
eÞ. Y is the incidence matrix,

and I the identity matrix. Two representations of

population structure b were used: genotype assign-

ment of the rate of membership to the clusters

computed from STRUCTURE software, i.e. the

Q-matrix, and the significant principal components

(PCs) from the PCA. Linear models were computed

using R software (R Core Team 2013).

Genome wide association mapping

General linear models were used to model population

structure by including covariates PC or Q matrix as

fixed effect. Mixed linear model were used to mix

fixed effects (using the PC or Q matrix as covariates)

and random effects (using the K matrix of pairwise

kinship coefficients) in order to model both population

structure and familial relatedness (Yu et al. 2006).

Association tests between markers and the 13

predicted genotypic values were performed using

eight statistical models, with or without correction for

family based relatedness or population structure (Yu

et al. 2006). Four general linear models and four mixed

linear models were used. General linear models and

mixed linear models were performed using TASSEL

software, version 3.0 (Bradbury et al. 2007). The four

GLM consisted in a linear model without correction

for population structure named NAIVE and three

linear models with correction for population structure

using either the Q-matrix defined by the software

STRUCTURE considering two and seven clusters

(named GLM-Q2 and GLM-Q7), or the significant PC

of the PCA (GLM-PC) as fixed co-factors. The MLM

model consisted in a mixed linear model with the

genetic similarity matrix K* specified as the model co-

variance matrix but without fixed cofarctor. The three

other mixed linear models were used, they include

either the Q-matrix (MLM-Q2 or MLM-Q7) for two or

seven clusters, or the significant PC of the PCA

(MLM-PC) as fixed co-factors. We used the false

discovery rate (FDR) approach (Benjamini and Hoch-

berg 1995) to control the genome wide type I error due

to multiple testing. For each statistical test, FDR (q-

value) was computed using the R package fdrtool

(Klaus and Strimmer 2012; Strimmer 2008). Marker-

trait associations with a FDR value of 0.10 were

deemed significant. Markers significantly linked to the

same trait were tested for pairwise independence using

a Fisher’s exact test with a 0.05 critical P value and

grouped in the same haplotypes if associated by

transitivity (i.e., if marker X is associated with marker

Y and marker Y is associated with marker Z, then the

three markers are grouped in the same haplotype) as

described by Raboin et al. (2008). Test statistics are

inflated in association studies when the genetic

structure is not well modeled, leading to numerous

false positives or artifactual QTLs (Clayton et al.

2005; Lander and Schork 1994; Voight and Pritchard

2005). Other biases like sample preparation or geno-

typing assay procedures may also inflate probabilities

(Clayton et al. 2005). Quantile–quantile (Q–Q) plots

were drawn for each trait to vizualize if the
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distribution of P values was inflated with respect to the

expected distribution in the case of no genetic

association. To measure the inflation of the test

statistic, we computed the inflation factor k (Devlin

and Roeder 1999) for each statistical model. When

k * 1, there is no inflation in test statistics. According

to Price et al. (2010), k should be lower than 1.05 to

avoid detection of spurious associations. In our study,

the metric k was computed from the Fisher F-statistics,

according to the quantitative nature of the traits

studied, following Yu et al. (2006).

Results

Quantitative analysis of traits

Results of quantitative genetics analysis of the 13 traits

used in the present study are summarized in Table 1.

For all traits, genotypic variance was significantly

(P \ 0.01) higher than zero. Broad sense heritabilities

(H2) computed only for normally distributed traits

were moderate to high, ranging from 0.63 for sucrose

yield to 0.89 for both stalk diameter and bagasse

content. A broad range of genetic variation was

observed with coefficients of genetic variation (CVg)

ranging from 5.4 % for brix to 23 % for stalk number.

Genetic structure of the panel of accessions

According to Evanno et al. 2005, the DK quantity

allows the detection of the most likely number of

clusters K computed with the Bayesian structuring

method implemented in STRUCTURE. We observed

the higher values of DK for K = 2, K = 5 and K = 7,

the latter correspond to the beginning of the plateau of

the mean of log likelihoods. The major DK value is

detected for K = 2 (Fig. 1) suggesting that our panel

may originated from the admixture of two populations.

Considering K = 2 as the most likely on the basis of a

coefficient membership higher than 0.60; we could

assign 140 accessions in two clusters. A total of 140

accessions were assigned to a genetic cluster on the

basis of a coefficient membership higher than 0.60

(ESM 3). Cluster 1 (C1) comprised 45 accessions, i.e.

24.5 % of the whole panel of 183 accessions. In this

genetic cluster, we found accessions bred in 16

different breeding centers with more than half origi-

nated from four breeding centers: 22 % from USDA

Canal Point in the USA, 16 % from SASRI in South

Table 1 Descriptive statistics and quantitative genetics of 13 phenotypic traits

Traits Mean ± SEMa r2
g
b H2c CVgd

Sucrose yield 17.24 ± 0.19 ton/ha 9.51* 0.6 17.9

Stalk diameter 26.12 ± 0.12 mm 6.64* 0.83 9.9

Stalk number 9.13 ± 0.1 stalk/m2 3.06* 0.67 19.2

Stalk height 265 ± 1.45 cm 950* 0.76 11.6

Bagasse content 17.67 ± 0.08 % 1.77* 0.71 7.5

Brix 18.82 ± 0.08 % 0.8* 0.61 4.7

In-vitro NDF digestibility 8.68 ± 0.12 % 3.06* 0.78 20.2

Flowering rate 14.30 ± 0.78 % – – –

SCYLV incidence 72.6 ± 1.7 % – – –

Brown rust score 1.88 ± 0.05 – – –

Gumming score 0.41 ± 0.007 – – –

Smut incidence 5.42 ± 0.58 whip/m2 – – –

Aphid AUDPC 15.37 ± 0.33 %.day 0.305* 0.71 16.0

* P-value \ 0.01
a SEM: standard error of the mean
b Genetic variance
c Broad sense heritability at the experimental design
d Coefficient of genetic variation

– Not estimated
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Africa, 11 % from ICAR/SBI Coimbatore in India,

and 9 % from FSC Lautoka in Fiji. Cluster 2 (C2)

comprised 95 accessions representing 51.9 % of the

whole panel. They came from 15 breeding centers.

The majority (76 %) of the accessions in C2 originated

in four breeding centers: 43 % came from eRcane in

Reunion Island, 13 % from HARC in Hawaii, 13 %

from MSIRI in Mauritius, and 7 % from WICSBCS

Barbados. Accessions originating from seven breeding

centers were found in either C1 or C2. No accessions

from Hawaii were found in cluster 1, whereas

accessions from Hawaii represented 13 % of cluster

2. Accessions from Reunion Island, Mauritius and

Barbados accounted for 63 % of cluster 2, while they

represented only 11 % of cluster 1. No accessions

from Canal Point or Natal (accounting for 38 % of

cluster 1) were also found in cluster 2.

Accessions were plotted on the first two principal

components (PCs) of the PCA and colored according

to their genetic cluster (Fig. 2). The first PC summa-

rizes 4.15 % of total marker inertia. It separates

accessions according to the two genetic groups

determined by STRUCTURE. The analysis of popu-

lation structure using PCA revealed that, according to

the Tracy-Widom test (P \ 0.05), the first 18 PCs

were significant.

Impact of the genetic structure of the panel

on phenotypic variability

The effect of population structure was assessed on all

13 traits (Table 2). Using assignment in two genetic

clusters, i.e. the Q2 matrix, revealed significant effects

on seven out of 13 traits. The proportion of variance

(R2) explained by cluster assignment ranged from

2.38 % for brix to 15.4 % for stalk diameter. No

effects were observed for disease-related traits or

flowering rate. The Q7 matrix which corresponds to

the STRUCTURE assignment in seven clusters and

the first 18 PCs had significant effects on all traits. The

proportion of variance explained by the model (R2)

Fig. 1 Means of log likelihoods and their standard deviations

computed with STRUCTURE software (Pritchard et al. 2000)

over 20 runs and for a number (K) of expected clusters ranging

from 1 to 20 (a), and Delta K values as a function of K,

according to Evanno et al. (2005) (b)

Fig. 2 Principal Component Analysis of 183 sugarcane acces-

sions genotyped with 820 independent DArT markers. Acces-

sions are plotted on the two first axes, PC1 and PC2, the

percentage of total inertia represented by each component is in

parentheses. Accessions are colored according to their genetic

clusters derived from STRUCTURE 2.3.4 analysis. Accessions

were assigned to a cluster when they displayed a cluster

coefficient membership equal to or higher than 0.60. Accessions

belonging to the genetic cluster 1 (C1) are in blue; accessions

belonging to the genetic cluster 2 (C2) are in red; accessions not

assigned to either genetic clusters are in grey
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ranged from 8.2 % for gumming score to 35.7 % for

brix for the model using Q7 and from 16.1 % for rust

infection severity to 52.7 % for brix for the model

using the18 significant PCs.

Genome wide association mapping

Eight genome wide association models were used to

detect marker-trait associations. Population structure

was taken into account by including, as covariates,

PCs or Q matrix in a general linear model. Mixed

Linear model were used in order control both popu-

lation structure by using the PC or Q matrix as

covariates and familial relatedness by using the K

matrix of pairwise kinship coefficients (Yu et al.

2006).

Inflation factors k are summarized in Table 3 and

Q–Q plots in ESM 4. For the NAIVE model without

control of the genetic structure and familial related-

ness of the panel, test statistics were inflated whatever

the trait (Fig. 3). Inflation factors k ranged from 1.31

to 2.59 (Table 3). The GLM-Q2 and the GLM-Q7

models also failed to control the effects of the genetic

structure producing consequently inflated probabili-

ties for each trait (Fig. 3, Table 3). For this reason,

The NAIVE, GLM-Q2 and GLM-Q7 models were not

used for subsequent marker-trait association analysis.

The GLM-PC model controlled (k\ 1.05) population

structure for five traits out of 13 (Fig. 3, Table 3).

Mixed linear models seem to better control inflation of

the test statistics with respectively five, seven, seven

and nine traits for MLM, MLM-Q2, MLM-Q7 and

MLM-PC models (Table 3, Fig. 3).

The number of significant markers detected for the

13 traits with each model, considering a FDR smaller

than 0.10 are summarized in Table 3. As expected

from the high inflation of test statistics, the NAIVE

and GLM-Q2 models detected numerous significant

markers. Depending on the trait, the number of

significant markers range from 0 (for aphid AUIPC

and In-vitro NDF digestibility) to 526 (for stalk

diameter), i.e. 16 % of the whole marker dataset.

Using the GLM-Q7 model greatly reduce the number

of significant markers (ranging 0 to 23 depending on

the trait), even if inflation test statistics is never

controlled. In contrast, the five other models which

better control the inflation of the test statistics (GLM-

PC, MLM, MLM-Q2, MLM-Q7 and MLM-PC)

revealed few or no significant markers.

The QTLs detected using the GLM-PC, MLM-PC

and MLM-Q models are summarized in Table 4.

Considering all traits, a total of 26 significant associ-

ations were found at an FDR of 0.10, but only 11 of

these markers were detected with a model that shows

an inflation factor lower than or equal to 1.05, i.e.

models that were assumed to efficiently control the

risk of spurious associations. QTL were detected for

sucrose yield, brix, in vitro NDF digestibility, flow-

ering rate, rust infection severity and smut incidence.

The proportion of total phenotypic variation explained

by a single marker range from 6.1 % to 12.5 %. The

R2 value obtained with the diagnostic marker of the

major rust resistance gene Bru1, R12H16 explain at

least 46.3 % of the phenotypic variation. Eight

markers were detected for rust infection severity using

GLM-PC, three of which were also detected with

MLM-PC, two with MLM-Q2 and one with MLM-Q7.

Among the markers significantly associated with rust

infection severity, the six that had a negative effect

were grouped in the same haplotype and four of them

were significantly associated with R12H16_PCR. Two

markers having positive effects (susceptibility) were

not associated with the diagnostic marker

R12H16_PCR, but were significantly associated with

Table 2 Proportion of phenotypic variance explained (R2) by

population structure in 13 sugarcane traits. Population structure

was estimated using 820 independent DArT markers using two

approaches: the Q-matrix (Q2 and Q7) derived from the

STRUCTURE software analysis, or the first 18 significant

principal components (PC) of a principal component analysis

Trait Q2 Q7 PC

R2 R2

Sucrose yield 14.75** 18.65** 30.34**

Stalk diameter 15.38** 25.91** 41.88**

Stalk number 12.26** 24.25** 41.75**

Stalk height 6.56** 28.31** 44.38**

Bagasse content 4.16* 16.12** 29.63**

Brix 2.38* 35.73** 52.65**

In-vitro NDF digestibility 3.07* 11.40** 19.55*

Flowering rate 0.19 12.64** 24.01*

Yellow leaf virus incidence 1.53 12.04** 34.41**

Brown rust score 1.26 10.83** 16.14*

Gumming score 0.62 8.21* 23.86**

Smut incidence 0.04 11.46** 20.09**

Aphid AUIPC 0.11 9.48* 20.55**

* P \ 0.05

** P \ 0.01
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rust infection severity when the GLM-PC model was

used. Two markers were detected for flowering rate

using the GLM-PC model. They exhibited positive

effects and were independent to each other; one of

them was also detected using the MLM-PC model. For

sucrose yield, only one marker with a positive effect

was detected through the GLM-PC model, but the

marker was not detected using MLM. For in vitro NDF

digestibility, and smut incidence, associations were

observed using the GLM-PC model, or for brix using

MLM and MLM-Q2 model, however in these cases

inflation factors were always higher than 1.05. For that

reason, these associations should be considered with

caution.

Discussion

This study provides the first validation of the use of the

GWAS strategy in sugarcane as it showed that it is

possible to identify a major gene previously identified

in biparental progenies. It revealed that association

models that include population structure and family-

based relatedness can control spurious associations for

most sugarcane traits. However in our experimental

conditions, only a small number of significant asso-

ciations were finally detected.

In genome wide association studies, population

structure has to be taken into account and modeled

correctly as it is the cause of false-positive detections,

and consequently leads to a high number of spurious

associations (Lander and Schork 1994). We assessed

genetic structure using a panel of 183 sugarcane

accessions and a Bayesian clustering method imple-

mented in STRUCTURE software (Pritchard et al.

2000) and principal component analysis (PCA). The

Bayesian clustering based the method of Evanno et al.

2005 suggest that the most likely number of clusters is

two, but small DK values are also detected for K = 5

and 7. Using PCA to summarize global genetic

Fig. 3 Example of Quantile–quantile probability plots

obtained with four models of genome wide association mapping

applied on 13 traits. Models used were a a linear model without

correction for population stratification (NAIVE) b a linear

model using the Q7-matrix added as a fixed co-factor (GLM-

Q7) c a mixed linear model using a similarity matrix specified as

the model co-variance matrix (MLM) and, d a mixed linear

model using a similarity matrix and the significant eigenvectors

from the PCA added as fixed co-factors (MLM-PC). If quantile–

quantile probability plots is represented with a ? inflation

factors B1.05, if represented with a dot inflation factors[1.05
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variation in the population, we observed no clear

structure like that observed in other species including

potato (D’hoop et al. 2010), rice (Zhao et al. 2011) and

sorghum (Caniato et al. 2011). Both population struc-

ture representations, i.e. Bayesian clustering and PCA,

explained a significant part of phenotypic variability but

we observed differences between the two representa-

tions of structure. The most likely Bayesian clustering

in two clusters had no significant effects on five traits.

The clustering in seven clusters had a significant effect

on all traits but whatever the traits the PC from the PCA,

which modeled a more complex genetic structure,

including part of the family-relatedness (McVean 2009;

Patterson et al. 2006), explained higher proportion of

the phenotypic variance. The history of sugarcane

breeding is recent and the first crosses were limited to a

few parental ancestors (Arceneaux 1967). In addition,

only a few generations separate modern cultivars from

their parental ancestors, thus limiting the number of

meiosis. Some important cultivars have been used as

progenitors in many breeding programs thus creating

relatedness between modern sugarcane cultivars. It has

been demonstrated that a population with a small

effective size, i.e. that has grown rapidly and recently

from a few founders, is subject to cryptic relatedness

(Voight and Pritchard 2005). Our results suggest that

our panel is affected by cryptic relatedness and

population structure which is congruent with the history

of sugarcane breeding. Like many populations used for

GWAS, our panel belongs in the group IV sample with

both population structure and family relationships

defined by Zhu et al. (2008).

This genome wide association study revealed 26

significant markers linked to seven traits when FDR

was set to 0.10. The significant associations detected

for brix, in vitro NDF digestibility, gumming scoring

and smut incidence should be considered with caution

because of their inflation factor k, which ranged from

1.14 to 1.29, and which increases the risk of spurious

associations. With satisfactory control of the inflation

of test statistics (k\ 1.05), 11 markers were signif-

icantly associated with three traits out of 13: sucrose

yield (1 marker), flowering rate (2 markers) and brown

rust infection severity (8 markers). For brown rust,

four markers were significantly associated with each

other and linked to the major gene Bru1. The two other

markers we detected were not statistically correlated

with Bru1 and could thus indicate new loci involved in

the genetic control of resistance to rust.

Finally, only a few marker-trait associations were

detected for the 13 traits analyzed. Wei et al. (2010),

who focused on cane yield and sugar content in a

population of 480 sugarcane accessions genotyped

with 1531 DArT markers,) also found few significant

associations. Their study revealed only five significant

markers for cane yield and no markers for sugar

content were detected (P \ 0.0001).

The small number of marker-trait associations

detected could be explained by a lack of power of

detection in our association study. The power of

detection of an association study depends on several

factors including population size, the extent of linkage

disequilibrium between the marker and the causal

locus, which is influenced by the number of markers

used, and the effect and frequency of the QTL

(Bradbury et al. 2011; Jianbing et al. 2011, Macleod

et al. 2010). The highest number of markers (eight)

detected was for rust severity. This trait showed

favorable conditions for maximizing the power of

detection of marker-trait associations with an equiv-

alent proportion of susceptible and resistant acces-

sions, mainly oligogenic genetic determinism and a

reliable phenotype, (Costet et al. 2012a). For traits that

do not comply with these conditions, our experimental

design lacked power. According to Raboin et al.

(2008), with the 3,327 polymorphic markers used in

the present study and given the high rate of linkage

disequilibrium in sugarcane, our coverage should

theoretically have been sufficient. However, the study

of Grivet and Arruda (2001) demonstrated that the

coverage of the genome with molecular markers is not

homogenous and that higher coverage can occur in

some genomic regions, such as those that came from S.

spontaneum parental species. In sugarcane linkage

disequilibium appeared to be large, since linkage

disequilibium drops only over a distance of 5 cM and

instances of linkage disequilibium blocks of 10 to

20 cM are relatively frequent however many blocks in

linkage disequilibium may be missed, as the con-

founding effects of marker dosage due to polyploidy

are assumed to mask many instances of linked markers

(Costet et al. 2012a). In highly polyploid plants like

sugarcane, GWAS can be improved by increasing

marker density, by using, for example, recent tools

like genotyping-by-sequencing (Elshire et al. 2011).

Another reason for the lack of marker detection is

correction of the strong effect of population and

family-based structure that results in false-negative
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associations. Previous studies have shown that QTLs

tightly linked to the genetic structure may disappear

when genetic structure is modeled (Andersen et al.

2005; Cai et al. 2013; Zhao et al. 2011). In our case, the

traits for which we detected significant markers are

those that are the least correlated with genetic

structure (Table 2).

To conclude, we have shown that sugarcane

population structure and family-based relatedness

have strong effects on the phenotype of traits that are

important for breeding. These effects have to be

correctly modeled in genome wide association studies

to avoid spurious associations. The mixed linear

models we used were efficient in controlling inflation

of the test statistics due to the effect of structure and

family-based relatedness, and we identified several

significant associations. These results confirm that

GWAS can be used for sugarcane, but underline the

need to control family relatedness and not only

population structure. Nevertheless and despite the

large linkage disequilibrium present in sugarcane, the

limited number of significant associations detected in

the present study suggests that a larger population and/

or a denser genotyping are required to increase the

statistical power of association detection.
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