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Abstract Cotton is a leading natural fiber crop in the
textile industry worldwide. The improvement of
cotton fiber quality has become more important
because of changes in spinning technology and ever-
increasing demands. Mapping quantitative trait locus
(QTL) for fiber quality traits will enable molecular
marker-assisted selection (MAS) to improve fiber
quality and provide an access to reveal the molecular
mechanism of fiber development. A high-density
intraspecific genetic map is constructed based on an
upland cotton recombinant inbred line (RIL) popula-
tion. A total of 25,313 SSR primer pairs were used and
yielded 1,333 polymorphic markers, with a polymor-
phic ratio of 5.3 %, producing 1,382 polymorphic loci
in the RIL population. The map comprised 1,274 loci
and spanned 3,076.4 cM with an average distance of
2.41 cM between two adjacent markers. Based on the
phenotypic data of fiber quality traits from five
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environments, a total of 59 QTL were detected. These
QTL comprised 15 QTL for fiber upper half mean
length, 10 QTL for fiber length uniformity, 9 QTL for
fiber strength, 10 QTL for fiber elongation and 15 QTL
for fiber micronaire, respectively. The genetic map
constructed in this study is the most detailed upland
cotton intraspecific map based on SSR markers to date,
and could be used to construct consensus map or as
reference genetic map for tetraploid cotton genome
assembly. Stable QTL identified across multiple
environments reflect some important and favorable
alleles shaping fiber quality, and they are valuable
candidate alleles for MAS breeding projects as well as
for gene function research related to cotton fiber
development and quality improvement.

Keywords Upland cotton (G. hirsutum L.) - Genetic
map - Fiber quality traits - QTL

Introduction

Cotton is grown in more than 80 countries, and
contributes to the world economy as a leading natural
fiber crop in the textile industry and a source of oil and
protein from cottonseeds. The genus Gossypium
consists of approximately 45 diploid (2n = 2x =
26) and 5 tetraploid (2n = 4x = 52) species (Percival
et al. 1999), including four cultivated species,
G. arboreum L., G. herbaceum L., G. barbadense
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L. and G. hirsutum L.. Among the four cultivated
species, G. hirsutum L., commonly known as
upland cotton, is the most important species and
provides about 95 % of the world’s cotton fiber
production.

Genetic improvement of fiber yield is the top
priority goal in cotton breeding program. However,
with the demands for higher quality cotton fiber to
produce more competitive products and increase the
manufacture efficiency, cotton breeders have also
spent much effort to improve fiber quality. Due to the
negative association between fiber yield and quality
(Culp and Lewis 1973) and the narrow genetic base of
modern cotton cultivars (Igbal et al. 2001; Rungis et al.
2005; Lacape et al. 2007), the progress to continuously
increase fiber productivity and simultaneously
improve its fiber quality only using conventional
breeding methods has been limited (Smith and Coyle
1997). Thus, the innovative breeding approaches have
to be incorporated.

Great advances in molecular marker technologies
make it possible for breeders to find a rapid and precise
alternative approach to conventional breeding selec-
tion schemes (Tanksley and Hewitt 1988). Based on
the detailed genetic maps, quantitative trait locus
(QTL) controlling fiber quality traits could be pre-
cisely mapped on cotton genome and apply to marker-
assisted selection (MAS) in breeding projects. Since
the first genetic map was reported in cotton (Reinisch
et al. 1994), numerous genetic maps have been
developed and used to identify QTL. Up to now, 726
QTL related to fiber quality traits have been mapped
on 42 molecular maps (Said et al. 2013). While most of
these QTL were mapped based on interspecific
populations (G. barbadense x G. hirsutum), issues
with sterility, cytological abnormality, extremely late
flowering, and distorted segregation limited their
application, such as fine mapping the gene underlying
these QTL and MAS (Lacape et al. 2010), which
suggests that QTL mapping using the upland cotton
intraspecific population is more practical. However,
due to the narrow genetic background of modern
upland cotton cultivars, QTL mapping based on
intraspecific populations were of low resolution, far
from being satisfactory for practical application. In
addition, complicated gene expression in different
development stages of cotton fiber (Lee et al. 2007;
Taliercio and Boykin 2007; Hovav et al. 2008; Al-
Ghazi et al. 2009; Paterson et al. 2012) and QTL meta-

@ Springer

analysis (Lacape et al. 2010; Said et al. 2013)
indicated that only a few QTL related to fiber
development have been mapped. Predictably, much
more new or elite QTL will be identified with new
divergent mapping parents.

In the present study, we constructed a genetic map
based on an upland cotton recombinant inbred line
(RIL) population and used this map to detect QTL for
fiber quality traits. The results were expected to be
valuable for research on upland cotton genome
structure and fiber development molecular mechanism
and quality improvement through MAS.

Materials and methods

Mapping population and fiber quality traits
evaluation

Two upland cotton cultivars, CCRI 35 and Yumian 1
were chosen to produce the segregating population.
CCRI 35, a high yield and disease resistance cultivar,
was widely planted in China in the last decade.
Yumian 1, a high fiber quality cultivar, especially
characterized with high fiber strength, was developed
from multiple-cultivar intermating program (Zhang
et al. 2009). The two parents were crossed in the
summer of 2005 at Southwest University, Chongqing,
China. F, individuals were self-pollinated to produce
F, seeds in the winter of 2005 in Hainan, China. F,
seeds were planted at Southwest University and a total
of 180 F, individual plants were randomly selected in
the summer of 2006. One hundred eighty F,-derived
lines were self-pollinated for four generations to
produce F,.¢ seeds during 2006 and 2007. F,.¢ seeds
were planted by lines in single-row plot (0.8 m wide
and 5 m long, for 15 plants) in the summer of 2008 at
Southwest University and one individual plant in each
family line was randomly selected to form a popula-
tion. From 2009 to 2012, 180 RIL lines were randomly
planted by single-row plot (0.7 m wide and 5 m long,
for 15 plants) during the summer season at Southwest
University. All the naturally-opened bolls from the
RIL population and parents were hand-harvested to
gin fiber. Fiber samples were evaluated for fiber
quality traits, using the high volume instrument (HVI)
spectrum, at the Supervision Inspection and Testing
Cotton Quality Center, Anyang, China. Data were
collected on fiber elongation (FE, %), fiber upper half
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mean length (FL, mm), fiber micronaire (FM), fiber
strength (FS, cN/tex), and fiber length uniformity ratio
(FU, %).

Assay of DNA markers

Total genomic DNA from fresh young leaves of the
parents and the 180 lines were extracted according to
the modified CTAB method (Zhang et al. 2005).

A total of 25,313 simple sequence repeat (SSR)
primer pairs were employed in the present study and
they were synthesized by Invitrogen Co. Ltd. (Shang-
hai, China). Among these SSR primers, 18,358 primer
pairs were downloaded from Cotton Marker Database
(http://www.cottonmarker.org/), including BNL, CIR,
CM, DOW, Gh, HAU, JESPR, MGHES, MON,
MUSB, MUCS/MUSS, NAU, NBRI (renamed by
Tang et al. 2014), and TMB. The other 6,955 primer
pairs were designed in our laboratory, including 5,000
PGML primer pairs, 1,592 SWU primer pairs, and 363
SWUO06-/07-primer pairs (Tang et al. 2014).

All these primer pairs were first screened for
polymorphism between the mapping parents and the
primer pairs showing clear polymorphism were used
to genotype the RIL population. PCR amplification
and product test were performed according to the
procedures by Zhang et al. (2005). Clear polymor-
phic DNA bands on the gels were used for scoring
and genotyping. Loci detected were named with the
primer name. For multiple polymorphic loci
revealed by a same primer pair, an extra letter
was added to the primer name, such as a/b/c,
indicating the molecular size from the smallest to
the largest.

Genetic map construction

JoinMap 4.0 (Van Ooijen and Voorrips 2006) was
served to primarily group and order all the polymor-
phic loci with a LOD threshold from 4 to 8 according
to shared markers from the previous maps (Guo et al.
2008; Xiao et al. 2009; Zhang et al. 2009; Yu et al.
2011; Blenda et al. 2012; Zhang et al. 2012). Linkage
groups belonging to a given chromosome were then
treated as separate data sets and reordered at a LOD
values between 1 and 4. Map distances were calcu-
lated using Kosambi’s mapping function.

QTL mapping

Multiple QTL mapping of MapQTL 6.0 (Van Ooijen
2009) was implemented to identify QTL and estimate
their effects. The LOD threshold of significant QTL was
calculated by 1,000 permutation tests, with a genome-
wide significance level of P < 0.05. The QTL with the
LOD value between 2.5 and the LOD value evaluated
by permutation test were declared as putative QTL in
the present study. Additive effects were defined with
respect to the alleles of CCRI 35. Therefore, the positive
genetic effect of each QTL indicated that the allele of
CCRI 35 increased the phenotypic value, whereas the
negative effect indicated that the allele of Yumian 1
increased the phenotypic value. QTL name was started
with ‘q’, followed by a trait abbreviation (FL for fiber
upper half mean length, FU for fiber length uniformity,
FS for fiber strength, FE for fiber elongation and FM for
fiber micronaire) and the chromosome number, and then
followed by the number of QTL controlling the same
trait on the chromosome. The graphic representation of
genetic map and QTL bars representing 1-LOD drop
intervals was carried out with Map Chart 2.2 (Voorrips
20006).

Results
Primer polymorphism and marker analysis

Among the 25,313 SSR primer pairs used to screen for
polymorphism between the two parents, 1,333 poly-
morphic markers were yielded, accounting for 5.3 %
of the total primer pairs. The polymorphic markers
were used to genotype the RIL population, and
produced 1,382 loci. For each locus, x> test was
performed to determine if the allele frequency was
deviated from the expected Mendelian segregation
ratio. Of the 1,382 loci, 518 loci showed significant
segregation distortion (P < 0.05), accounting for
37.5 % of the total loci. Among the distorted loci,
452 loci were biased in favor of Yumian 1 alleles,
whereas other 66 loci were biased in favor of CCRI 35
alleles.

Genetic map

Based on the linkage analysis of all the 1,382 loci, a
genetic map with 1,274 loci was constructed
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«Fig. 1 The genetic map and QTL controlling fiber quality traits
from upland cotton (CCRI 35 x Yumian 1) RIL population.
The marker with asterisk was distorted locus. The QTL
controlling fiber quality traits and the bars representing 1-LOD
likelihood intervals are beside the linkage group. QTL are shown
as FL for fiber upper half mean length, FU for fiber length
uniformity, FS for fiber strength, FE for fiber elongation, and FM
for fiber micronaire

(Fig. 1; Table 1), and the map spanned 3,076.4 cM
with an average distance of 2.41 cM between two
adjacent markers. At-subgenome comprised of 500
loci and spanned 1,462.6 cM with an average distance
of 2.93 cM between two adjacent markers. Dt-subge-
nome contained 774 loci and spanned 1,613.8 cM with
an average distance of 2.09 cM between two adjacent
markers.

On the whole, all mapped loci were well-propor-
tioned distributed across the entire genome, but still

some chromosomes had more loci or fewer loci than
other chromosomes. For example, Chr. 20 was
mapped with 112 loci, whereas Chr. 12 was mapped
with only 12 loci. Chromosome with the longest
recombination length was Chr. 16 which spanned
216.4 cM, and the shortest one was Chr.12 which
spanned only 65.0 cM. There were four large gaps
(adjacent marker interval >20 cM), including two,
one and one distributed on Chr. 11, Chr. 13 and Chr.
21, respectively.

The phenotypic analysis of fiber quality traits

The phenotypic data of the five fiber quality traits were
summarized in Table 2. The two parents were only
significantly different at fiber strength. All the five
fiber quality traits of the RIL population showed a
wide range of variation. Skewness and kurtosis test
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Table 1 Distribution of Chromosome Loci Length Average Distortion loci Distortion

loci and distortion loci on (cM) interval (cM) ratio (%)

the genetic map from the

RIL population 01 37 139.4 3.77 9 243
02 54 114.5 2.12 6 11.1
03 26 106.8 4.11 12 46.2
04 37 114.1 3.08 17 45.9
05 70 124.5 1.78 11 15.7
06 54 1335 247 22 40.7
07 55 104.4 1.90 26 473
08 31 104.6 3.38 8 25.8
09 38 79.7 2.10 24 63.2
10 31 88.1 2.84 8 25.8
11 31 178.1 5.75 9 29.0
12 12 65.0 5.42 3 25.0
13 24 109.9 4.58 16 66.7
At 500 1,462.6 293 171 34.2
14 48 79.5 1.66 18 37.5
15 58 125.3 2.16 16 27.6
16 78 216.4 2.77 24 30.8
17 74 92.0 1.24 35 473
18 50 104.0 2.08 32 64.0
19 65 143.4 2.21 20 30.8
20 112 103.6 0.92 45 40.2
21 49 184.5 3.76 11 224
22 32 93.6 2.92 17 53.1
23 65 114.5 1.76 18 27.7
24 43 132.9 3.09 16 37.2
25 23 83.3 3.62 9 39.1
26 77 140.9 1.83 36 46.8
Dt 774 1,613.8 2.09 297 384
Total 1,274 3,076.4 241 468 36.7

showed that these traits were approximately in normal
distribution. The variance analysis result showed that
fiber quality traits possessed of significant environ-
mental and genetic efforts except for fiber elongation
(P < 0.05) in the RIL population (Table 3). Correla-
tion analysis showed that complex significant corre-
lation exists among fiber quality traits (Table 4). Fiber
strength was significantly positive-correlated with
fiber length and uniformity. Fiber micronaire was
significantly positive-correlated with fiber length and
strength. Fiber micronaire was significantly negative-
correlated with fiber uniformity. Fiber elongation was
significantly negative-correlated with fiber length and
strength.

QTL identified for fiber quality traits

With the multiple QTL mapping method, a total of 59
QTL were detected for five fiber quality traits based on
the phenotype data from 5 environments, including 28
significant QTL and 31 putative QTL (Table 5). These
QTL were mapped on 23 chromosomes (Fig. I;
Table 5), with 23 QTL distributed on At-subgenome
chromosomes and 36 QTL distributed on Dt-subge-
nome chromosomes. Parent CCRI 35 conferred 22
favorable alleles, whereas Yumian 1 conferred 37
favorable alleles.

For fiber upper half mean length, 15 QTL (5§
significant QTL and 10 putative QTL) were identified

@ Springer
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Table 2 Phenotypic data

Trait Environment Parent Population
analysis of five fiber quality
traits for the parents and the CCRI 35 Yumian1 Mean Max Mini Skewness Kurtosis
RIL population
Length 2008 30.3 30.2 305 340 258 0.2 0.53
(mm) 2009 29.6 30.7 304 333 270 001 —0.03
2010 272 28.7 296 326 264 —0.13 —0.21
2011 30.8 30.7 299 330 264 —0.07 0.48
2012 29.9 28.4 290 31.8 270 036 —0.12
Uniformity 2008 83.9 82.5 85.8 88.1 817 —0.67 0.97
(%) 2009 86.0 86.1 854 875 820 —048 0.39
2010 83.7 84.0 833 862 792 —047 0.33
2011 84.9 84.4 843 867 799 —0.61 0.50
2012 85.5 84.5 86.5 893 834 —032 —0.04
Strength 2008 27.1 30.7 31.8 394 253 044 0.90
(eN/tex) 2009 30.8 375 339 408 269 036 0.36
2010 28.3 35.4 297 356 242  0.04 0.55
2011 33.5 38.2 329 400 262 —0.14 0.69
2012 312 35.6 308 354 275 039 0.35
Elongation 2008 6.2 6.3 65 67 62 000 —0.35
(%) 2009 6.4 6.7 65 68 62 —0.16 —0.46
2010 6.8 6.1 65 71 57 —022 0.08
2011 6.3 6.1 64 71 58 033 0.47
2012 6.8 7.1 67 72 62 013 —0.10
Micronaire 2008 42 44 46 62 28 —034 1.38
2009 44 43 44 53 29 -038 0.22
2010 5.4 4.8 42 51 31 -026 0.28
2011 42 3.9 41 54 28 —0.17 —0.31
2012 49 43 46 57 33 —0.09 0.42

and mapped on 14 chromosomes (Fig. 1; Table 5),
explaining 6.1-13.4 % of the phenotypic variation.
gFLO07.1 and gFL19.1 were identified in three envi-
ronments, qFLO8.1 and qFL17.1 were identified in two
environments, and all other QTL could be detected
only for one environment. Among these QTL, 5
favorable alleles were contributed by CCRI 35 and all
other favorable alleles were contributed by Yumian 1.
For fiber length uniformity, 10 QTL (6 significant QTL
and 4 putative QTL) were identified and mapped on 10
chromosomes (Fig. 1; Table 5), explaining 6.3-11.4 %
of the phenotypic variation. Only qFU0S8.1 was identified
in two environments and all other QTL were identified in
only one environment. Among these QTL, 4 favorable
alleles were contributed by CCRI 35, whereas other
favorable alleles were contributed by Yumian 1.

@ Springer

For fiber strength, 9 QTL (5 significant QTL and 4
putative QTL), were identified and mapped on 8
chromosomes (Fig. 1; Table 5), explaining
6.1-26.5 % of the phenotypic variation. gFS07.1 and
qFS14.1 were identified in five and three environments,
respectively, showing that they were very stable QTL.
Besides qFS05.1 identified in two environments, all
other QTL could be detected only in one environment.
Six favorable alleles including all the stable QTL were
contributed by Yunmianl and 3 favorable alleles were
contributed by CCRI 35.

For fiber elongation, 10 QTL (5 significant and 5
putative QTL) were identified and mapped on nine
chromosomes (Fig. 1; Table 5), explaining about
4.8-11.1 % of the phenotypic variation. All the 10
QTL were identified in only one environment.
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Table 3 Variance analysis of fiber quality traits in the RIL
population

Trait Source of Degree Variance F
variation freedom

Length Environment 4 68.44 90.64%*%*
Genotype 179 3.79 5.01%*
Error 710 0.76

Uniformity Environment 4 262.38 202.07%*
Genotype 179 1.59 1.23%
Error 710 1.30

Strength Environment 4 443.20 162.86%*
Genotype 179 10.55 3.88%%*
Error 710 2.72

Elongation Environment 4 1.84 50.25%%*
Genotype 179 0.03 0.73
Error 710 0.04

Micronaire Environment 4 6.99 61.42%%*
Genotype 179 0.50 4.42%*
Error 710 0.11

*, *% Significances with the probability levels of 0.05 and 0.01,
respectively

For fiber micronaire, 15 QTL (7 significant QTL
and 8 putative QTL) were identified and mapped on 13
chromosomes (Fig. 1; Table 5), explaining between
6.3 and 15.4 % of the phenotypic variation. gFMO07.1
and qFMO08.1 were identified in four and three
environments, respectively, indicating that they were
stable QTL. gFM22.1 was identified in two environ-
ments, and all other QTL were detected only in one
environment. Among these QTL, 5 favorable alleles
decreasing the trait value were conferred by CCRI 35,
whereas other favorable alleles were conferred by
Yumian 1.

Discussion
High-density genetic map

The genetic map constructed in the present study
represents the most saturated upland cotton intraspecific
genetic maps to date. It spanned about 70.0 % of the
entire recombination length of tetraploid cotton genome
estimated to be 4,400-4,660 cM (Lacape et al. 2003;
Rong et al. 2004; Yu et al. 2011). The marker polymor-
phic ratio was much lower than that in the previous
reports (Lin et al. 2009; Zhang et al. 2009). The advance
of this genetic map was mainly attributed to the large
amount of SSR primer pairs and the approximately even
distribution of loci across the entire genome. The
chromosomes with fewer loci and the gaps identified in
our study might suggest that there was low marker
diversity in these chromosomes or regions between the
two parents. The recombination length of some chromo-
somes was much shorter than other chromosomes and the
similar result was also reported in the other studies
(Zhang et al. 2009; Yu et al. 2011; Zhao et al. 2012;
Zhang et al. 2012). Regarding to the physical length of
their homologous chromosomes in D genome (Paterson
et al. 2012), it seems that lower recombination rate in
these chromosomes/regions played a major role leading
to the result. In addition, more loci were distributed on
Dt-subgenome than At-subgenome, which was consis-
tent with the reports in the other studies (Yu et al. 2011;
Zhang et al. 2012; Zhao et al. 2012), and the possible
reason was that D/Dt genome was more divergent than
A/At genome among cotton species (Guo et al. 2008).

Segregation distortion

Segregation distortion is widespread in plant popula-
tions, and is regarded as the source and force of plant

Table 4 Correlation coefficients among fiber quality traits in 180 recombinant inbred lines

Length Uniformity Strength Elongation
Uniformity 0.093
Strength 0.610%* 0.341%%*
Elongation —0.281%** —0.072 —0.261%*
Micronaire —0.497+* 0.185* —0.297** —0.133

*, *#% Correlation is significant at the probability levels of 0.05 and 0.01, respectively
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Table 5 QTL controlling fiber quality traits identified from the RIL population

Trait QTL Chromosome Environment Nearest marker LOD Additive PVE (%)
Length qFLOI1.1 01 2011 PGMLO03082 2.6 +0.30 6.5
qFL02.1 02 2008 DC20052 2.7 —0.33 6.7
qFL04.1 04 2011 NAU2489 2.5 +0.28 6.1
qFL06.1 06 2009 NAU3427 2.6 —0.34 6.5
qFL07.1 07 2008 PGMLO03165b 3.2% —0.36 7.8
2010 NBRIO138 29 —0.36 7.2
2012 NBRIO138 5.5% —0.38 13.4
qFLO08.1 08 2008 NAU4934 3.3% +0.37 8.0
2012 NAU3287 2.8 +0.33 7.0
qFL12.1 12 2008 CGR6149 2.6 —0.33 6.3
qFL14.1 14 2011 PGML04299 3.2% —0.31 8.0
qFL16.1 16 2011 BNL3793 4.4% —0.36 10.6
qFL17.1 17 2008 NBRI1238 3.8* —0.40 9.2
2012 NBRI1238 2.9* —0.27 73
qFL19.1 19 2008 PGMLO03255 2.8 —0.35 6.8
2009 PGMLO03255 2.6 —0.34 6.5
2010 PGMLO03255 2.5 —0.34 6.2
qFL22.1 22 2009 PGMLO00695 2.8 —-0.37 7.0
qFL24.1 24 2009 PGML02801 2.7 —0.39 6.8
qFL26.1 26 2011 PGMLO03833 2.5 +0.31 6.2
qFL26.2 26 2012 BNL2578 2.7 +0.31 6.8
Uniformity qFUO01.1 01 2011 NAU2437b 2.6 +0.38 6.5
qFU04.1 04 2012 NBRI1131a 3.4% —0.38 8.5
qFU07.1 07 2010 PGMLO03165b 2.6 —0.34 6.6
qFU08.1 08 2009 Gh221 3.4% —0.29 8.5
2010 NAU3424 2.5 —0.35 6.3
qFU13.1 13 2010 PGML04893 2.8 —0.38 6.9
qFUI5.1 15 2009 PGMLO03446 4.7* —0.36 11.4
qFU17.1 17 2010 HAU3318 3.6% —0.39 8.9
qFU19.1 19 2011 PGMLO03255 3.0% +0.39 7.4
qFU20.1 20 2012 Gh451 2.5 +0.27 6.3
qFU24.1 24 2008 NAU0999 3.2% +0.32 7.9
Strength qFS02.1 02 2008 TMBO0471 2.5 —0.52 6.1
qFS05.1 05 2008 PGML04051 3.2% —0.60 8.0
2012 PGML04051 2.5 —0.37 6.2
qFS07.1 07 2008 NBRIO144 7.1% —0.91 16.6
2009 DPL0643 11.9% —1.24 26.5
2010 NAU5406 7.7* —-0.74 17.9
2011 NBRIO144 3.6% —0.67 8.7
2012 NBRI0762 5.2% —0.58 12.6
gqFS11.1 11 2011 NAU1103 3.3% +0.70 8.1
qFS14.1 14 2009 PGMLO03577 2.8 —0.67 6.9
2010 NAU1187a 3.6% —0.59 8.9
2011 NAU1187a 3.7* —0.64 9.1
qFS16.1 16 2008 MUSS095 3.8% —0.64 9.2
qFS16.2 16 2011 CGR5828 2.8 —-0.72 6.9
qFS18.1 18 2012 PGMLO03122 2.7 +0.44 6.7
qFS23.1 23 2012 STV022 2.7 +0.41 6.7
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Table 5 continued
Trait QTL Chromosome Environment Nearest marker LOD Additive PVE (%)
Elongation qFEOI1.1 01 2011 DPL0526 29 —0.07 7.1
qFE07.1 07 2012 NBRI0O762 4.5% —0.07 11.1
qFEII.1 11 2011 CERO0035 3.2% —0.07 7.8
qFEI15.1 15 2010 BNL1454 3.4% +0.08 8.5
qFEl6.1 16 2012 JESPROO5 3.2% —0.06 7.9
qFE16.2 16 2011 CGR5828 2.7 +0.07 6.7
qFEI18.1 18 2012 PGMLO03122 3.5% +0.06 8.6
qFE22.1 22 2011 PGMLO03002a 2.6 +0.06 6.5
qFE24.1 24 2010 HAU3369 2.6 +0.07 6.4
qFE25.1 25 2008 NBRIO769 2.7 —0.04 4.8
Micronaire qFMO05.1 05 2011 CER0060 2.6 +0.16 6.4
qFMO06.1 06 2010 Gh513 2.6 +0.13 6.4
qFMO07.1 07 2008 DPL0403 4.8% +0.15 11.6
2009 DPL0643 6.5% +0.17 15.4
2011 DPL0920 3.2% +0.16 7.7
2012 NBRIO139 3.8* +0.13 9.4
qFMO08.1 08 2008 HAU1865 3.4% —0.13 8.4
2009 HAU1865 3.3* —0.13 8.1
2012 HAU1865 29 —0.10 7.4
qFM14.1 14 2011 DPL0405 3.3% +0.19 8.2
qFM16.1 16 2012 HAUO0585a 3.0 —0.11 7.4
qFM16.2 16 2008 NAU3911 29 —0.14 7.1
qFM17.1 17 2012 NBRI1238 3.8% +0.12 9.4
qFM19.1 19 2012 PGMLO03255 3.0 +0.11 7.5
qFM20.1 20 2008 NAU6689 3.9% +0.15 9.6
qFM21.1 21 2012 Gh075 2.5 +0.10 6.3
qFM22.1 22 2008 PGMLO1657 2.8 +0.14 7.0
2011 NAU3868 2.6 +0.14 6.4
qFM24.1 24 2010 PGMLO00176 3.3* +0.11 8.2
qFM26.1 26 2011 BNL2495 3.2% —0.18 7.8
qFM26.2 26 2009 BNL2578 29 —0.14 73

+ indicates that CCRI 35 allele increases the trait value, and — indicates that Yumian 1 allele increases the trait value

PVE phenotypic variance explained

* LOD was larger than the significant LOD threshold calculated by 1,000 permutation tests (P < 0.05)

evolution (Taylor and Ingvarsson 2003). The percent-
age, degree, origin and genetic effects of segregation
distortion vary significantly with species, population
types, crosses and marker types in plants (Xu et al.
1997). Previous studies considered that higher segre-
gation distortion in RIL population may mainly result
from genetic drift (Zhang et al. 2009), genetic
incompatibility and genome instability (Zhang et al.
2009) and the divergence between species (Paterson
et al. 1988). The segregation distortion ratio in this
study is high and most distorted loci skewed to

Yumian 1 alleles, the same phenomenon was found in
the other studies with Yumian 1 as one parent (Hu
et al. 2008; Zhang et al. 2009), and the results
suggested that Yumian 1 alleles probably played a
critical role in segregation distortion. Considering the
mapping parent Yumian 1 with complicated parentage
(Zhang et al. 2009), we deduce that both the parentage
of parent Yumian 1 and the population type contrib-
uted to the high segregation distortion in the present
study. Similarly, most segregation distortion loci
occurred in clusters, and it is consistent with the result

@ Springer



626

Euphytica (2015) 203:615-628

found in the interspecific populations (Reinisch et al.
1994; Lacape et al. 2003; Guo et al. 2007; Zhang et al.
2008; Yu et al. 2011), and the intraspecific populations
(Shen et al. 2005, 2007; Lin et al. 2009; Zhang et al.
2009). These results indicated that genetic hitchhiking
effects commonly occurred in cotton. Furthermore,
many segregation distortion regions were close to or
even overlapping with the QTL intervals and this
phenomenon implies that some relationship exists
between the alleles underlying these QTL and the
alleles causing segregation distortion.

Common or stable QTL across multiple
populations and environments

Due to the most detailed intraspecific genetic map
constructed in the present study, 59 QTL controlling
fiber quality traits were detected. Among these QTL
detected, only 11 QTL were detected in two or more
environments and some QTL with large effects were
detected in merely one environment. The same results
were also found in the other studies (Shen et al. 2007;
Zhang et al. 2009; Zhang et al. 2012), and these results
further proved that environmental factor played an
important role in QTL expression. However, accord-
ing to the common shared markers in the QTL-regions,
16 QTL detected in the present study were identified in
the other populations and these QTL included qFE07.1
(Sunetal. 2012; Wang et al. 2013), gFE15.1 (Sun et al.
2012), gFE24.1 (Shen et al. 2007), gFL07.1 (Sun et al.
2012; Wang et al. 2013), qFL14.1 (Sun et al. 2012),
gFL17.1 (Wang et al. 2013), qgFMO05.1 (Sun et al.
2012), gFMO07.1 (Sun et al. 2012), gFM14.1 (Sun et al.
2012), gFM16.1 (Sun et al. 2012), gFM16.2 (Wang
etal. 2013), qFS02.1 (Wang et al. 2013), gFS07.1 (Sun
et al. 2012; Wang et al. 2013), qFS23.1 (Shen et al.
2007), qFS24.1 (Shen et al. 2007) and gFUO07.1 (Sun
et al. 2012). Furthermore, 21 QTL detected in the
present study were also identified in the populations
with the same mapping parents in our previous studies
and these QTL included qFE07.1 (Ni et al. 2011;
Zhang et al. 2012), qFE11.1 (Ni et al. 2011), qFE15.1
(Zhang et al. 2012), qFE24.1 (Zhang et al. 2012),
qFE16.1 (Zhang et al. 2012), qFL01.1 (Ni et al. 2011),
gFLO07.1 (Chen et al. 2008; Ni et al. 2011), gFL08.1
(Zhang et al. 2012), gFL12.1 (Zhang et al. 2012),
qFL17.1 (Zhang et al. 2012), qFL19.1 (Zhang et al.
2012),qFL24.1 (Zhang et al. 2012), qgFMO07.1 (Ni et al.
2011; Zhang et al. 2012), gFMO08.1 (Ni et al. 2011),
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qFM17.1 (Zhang et al. 2012), qFM24.1 (Zhang et al.
2012), gFS07.1 (Chen et al. 2008; Ni et al. 2011;
Zhang et al. 2012), qFS14.1 (Ni et al. 2011), qFS23.1
(Zhang et al. 2012), qFUO07.1 (Zhang et al. 2012) and
qFU24.1 (Zhang et al. 2012). The QTL identified
across multiple environments and populations
revealed that they were important for fiber quality
traits, even though some of them were largely affected
by environmental factors.

Favorable QTL allele origin

In the present study, although the two parents only had
significant difference in fiber strength, there are 22
favorable alleles originated from CCRI 35 and 37
favorable alleles originated from Yumian 1. Mean-
while, cultivar Yumian 1 with high fiber strength had
more favorable fiber strength alleles than cultivar
CCRI 35 with low fiber strength. The same results were
also found in the previous studies (Zhang et al. 2009;
Sun et al. 2012; Zhang et al. 2012; Wang et al. 2013).
Additionally, favorable alleles for fiber elongation and
micronaire were also detected in the populations
developed from the parents that didn’t have significant
difference in these traits (Shen et al. 2005; Sun et al.
2012). These results confirmed that different cultivars
comprised of different favorable alleles for the same
traits at different position on the genome.

QTL-rich regions

The phenomenon of QTL-rich regions for at least three
fiber traits was observed on Chr0O7, ChrO8, Chrl7,
Chr19 and Chr24, and the similar result was also
reported in the previous studies (Paterson et al. 2003;
Zhang et al. 2009; Sun et al. 2012; Zhang et al. 2012;
Yu et al. 2013). These regions were also near or within
the QTL hotspots (Rong et al. 2007; Said et al.
2013).The recent study found that large numbers of
coordinately regulated genes existed near ‘hotspots’
for cotton fiber QTL (Paterson et al. 2012), and this
discovery seems to imply that the QTL-rich regions
maybe result from the closely-linked alleles. How-
ever, we couldn’t exclude the possibility that these
QTL-rich regions are contributed by pleiotropic
alleles, especially for those QTL with overlapping
intervals to date.

In conclusion, the genetic map constructed in the
present study is the most detailed upland cotton
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intraspecific map based on SSR markers to date. It
generally reveals the upland cotton genome structure
and could be used to construct detailed consensus map
or as reference genetic map for tetraploid cotton
genome assembly. The large number of QTL detected
and their distribution on entire genome indicated that
regulation of cotton fiber quality traits were compli-
cated with genetic and environmental factors. Stable
QTL, especially the qFS07.1 and qFS14.1, reflect
some important and favorable alleles shaping fiber
strength, and they could be the candidate alleles for
MAS breeding projects as well as for gene function
research to reveal the molecular regulation mechanism
of fiber strength.
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