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Abstract Quantitative trait locus (QTL) mapping
lays the foundation for marker-assisted selection
(MAS) for lint yield and fiber quality in cotton
(Gossypium hirsutum). Boll-related traits affect yield
and fiber quality, but few studies have focused on boll-
related traits. Here, we detected QTLs related to cotton
boll, yield and fiber quality traits using intraspecific F,
and F,.; populations from the cross AQ x 08-10604.
A total of 91 QTLs for 17 traits related to boll, yield
and fiber quality in the F, and F,.; populations were
mapped, including 37 significant QTLs. Six pairs of
common QTLs were detected, including two pairs for
boll coat weight (BCW) in the same or similar
positions on Chr. A10 and DI, two pairs for boll
length (BL) in similar positions on Chr. A10 and A13,
with a higher percentage of phenotype variation and
two pairs for boll diameter (BD) in similar positions on
Chr. A10 and D1. These results suggest that the traits
BCW, BL and BD have high levels of stability. Five
QTL clusters for the same or different traits were also
identified on Chr. A10 (2), A13, D1 and D5. We also
detected 64 epistatic QTLs for boll- and yield-related
traits that play important roles in genetic variation.
Correlation analysis revealed significant positive
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correlations between seed yield and boll number per
plant and between boll weight and BCW, BL and BD.
The results of this study enhance our understanding of
the genetic basis of boll-related traits and will enable
further MAS of upland cotton.

Keywords Boll weight - Epistatic QTL -
Fiber quality - Major QTL - Upland cotton

Introduction

Cotton is one of the most important economic crops
worldwide. Gossypium hirsutum is a tetraploid spe-
cies, accounting for 95 % of the world cotton yield.
The challenge facing cotton breeders is how to meet
the increasing demands of the textile industry. Due to
the negative genetic correlation between fiber quality
and lint yield, performing conventional breeding
procedures to further improve fiber quality while
simultaneously emphasizing yield has become
increasingly difficult. The development of molecular
markers has made it possible for crop breeders to
employ rapid, precise alternative approaches to con-
ventional selection schemes for improving both eco-
nomic and agronomic traits of crops (Tanksley and
Hewitt 1988).

Genetic linkage maps lay the foundation for
exploiting quantitative trait loci (QTLs) conferring
yield-, fiber quality- and boll-related traits in cotton.
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Since the first genetic map was constructed by
Reinisch et al. (1994) using an interspecific cross of
G. hirsutum x G. barbadense, an increasing number
of interspecific genetic maps have been constructed
throughout the world (Guo et al. 2007; Lacape et al.
2003; Rong et al. 2004; Yu et al. 2011). In addition,
many QTLs for lint yield and fiber quality traits have
been mapped (Chee et al. 2005; He et al. 2005, 2007,
Jiang et al. 1998; Lacape et al. 2010; Mei et al. 2004;
Ren et al. 2002; Rong et al. 2007). Numerous genetic
studies have shown that both cotton yield traits and
fiber quality traits are quantitative traits that are
controlled by multiple minor genes, and their pheno-
types are affected by hereditary and environmental
factors. However, the current interspecific maps and
mapped QTLs have very limited use in conventional
cotton breeding.

Shappley et al. (1996) first successfully constructed
an intraspecific genetic linkage map with molecular
markers in upland cotton. Subsequently, several
intraspecific genetic linkage maps were constructed
for G. hirsutum (Lin et al. 2009; Ulloa and Meredith
2000; Ulloa et al. 2002, 2005; Zhang et al. 2005,
2009), which contain 73-604 loci. Using these maps,
the precise locations of many QTLs have been
determined (Chen et al. 2009; Guo et al. 2006; Li
et al. 2014; Liu et al. 2012; Ning et al. 2014; Paterson
et al. 2003; Qin et al. 2008, 2009; Shao et al. 2014,
Shen et al. 2005, 2007; Sun et al. 2012; Ulloa and
Meredith 2000; Ulloa et al. 2005; Wang et al. 2006,
2007; Wu et al. 2009; Zhang et al. 2005, 2009, 2010,
2012a, b). For fiber quality, for example, Qin et al.
(2009) discovered eight QTLs for fiber strength (FS),
micronaire (MIC) and fiber elongation (FE) simulta-
neously in two populations. Shen et al. (2005)
identified 39 QTLs for fiber quality, including 11
QTLs for FL, 10 for FS, nine for MIC and nine for FE.
Zhang et al. (2009) detected 13 QTLs for fiber quality
and mapped the QTLs on their corresponding chro-
mosomes, including four for fiber length (FL), two for
FS, two for MIC, three for fiber length uniformity (FU)
and two for FE, respectively. Zhang et al. (2012a)
identified 63 QTLs affecting fiber quality, including
11 for FE, 16 for FL, nine for MIC, 10 for FS and 17
for FU, explaining 8.1-55.8 % of the total phenotypic
variance. Using three populations, Shao et al. (2014)
detected 77 QTLs, including 19 for FL, 14 for FU, 17
for MIC, 10 for FE and 17 for FS. Sun et al. (2012)
identified 50 QTLs for fiber quality, including 10 for
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FS, 10 for FL, 10 for MIC, eight for FU and 12 for FE.
For cotton yield traits, Guo et al. (2006) mapped three
QTLs for lint percentage (LP) on the AO3 linkage
group and chromosome 6. Shen et al. (2007) identified
five QTLs for boll weight (BW), six for LP, five for
seed index (SI), five for boll number per plant (BN),
one for seed cotton yield and four for lint yield (LY),
respectively. Zhang et al. (2010) detected seven QTLs
for five yield traits, including one for BN, two for BW,
one for LP, one for SY and two for LY. Ning et al.
(2014) discovered 13 QTLs for SY, nine for LP, 12 for
BW and five for SI. These studies have demonstrated
that many cotton yield traits are closely related to each
other and the corresponding genes may be linked to
produce multiple effects on final traits (Mauricio
2001). Since cotton fiber quality is controlled by
multiple genes, which are vulnerable to environmental
effects, progress to simultaneously improve cotton
yield and fiber quality traits using conventional
breeding methods has been slow. To date, several
hundred QTLs related to fiber quality traits have been
mapped, and more new QTLs are still being identified.
However, the lower variation present in intraspecific
populations versus interspecific populations has lim-
ited the development of genetic linkage maps, and the
resulting lower-density genetic linkage maps still fail
to meet the needs of QTL-assisted crop breeding.

In addition, expression analysis of genes related to
cotton fiber development at different stages and in
different tissues has shown that this process is
regulated in a highly complicated manner involving
numerous genes (Taliercio and Boykin 2007; Xu et al.
2008; Al-Ghazi et al. 2009; Paterson et al. 2012),
which also suggests that more QTLs should be
identified in populations derived from crosses between
cotton cultivars with wide genetic backgrounds (Shao
et al. 2014). Meanwhile, epistasis, the interaction
between alleles from two to more loci, may play an
important role in evolutionary and quantitative vari-
ation in crops (Lou et al. 2009; Malmberg et al. 2005;
Wang et al. 2010; Xing et al. 2002; Xu and Jia 2007,
Xu et al. 2009; Yu et al. 1997; Zhang et al. 2001;
Zhang et al. 2012a). QTL mapping is increasingly
used to explore the role of epistasis in the genetic basis
of complex quantitative traits (Li et al. 2009; Mohan
et al. 2009). In cotton, QTL mapping analysis of
epistatic effects has only been performed to examine a
few plant architectural traits in intraspecific popula-
tions (Wang et al. 2006; Li et al. 2014). Wang et al.
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(2006) identified three epistatic QTLs for plant height
(PH), three for fruit branch length (FBL) and three for
fruit branch number (FBN). Li et al. (2014) detected a
total of 54 pairs of epistatic QTLs (E-QTLs) for ten
plant architecture traits, which exhibit additive-by-
additive (AA), additive-by-dominant (AD), dominant-
by-additive (DA) and dominant-by-dominant (DD)
interactions, including five for PH, seven for FBL,
eight for FBN and so on.

It is well known that the boll is one of the most
important productive organs of cotton, and boll size
and boll number are two important yield components;
boll shape also affects fiber quality. For instance, Tang
and Xiao (2014) recently showed that boll length
makes the largest contribution to the largest proportion
of phenotypic, additive and dominance variances for
fiber length, while boll width makes the largest
contribution to phenotypic and additive variances
and the second largest contribution to dominance-by-
environment interaction variance for micronaire.
Ashraf and Ahmad (2000) suggested that boll length
plays an important role in cotton breeding. However,
few such studies have focused on boll-related traits
due to a lack of proper QTL mapping varieties.

In the current study, two extremely distinctive
upland cotton lines were crossed to construct F, and
F,.; populations for QTL mapping. The paternal
parent, 08-10604, a highly inbred line from a cross
between G. hirsutum race yucatanense (directly
introduced from Mexico) and G. hirsutum cv Sumian
8, was developed by our institute and it possesses
extremely low boll weight (<2 g), many bolls per
plant and low fiber quality (short fiber length, low fiber
strength and coarse fibers), while the maternal parent,
AQ, exhibits high boll weight (>6 g), fewer bolls per
plant and superior fiber quality (high fiber strength and
fine fibers). Here, we investigated 17 traits in cotton.
Seven boll- and five yield-related traits of the two
parents, F; population, F, individuals and F,.; families
were investigated at maturity, except for the first and
last plant of each row. Five fiber quality traits were
also investigated in the F, and F,.; populations. The
boll-related traits included boll length (BL), boll
diameter (BD), boll coat weight (BCW), locule
number per boll (BLN), BW, seed number per boll
(BSN), lint weight per boll (BLW). The yield-related
traits included SI, LP, SY, LY and BN. The fiber
quality traits included FL, FS, MIC, FE and FU. Boll
length (BL) represents the longest part of a cotton boll

from top to bottom, while BD is measured at the
widest part of a cotton boll. The objectives of the
present study were to (1) identify new QTLs with
major effects on the 17 traits and QTLs with epistatic
effects on the 12 boll- and yield-related traits, (2)
analyze the common QTLs for boll-related traits and
(3) summarize the QTL clusters for boll-related traits.
This study provides a theoretical basis for genetic
structure analysis and marker-assisted selection for
high yield in cotton.

Materials and methods
Materials

Two upland cottons with significant differences in
boll-related traits were used to develop F, and F,.;
populations. The female parent was AQ (G. hirsutum),
which has superior characters such as tall plants and
large (but few) bolls. The male parent was 08-10604, a
highly inbred line from a cross between G. hirsutum
race yucatanense (directly introduced from Mexico)
and G. hirsutum cv Sumian 8, which was then
backcrossed with G. hirsutum acc. Tai8033. In 2011,
330 F, individuals were planted and self-pollinated.
The resulting F,.5 families were planted in 2012.

Methods

All materials were randomly planted in Jiangpu
Breeding Station of Nanjing Agricultural University
(Nanjing, China). The plots were 5 m long and 0.8 m
apart, with a plant spacing of 40 cm. A total of 285 F, 3
family lines, along with Py, P, and F;, were randomly
planted, with two replicates in a single-row plot. The
field management measures essentially followed nor-
mal agricultural practices.

Boll traits including BL and BD were measured at
maturity using a digital caliper (Lugong, Shanghai
Jiuliang Hardware Company, Shanghai, China). Fiber
samples were collected from bolls at the internal
middle parts of plants. F, individuals and F,.; family
lines in the middle of each row were tagged for
scoring, harvested and sent to the Cotton Quality
Supervision, Inspection and Testing Center of the
Ministry of Agriculture, China for tests of FL (cm), FS
(cN/tex), MIC, FU and FE using an Uster HVI 900.
The BCW and BW were measured and the BLN was
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Table 1 Basic information Chr. LGs Markers Average Genetic Segregation Number Number of
about each chromosome ) distance distance loci of QTLs significant
and the number of QTLs in (cM) (cM) QTLs
the SSR linkage map
A2 1 4 2.62 7.87 0 0 0
A3 1 18 5.93 100.83 8 6 2
AS 1 6 7.06 35.30 4 3 1
A6 1 4 13.35 40.04 0 3 3
A9 2 22 8.40 173.10 1 5 1
Al0 2 21 5.78 115.53 2 17 8
Al2 2 15 5.68 79.45 0 4 0
Al3 1 21 7.02 140.37 2 10 2
At 11 111 6.24 692.48 17 48 17
D1 2 23 8.80 184.82 3 17 12
D5 1 29 5.75 160.92 5 16 9
D6 1 2 21.89 21.89 0 0 0
D7 2 16 27.00 105.03 4 1 0
D8 3 16 7.38 110.65 2 1 0
D9 2 5 4.08 16.32 0 1 0
D10 1 10 6.58 59.22 0 2 1
D13 1 5 14.98 59.91 4 2 0
Dt 13 106 6.78 718.76 18 40 22
LGO1 1 2 15.46 15.46 1 0 0
LG02 1 2 15.61 15.61 0 2 0
LGO03 1 5 17.10 68.39 1 1 0
LG04 1 4 7.08 21.25 0 0 0
Total 28 230 6.66 1531.94 37 91 39

counted in bolls from the internal, middle parts of the
plants for 330 F, individuals, and a total of 285 F,.;
family lines, along with Py, P, and F, in the middle of
each row, were tagged for scoring and harvesting.

Genomic DNA was extracted from young leaves of
the 330 F, individuals, F; and two parents using the
improved CTAB method (Paterson et al. 1993). A total
of 8,200 simple sequence repeat (SSR) primer pairs
were chosen according to several cotton genetic maps
(Lacape et al. 2003; Rong et al. 2004; Guo et al. 2007;
Yu et al. 2007) and used to screen the parents for
polymorphisms. These SSR primer sequences are
available at http://www.cottonmarker.org. SSR-PCR
amplifications were performed using a Programmable
Thermal Controller (MJ Research), and PCR product
electrophoresis and silver staining were conducted as
described by Zhang et al. (2000, 2002).

JoinMap 3.0 (Van Ooijen 2001) was used to
construct a complete linkage map. A logarithm of
odds (LOD) threshold of 4.0 and a 50 cM maximal
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distance were used to determine all linkage groups.
The major QTLs and their effects were determined
with WinQTLCart2.5 software (Wang et al. 2005)
using the composite interval mapping (CIM) method
(Zeng 1994). QTLs with LOD values between 2.0 and
3.0 were defined as suggestive QTLs (Lander and
Kruglyak 1995), and QTLs with LOD values no less
than the threshold value (calculated by a permutation
test with 1,000 repeats) were defined as significant
QTLs (Churchill and Doerge 1994). QTLs for the
same trait across different generations were defined as
“common” QTLs when their confidence intervals
overlapped. Epistatic QTLs (E-QTLs) were also
detected using the mapping of additive, dominance
and digenic epistasis genes in biparental populations
(BIP) functionality of the inclusive composite interval
mapping (ICIM) software IciMapping ver. 3.2 (Wang
et al. 2012), The ICIM-EPI mapping method in BIP
functionality has high detection efficiency and is used
specifically for estimating digenic epistasis genes in
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biparental populations, even if the effect of a single
QTL is minor. The probability in stepwise regression
was set at 0.0001 and the scanning step was 5 cM.
A LOD threshold score of 5.0 was used to declare
significant E-QTLs.

The name of each QTL includes a “q” followed by
an abbreviation of the trait name, the population type,
the chromosome or linkage group and a serial number
to distinguish different QTLs of the same trait on the
same chromosome. Linkage groups were assigned to
chromosomes based on anchored markers in the dense
linkage map (Han et al. 2004; Guo et al. 2007).
Linkage groups that could not be assigned to any
chromosome were designated as “LGXX” (where LG
indicates linkage group and XX is the serial number).

Results
Marker analysis and map construction

We chose 8,200 SSR markers to screen for polymor-
phisms between the two parents, AQ and 08-10604.
Approximately 3.22 % (264/8,200) of the SSR primers
showed polymorphisms. These polymorphic primers
were then used to screen F, individuals, and 284 loci
were obtained, including 155 codominant loci (1:2:1)
and 129 dominant loci (1:3 or 3:1). There were 45 loci
(17.31 %) that showed segregation distortion, and 37
loci were mapped to chromosomes or linkage groups.
A total of 230 loci were successfully assigned to 28
linkage groups on the 16 chromosomes of the cotton
genome using JoinMap3.0 software at a LOD >4. The
total length of the map was 1,531.94 cM, with an
average inter-marker distance of 6.66 cM. The aver-
age distance of adjacent markers was 6.24 cM in the
A-subgenome, covering 692.48 cM, and 6.78 cM in
the D-subgenome, covering 718.76 cM (Table 1).

Trait performance

A T test showed that the boll-, yield- and fiber quality-
related traits were significantly different between the
two parents, except for the lint percentage trait
(Table 2). Among the 17 traits examined, the values
of 14 traits were higher in AQ than in 08-10604,
except for BN, FE and MIC. There were significant or
highly significant differences in traits between AQ and

08-10604, except for LY, suggesting that the parents
used in this study were appropriate for searching for
genes responsible for boll-related and fiber traits. The
variation coefficients of traits such as BLN, BL and
BD were lower, indicating that these traits were
relatively stable.

Correlations (Tables 3, 4) between boll-related
traits and the other traits in the F, and F,.3 populations
were analyzed using SPSS20.0 software. In the F,.3
population (Table 4), significant positive correlations
were observed between BD, BL, BCW, BLN and BW
(0.613%*, 0.447**, 0.725%*, 0.431**), while signifi-
cant negative correlations existed between BD,
BL, BCW, BLN and BN (—0.232%*, —0.202%%,
—0.230**, —0.203**) and between BW and BN
(—0.261**). Furthermore, there were significant
positive correlations between FL, FS and BL
(0.162%*, 0.241%*), while significant negative corre-
lations were observed between BD, BL, BCW and
MIC (—0.220*%*, —0.208**, —0.224**). Boll-related
traits not only contribute significantly to cotton yield,
but they also contribute to fiber quality traits. In the F,
population, BLN had the highest contribution
(12.63 %), followed by BL, BW and BCW. However,
in F,.3, BL had the highest contribution (15.93 %),
followed by LP, BSN and BCW (Table 5). In the F,
and F,.3 populations, BW had notable positive corre-
lations with the traits BCW, BL, SI, BLN and BD,
while BW and BLW also had considerable positive
correlations. Since it is difficult to accurately deduce
the relationships between characters through correla-
tion analysis, BW-related traits should be further
analyzed using regression equations (Table 6).
According to the analysis of regression equations
and path coefficients, BCW had the highest positive
contribution to BW. In the F, population, BW
increased by 0.426 g, which was accompanied by a
1 g increase in BCW. BW increased by 0.230 g as a
result of a 1 mm increase in BD. BW increased by
0.136 g, while the BLN increased by 1. However, BW
decreased by 0.061 g while Sl increased by 1 g. In the
F,.; population, BW increased by 0.369 g, which was
accompanied by an increase in BCW of 1 g. BW
increased by 0.208 g as a result of a | mm increase in
BD. BW increased by 0.180 g while the BLN
increased by 1. Unlike the F, population, in the F,.;
population, BW increased by 0.197 g while SI
increased by 1 g.
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Table 6 Regression equations and path coefficients of yield-component traits related to boll weight

Generation Regression equations Path coefficient

Px,;—y Px,—y Px;—y Px4—y
F, Y = —2.743 + 0.085X; + 1.021X, + 0.307 X5 — 0.036X, 0.230 0.426 0.136 —0.061
Fo.3 Y = —0.959 + 0.049X; + 0.667X, + 0.383X5 + 0.087X4 0.208 0.369 0.180 0.197

Y boll weight (g), X; boll diameter (mm), X, boll coat weight (g), X3 locule number per boll, X, seed-index (g)

QTLs for boll-, fiber quality- and yield-related
traits

We performed QTL analysis using CIM via WinQTL-
Cart2.5. Many QTLs related to almost all traits were
detected in the F, and F,.3 populations. A total of
91 M-QTLs were detected in the F, and F,.3 popula-
tions for 17 traits using CIM, including 37 significant
QTLs with LOD values greater than or equal to the
threshold value calculated by a permutation test with
1,000 repeats. We detected 18 and 19 significant QTLs
in the F, and F,3, respectively (Fig. 1; Table 5).
Moreover, six pairs of common QTLs and five QTL
clusters affecting boll-related traits were found in both
populations (Table 7). A total of 64 pairs of E-QTLs
exhibiting additive-by-additive (AA), additive-by-
dominant (AD), dominant-by-additive (DA) and dom-
inant-by-dominant (DD) interactions were detected
for all measured traits in both populations (Table 8),
namely, 39 for boll- and 25 for yield-related traits, but
no interaction for fiber quality traits was detected. The
phenotype variation (PV) explained by all E-QTLs
ranged from 7.852 to 34.251 %.

Boll-related traits

A total of 58 M-QTLs were detected in the F, and F,.3
populations for seven boll-related traits using CIM,
including 30 significant QTLs with LOD values
greater than or equal to the threshold value calculated
by a permutation test with 1,000 repeats. We detected
17 and 13 significant QTLs in the F, and F,.,
respectively (Fig. 1; Table 5). Only common QTLs
and QTL clusters for boll-related traits were found in
both populations (Table 7).

Boll coat weight

Thirteen M-QTLs (nine significant QTLs) were
detected in the F, and F,.; populations. In the F,

@ Springer

population, among seven M-QTLs affecting BCW,
five significant QTLs were detected, including gBCW-
F»-Al0-1, gqBCW-F5-Al3-1, gBCW-F,-A13-2, gBCW-
F»>-DI-1 and ¢BCW-F,-DI-2, which explained
6.40-9.51 % of PV, with LOD scores of 4.46-7.34.
In the F,.; population, among six M-QTLs, four
significant QTLs were detected, namely, gBCW-F5.;-
Al0-1, gBCW-F,.3-A10-2, gBCW-F,.3-DI-1 and
gBCW-F;.3-D1-2, which explained 7.07-13.72 % of
PV, with LOD scores of 5.05-6.27. The favorable
alleles of all 13 M-QTLs originated from AQ. Among
the 13 QTLs, two pairs of QTLs for BCW, gBCW-
F5.3-A10-2 and gBCW-F»-A10-1 and gBCW-F,.3-D1-
1 and gBCW-F,-D1-1, were found on Chr. A10 and
Chr. D1, respectively, in both populations at the same
(50.01 cM) or similar positions (52.61, 53.61 cM) in
the same marker interval. These two pairs of common
QTLs contributed positive additive effects from AQ.
In addition, seven pairs of E-QTLs for BCW were also
detected, which are distributed on nine chromosomes
or linkage groups and displayed —0.082 to 0.090 AA
effects, —0.224 to 0.428 AD effects, —0.218 to 0.210
DA effects and —0.767 to 0.210 DD effects, explain-
ing 14.745-33.718 % of PV.

Boll length

Twelve M-QTLs (nine significant QTLs) were
detected in the F, and F,.3 populations. In the F,
population, among seven M-QTLs affecting boll
length, six significant QTLs were detected, namely,
gBL-F5>-A10-1, gBL-F»-A10-2, gBL-F,-A6-1, gBL-F»-
D5-1, ¢gBL-F»-D5-2 and ¢BL-F>-D5-3, which
explained 3.68-9.91 % of PV, with LOD scores of
3.89-11.74. In the F,3 population, among five
M-QTLs, three significant QTLs were detected,
namely, gBL-F,.5-A10-1, qBL-F;.3-A10-2 and ¢gBL-
F,.5-D1I-1, which explained 3.12-15.93 % of PV, with
LOD scores of 4.41-8.44. Among of 12 M-QTLs from
AQ, two common pairs of QTLs, including gBL-F.;-
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Fig. 1 The locations of 91 M-QTLs on the linkage map
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A10-1 and gBL-F>-A10-2 (in the same marker interval,
NAU1297-290-NAU1297-400) and gBL-F,.3-Al13-1
and ¢gBL-F,-Al3-1 (in the same marker interval,
NAU6699-400-NAU5110-490), were detected in both
populations. Meanwhile, six pairs of E-QTLs were
detected. These E-QTLs, which are distributed on nine
chromosomes or linkage groups, displayed —0.670 to
1.556 AA effects, —0.874 to 3.104 AD effects, —2.230
to 2.256 DA effects and —1.608 to 4.876 DD effects,
accounting for 7.852-27.413 % of PV.

Boll diameter

Ten M-QTLs (six significant QTLs) were detected in
the F, and F,.3 populations. In the F, population,
among five M-QTLs affecting BD, three significant
QTLs were detected, namely, gBD-F,-A3-2, gBD-F -
DI-1 and ¢BD-F,-DI-2, which explained
4.29-6.94 % of PV, with LOD scores of 4.88—8.43.
In the F,.; population, among five M-QTLs, three
significant QTLs were detected, namely, gBD-F5.3-
A5-1, gBD-F;,.3-DI1-1 and ¢BD-F,.;-DI-2, which
explained 4.33-7.15 % of PV, with LOD scores of
3.76-5.06. Among the 10 M-QTLs from AQ, two
common pairs of QTLs, gBD-F,.;-A10-2 and gBD-F»-
A10-1 (in very close positions, 105.51 and 101.51 cM,
respectively) and gBD-F,.3-DI1-1 and gBD-F>-DI-1
(in the same marker interval, NAU6539-400-
MNL2921-180), were detected in both populations.
In addition, five pairs of E-QTLs, which are distrib-
uted on eight chromosomes or linkage groups,
displayed —0.630 to 0.547 AA effects, —0.257 to
2.343 AD effects, —1.400 to 1.284 DA effects and
—4.165 to 3.649 DD effects, accounting for
9.244-28.680 % of PV (Table 8).

Locule number per boll

Six M-QTLs (two significant QTLs) were detected in
the F, and F,.3 populations. Among three M-QTLs
affecting BLN, two significant QTLs were detected in
the F,.; population, namely, gBLN-F,.;-D5-1 and
gBLN-F;.3-D5-2, which explained 5.08 and 6.48 % of
PV, respectively, with LOD scores of 4.26 and 4.47,
originating from AQ. In the F, population, no
significant QTL for BLN was detected, although three
M-QTLs, gBLN-F,-D10-1, gBLN-F,-D1-1 and gBLN-
F>-DI-2, were detected, which explained 3.81-
12.63 % of PV, with LOD scores of 2.58-3.26. Four
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M-QTLs contributed positive effects from AQ while
the other two M-QTLs (¢gBLN-F,-D10-1 and gBLN-
F,-D10-2) contributed positive additive effects from
08-10604. Moreover, five pairs of E-QTLs for BLN
were detected. These E-QTLs, which are distributed
on six chromosomes or linkage groups, displayed
—0.104 to 0.067 AA effects, —0.108 to 0.685 AD
effects, —0.108 to 0.685 DA effects and —1.629 to
1.246 DD effects, explaining 15.359-31.953 % of PV.

Lint weight per boll

Five M-QTLs (two significant QTLs) were detected in
the F, and F,.; populations. In the F, population, of the
two M-QTLs, one significant QTL was detected,
gBLW-F5>-A3-1, which explained 4.13 % of PV, with a
LOD score of 3.38. In the F,.3 population, among the
three M-QTLs, one significant QTL was detected,
qgBLW-F5.3-D5-1, which explained 11.65 % of PV,
with a LOD score of 3.75. Five M-QTLs contributed
positive effects from AQ while the other M-QTL
(gBLW-F,-A3-1) contributed positive additive effects
from 08-10604. Two pairs of E-QTLs for BLW,
including interactions between two loci on Chr. A10
and Chr. A9 and between two loci on Chr. A10 and
Chr. D1, were also detected in the F, population.
These E-QTL pairs demonstrated 0.133 and —0.076
AA effects, —0.197 and 0.390 AD effects, 0.121 and
—0.403 DA effects and —0.268 and 0.603 DD effects,
explaining 26.070 and 29.861 % of PV, respectively.

Boll weight

Nine M-QTLs (three significant QTLs) were detected
in the F, and F,.; populations. Among seven M-QTLs,
three significant QTLs were detected in the F,
population, gBW-F>-A10-1, gBW-F»-D5-1 and gBW-
F,-D5-2, which explained 3.37-9.86 % of PV, with
LOD scores of 4.09-5.44. In the F,.3 population, no
significant QTL was detected for this trait, although
two M-QTLs, gBW-F,.;-A10-1 and gBW-F;.3-D13-1,
were detected, which explained 7.19 and 7.17 % of
PV, with LOD scores of 2.70 and 3.05, respectively.
Eight M-QTLs had alleles with positive effects from
AQ while the other M-QTL (¢gBW-F»-A9-1) contrib-
uted positive additive effect from 08-10604. Six pairs
of E-QTLs for BW were also detected. These E-QTLs,
which are distributed on six chromosomes or linkage
groups, displayed —0.249 to 0.288 AA effects, —0.886
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to 0.321 AD effects, —0.571 to 0.877 DA effects and
—0.814 to 0.694 DD effects, explaining 13.849-
33.539 % of PV.

Seed number per boll

Three M-QTLs were detected in the F, and F,.3
populations. There were no significant QTLs for this
trait. One M-QTL, gBSN-F>-A3-1, was detected in the
F, population, which explained 6.50 % of PV, with a
LOD score of 3.19, originating from 08-10604. In the
F,.; population, two M-QTLs were detected, including
gBSN-F,.5-A10-1, with the favorable alleles originat-
ing from AQ, and gBSN-F,.3-A9-1, with the favorable
alleles originating from 08-10604, which explained
7.89 and 14.30 % of PV, with LOD scores of 2.56 and
3.64, respectively. Eight pairs of E-QTLs for BSN
were also found. These E-QTLs, which are distributed
on ten chromosomes or linkage groups, displayed
—2.321 to 2.074 AA effects, —1.989 to 6.707 AD
effects, —1.296 to 4.359 DA effects and —10.173 to
3.793 DD effects, explaining 11.101-34.351 % of PV.

Meanwhile, QTL clusters of boll-related traits were
also observed in this study. A total of five QTL clusters
of boll-related traits were found on Chr. A10, A13, D1
and D5 (Table 7). For example, Chr. A10 contains two
QTL clusters, i.e., A10-cluster-1 at 35.81-77.71 cM
and A10-cluster-1 at 86.51-105.51 cM, carrying 12
and four QTLs, respectively. Chr. A13 contains one
QTL cluster carrying four QTLs, i.e., Al3-cluster at
48.51-58.21 cM. Chromosome D1 contains one QTL
cluster carrying 11 QTLs, i.e., DIl-cluster at
51.61-97.01 cM. Finally, Chr. D5 contains one QTL
cluster carrying ten QTLs, namely, D5-cluster at
96.91-150.01 cM. These results suggest that genes
controlling boll-related traits may be linked or may
exhibit pleiotropy.

Fiber quality-related traits

CIM revealed a total of 22 M-QTLs in the F, and F,.3
populations for five traits, including four significant
QTLs with LOD values greater than or equal to the
threshold value calculated by a permutation test with
1,000 repeats; these QTLs were only detected in the
F,.; (Fig. 1; Table 5).

Fiber elongation

Five M-QTLs for FE were detected in the F, and F, 5
populations. There were no significant QTLs for this
trait. Three M-QTLs were detected in the F, popula-
tion, including gqFE-F,-Al10-1, qFE-F,-AI2-1 and
qFE-F,-D5-1, which explained 3.08-5.27 % of PV,
with LOD scores of 2.55-3.37; the positive additive
effects originated from AQ, except for gFE-F»-D5-1.
In the F,.3 population, two M-QTLs were detected,
qFE-F,.3-Al13-1 and ¢FE-F,.3-LG02-1, which
explained 4.90 and 8.49 % of PV, respectively, with
LOD scores of 2.81-3.48; the favorable alleles of two
M-QTLs originated from 08-10604.

Fiber length

Four M-QTLs (one significant QTL) were detected in
the F, and F, .3 populations. Among three M-QTLs, one
significant QTL, gFL-F,.3-A6-1, was detected in the
F,.; population, which explained 10.89 % of PV, with
aLOD score of 5.26. In the F, population, one M-QTL,
qFL-F>-A13-1, was detected, which explained 3.96 %
of PV, with a LOD score of 2.86. The favorable alleles
of three M-QTLs originated from 08-10604, except for
qFL-F,.;-LG03-1, where it originated from AQ.

Fiber strength

Five M-QTLs (one significant QTL) were detected in
the F, and F,.; populations. Among three M-QTLs,
one significant QTL, gFS-F,.3-DI1-1, was detected in
the F,.;population, which explained 3.78 % of PV,
with a LOD score of 4.09. In the F, population, two
M-QTLs, gFS-F>-A12-1 and gFS-F,-D5-1, were
detected, which explained 4.31-7.36 % of PV, with
a LOD score of 2.58-4.96. Three M-QTLs had alleles
with positive effects from AQ while the other two
M-QTLs (gFS-F5.3-D1-2 and gFS-F>-Al2-1) contrib-
uted positive additive effects from 08-10604.

Fiber uniformity
Three M-QTLs were detected in the F, and F,.3
populations. There were no significant QTLs for this

trait. One QTL, gFU-F,-A12-1, was detected in the F,
population, which explained 4.53 % of PV, with a
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Table 7 Distribution of clusters of boll-related traits

Cluster name

Approximate
position on
chromosome (cM)

Number of QTLs

Name of QTLs

Al0

A10-cluster-1 35.81-77.71 12
Al0

A10-cluster-2 86.51-105.51 4
Al3

Al3-cluster 48.51-58.21 4
D1

DI1-cluster 51.61-97.01 11
D5

D5-cluster 96.91-150.01 10

gqBCW-F,.5-A10-1
gqBCW-F,.5-A10-2
gqBCW-F,.;-A10-3
qBCW-F,-A10-1

GBLN-F,.3-A10-1
gqBW-F,-A10-1
gBD-F,.3-A10-2
gBD-F»-A10-1

qBCW-Fy-A13-1
qBCW-Fy-A13-2
qBW-F»-Al13-1
qBW-F»-A13-2

gqBCW-F,.3-D1-1
gqBCW-F,.;-D1-2
qBCW-F,-Dl-1
gqBCW-F,-D1-2

gqBCW-F,-D5-1
gBD-F,-D5-1
gBL-F,-D5-1
gBL-F,-D5-2

gBD-F,.5-A10-1
GBL-F.3-A10-1
qBL-F,.5-A10-2
gBL-F,-A10-1

qBD-F,.5-D1-1
qBD-F,.5-D1-2
gBD-F,-D1-1
qBD-F,-D1-2

gBL-F,-D5-3
GBLN-F,.;-D5-1
gBLN-F,.;-D5-2
qBLW-F,-D5-2

gBL-F»-A10-2
qBLW-F,.3-A10-1
gBSN-F,.5-A10-1
qBW-F,.3-A10-1

gBL-F,.3-D1-1
gBLN-F,-D1-1
gBLN-F,-D1-2

qBW-F,-D5-3
gqBW-F,-D5-4

LOD score of 2.62, originating from AQ. In the F;.;
population, two M-QTLs, gFU-F,.5-DI-1 and gFU-
F,.3-DI-2, were detected, which explained 6.52 and
3.43 % of PV, with LOD scores of 2.76 and 2.94,
respectively, originating from AQ.

Micronaire

Five M-QTLs (two significant QTLs) were detected in
the F, and F,.; populations. Among four M-QTLs, two
significant QTLs were detected in the F,.3 population,
including gMIC-F;.;-A9-1, which originated from
08-10604, and gMIC-F,.3-DI-1, which originated
from AQ, which explained 7.14 % and 11.3 % of
PV, respectively, with LOD scores of 3.59-5.22. In the
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F, population, one M-QTL, gMIC-F,-D7-1, was
detected, which explained 9.85 % of PV, with a
LOD score of 4.05, originating from AQ.

Yield-related traits

Eleven QTLs related to three yield-related traits were
detected in the F; and F,.5 populations, except for BN
and SY, using CIM, including three significant QTLs
with LOD values greater than or equal to the threshold
value calculated by a permutation test with 1,000
repeats, which were detected only in the F,.5 (Fig. 1;
Table 5). However, 25 pairs of E-QTLs exhibiting
AA, AD, DA and DD interactions were detected for
yield-related traits in both populations (Table 8).



137

Euphytica (2015) 203:121-144

et
69V ¥ ¥69°0 1LS°0— YTy 0— 6VT0—  ¥EES 011-9%TUD 061-S9201°oP 20971 0€C-T16ENVN 081-7L6TNVN La £ mo
€LLOT  6EL0— o £99°0— 1o S9T'S 002-STHCNVH 00S-L0ISNVN a 087-S66£NVN 0TCHOTALL 2% £ .mP
6€5°€E 98€°0— S8€°0 129°0— 7500—  80T'S 00T-12H1ING 0T€-TCI9NVYN €IV 0S1-12TIID 012-6€SONVH 387 Rt m_
€CT8l ¥I80— 990 12€°0 8870 1+8°C 001-9€€UD 002-9€LENVN 1a 009-00€2NVN SET-T9P1-uys (387 o
6v8'€l  6£5°0 €0v'0— 9rS0— 961°0 6Tr'S 0YT-¥18TNVYN 08€-92S01dP 1a 0ST-€9S€ING 08T-1162NVN 01V |
198'ST  ¥LTO LL8O 988°0— 610 PEl'L 01T Y1 INVN 0€1-968613> 3874 012-69S1INd 0S€-S€6TNVN 01V | Mg
SP8'8T  €88°GI—  10IT £69°€— PLIO LEV'L 002-9¢6NVYN  0ST-011-¥dSAr 6V 0ST-S¥SONVH 0S1-92SNVN [48% Rt
801°€E  19€6— SEI'TI—  #hPS— 09%°0 0188 081-126CININ 007-6£S9NVN a 007-S8LINVH  0001-LO6¥NVN sa Rt
099°'LT  16L°81—  €LS'L— €6L91—  10¥°0 9EY'L 00€-TTTALL 002-9%1UD 8a 081-1CISAVN 0SI-LPECTING sa £
899°LC  8TTLI—  1269— #0191 6SI'T—  610°L 00S-L9TTINVN 0ST-SE0SNVN £V 081-1C7ISNVN 0ST-LPECTING sa £
019°€e  8TFTI—  8€8°6— L6S— 181'0— 9508  OLI-¥0C-¥dSAr 0LT-988TNVN €1d 007-S8LINVH  0001-L06¥NVN sa £
€4S9C  0I18€l—  0I6'TI—  €0I'l— 806'0—  6LE'L 081-171SNVN 0ST-LYECTING ca 007-S8LINVH  0001-LO6¥VNVN sa £
1162l €08'1— SEST— 7T6— €9€°0 01%'9 0€T-L8T™ID O1-6LEUD 1091 09T-€97LNVN 007-S€8CNVH v B
LI9ET L6011 we'T— S79'6 618C 08€°S 0TT-L160TdP 009-61SENVN v 0€T-6C1INVH 00S-6116132 La |
126'LT  LOOPI €T6'C 8LY'6 LST°0 9er'S 0£T-89¥9NVN 099-0T8TNVN La 00%-SE8TNVH 0LE-6£79130 484 o Nd
0L0'9C  89T0— 1210 L61°0— €10 658°S 009-08LZNVH 002-0€19NVN 6V 012-69S 1IN 0S€-SE6TNVN 01V o
19867  €09°0 €0v'0— 06£°0 9L0'0—  6TF9 002-STHeNVH 00S-L0ISAVN 1a 0T1-9€TUD 012-69S 1IN 01V g Mg
069°0C  61¥0 $89°0 8700— 6£0°0 $90°S 00€-L6TENVH 0ST-L991INE 1a 00S-L9TTINVN 0ST-S€0SNVN £V Rt
6SE€ST L8F0— 1S0°0 #90°0 L¥00 S¥T'S 0€C-116€NVYN 081-7L6TNVN La 0rP-0STINVN 00L-L9TTNVN 3 £
8IE€T 9Tl 801°0— SSr'0— ¥0I'0—  #81°C 0€1-98LINE 081-7£85130 a 007-S8LINVH  0001-L06¥NVN sa B
G980 6T91— 9TT0 ¥T10— L60'0—  88T'S 0SC-96¥CNVH 001-6£SUD 6V 0¥C-€LTSNVN 002-290¥1D sa Bl
€56'1€  9L60 0v0'0— 061°0— L90°0 0509 002-STHCNVH 00S-L0ISNVN a 061-80€0TdP  0001-L661NVH 387 o NT1d
68L81  T91°¢€ 9280 vL8T— 0L9°0—  #90°S 061-111UD 002-¥962NVN 6V OLI-70T-ddSdrl 0LT-988CTNVN €1a £
S8L €T 1— €51°0 €6C'1 166°0 968°S 0ST-1€92NVN 002-1€92NVN 8a 0Z-S6101dP 0S1-$.89132 £V £
0L ¥81°0 €651 €601 90—  ¥I0S 00S-T6LOVN 00€-8L8TINE SV 0ST-8LI-¥dSAl  OLI-v0T-4dSHl €1a £
STOST  8¢8Y 0€TC— 818'1 7080 LIE9 Ov1-0£0FNVN 0ST-0€0YNVN €001 0TT-SEE9NVN 061-¥CIAL a |
98L°0C  809'1— P10~ Y01°€ G4 YOL'S 0vC-€112NVYN 0ST-6Y0LAVN 1a 002-€10SNAVN  0001-CIS9NVN o1a |
CIvLT  9L8Y 95T'C 850°¢€ 96¢'1 188°S 00€-1TTALL 00Z-9% 14D 8a 0YZ-S6¥9NVN 091-0¥STNVN ora o 1d
010°ST  £900— 7600 081°0 0800 £6€°G 0ST-€€PUD 0L1-902€NVN 9V 011-2807IN| 0TT-SEE9NVN a Rt
86L'8CT  ¥61°0— €01°0— ¥TT0— 180°0 010°S 00S-06¥NVN 0S1-269913> 6V 00S-L9TTNVN 0ST-SE0SNVN 3 Rt
€0¥'ST 6600 0610— 9z1°0— 0500 918°S 00S-T6LOAVN 00€-8L8TINE 3% 081-1CISNVN 0ST-LPECTING sa £
L8LOT  LO¥O— TIro 081°0— €00 €L09 0S€-976ING 0¥C-S6¥9NVN o1a 012-69S1INE 0S€-SE6TNVN 01v £
1679C  LTTO— 0120 8TY'0 SLO0 0Tr's 00L-L¥E9NVN 00€-L9€CNVH 9a 001-9€€UD 002-9€LENVN a B
SPLYL  9L5°0 wro— 0z€0 7800—  THF9 0€1-98LING 081-7£85130 a 00%-S8LINVH  0001-L06¥NVN ca o
8ILEE  LILO— 8170— 080°0— 0600 1919 00S-06¥NVN 0S1-7699135 6V 002-0€19NVN 001-CL9TING 6V Y mod
IYIRIA IIRIA
Sy INIRIA 1] zawosowoIy) Sy IDIRIAL 19T [QwosowoIy)
(%) AAd aa va av VvV  do1 o] [1007T  UONEISUSD ey,

suone[ndod y1oq ur pa1d9Iap sied paje[al-paIA pue [[0q 10J (sTLO-H) 190] 1en aaneinuenb oneysido jo sonsuejoerey) g dqe],



121-144

Euphytica (2015) 203

138

PIAIA U01109-PISs [§ XOPUI-PAas [§ ‘PIAIA ul] [7 ‘9Feuadrad jul| g7 ‘Iojouwelp [joq g ‘110q 1od
JIoquinu pads NS WS1om 1109 Mg ‘1109 1od ySrom jurf (79 “uerd 1od 1oquinu [joq NG ‘[10q Jod Joquinu 9[nd0o] A’7g ‘WIS [[0q 7g WS1om 1800 [[0q MO ‘STLO-H Jo dred € £q paurejdxe uonerrea oidKjouoyd 9 AL

KJoAnadsar ‘SuonorIaIuI JUBUTIOP-AQ-JURUIIOP PUE ANIPPe-LqQ-JURUIWIOP ‘JUBUTWOP-AQ-0ANIPPE ‘OANIPPe-Kq-0ATIPPE JO $109)J9 oIe gJ PUe vV ‘AV ‘VV

1€8°1c 1818 rEpl L1661—  9Iv'Tl—  T8TS 00S-SE0CNVN  0TT-10TENVN 8a 0TT-SECINVN 061-¥ZIAL 1a Rt |
69l OLEOT £00°€ LTLT 0S°11 PI1°S 0TC-10CENYN  00€-8€LCNVH el 00S-L911NVN 0ST-SE0SNVN eV Rt AS
789°TC  9LO'l °€T0— 800~ $S€0— 3% 0ST-LPITAVH  0S1-80STNVN 0V~ 00T-+0C-¥dSAl  0ST-8LI-¥dSAl cIa £
8699C  6C1'0— 9€9'0— 2160 90— 96¥°S 00€-€1SUD 0ST-€€4UD 9V 002-STFCNVH 00S-LOISNVN a £
6L981  L9L0— 96€°0— e1— 801°0— Sor'S 0677S6ENVN  00S-TLOTNVN 8 OLI-¥0T-¥dSAr 0LT-988CTNVN c1a £
€9'1T €LST LSTO— Ove0— €51°0 ¥26'S 002-790¥MID  0ST-#99ENVN ca 00Z-€10SNVN  0001-TIS9NVN ora £
796°€l  9¥T0 90T0— TLED 6¥S0— S0T'S 0ST-#S€UD  081-1TISNVN Sa  0001-L661NVH 009-00€2NVN €IV £
€6TLT  S6ST— 1€20— 6620 99¢°0 919°¢ 081-TSOENVN 0TH-LOLSISd 6V 0S€-976'ING 0¥C-S6¥9NVN o1a |
981'ST  199C— 76°0 9LS0— 0S+'0— €€9°G 061-SODNL 009-6LLOVN sa  0TT-v0T-ddSsdr 0SI-¥SEUD sa o IS
6S°€€  60STI— 8069 6e8TI—  86L'1— €TT6 0S1-0€0VNVN 006-7LYOVN €091 0£1-958613> 061-80€01dP €IV Rt |
WCIET  SPLYI ISL'T— PILT— PLE'T 8€8'C 00S-S€0ZNVN  0TT-10TENVYN 8 0ST-8LI-MASHAl  OLI-¥0T-¥dSAl c1a £
786'8C  6TT01 CrI—  86L'S 08¢~ 176’ 061-1TC-4dSAL 002-€0ANL 1a 001-912UD 081-126TININ 1a £
696'€C  S6¥'L— 6L8°6 0g6'1 6L8'1 ¥56°S 0¥1-22002°P  061-680YNVN v 009-00£2NVN SET-T9p1-uIys €IV £
6TF1E  69991—  STS6 8LI'TI—  08IC 68L°S 0ST-0116180  00T-600INYN 6V 009-S66£NVN 002-S66£NVN eV Bl
98G°0L  0L9'1— 6£T0— 010°¢— 676'9— 8IS 0¥C-9L61NVH 00S-C6LOAVN SV 0ST-2802NVN 0ST-89€€NVN o1y Bl A1
€LLOT 0200 #10°0 £70°0— 0€0°0— 0r0°S 011-9¥TUD 061-S9201°P 09T OLI-¥0T-AdSAl 0LT-988CNVN €1a o d1
wo'sT  S9I'v— #85°0— L8TO 0LT°0 18T 01T-LSOPAVN  01€-9969NVN 7001 009-S66€NVN 002-S66£NVN eV £
6 [ 6LY'0 LSTO— 0€9°0— 0LE'S 011-9¥2UD 061-S9201°P 20971 087-S66ENVN 0TCHOTALL eV £
089'8C  6¥9°€ ¥8T'1 L9V'1 070 099°S 0€T-6E7SNVN 002-089913> La 00S-L91TNVN 0SZ-SE0SNVN eV Bt |
8TV'ST 7060 00%' 1— 660C L¥S0 O¥'9 00L-LVE9NVN  00€-L9ETNVH 9a  0001-S99TNVN 0SI-1€92NVN 8a o
680°ST  186°0— 65¥°0 (5444 96%'0— 689°S 0SI-¥SEUD  08I-1TISNVN Sa  000I-L661NVH 009-00£TNVN €IV o ad
LISTE  €19C 65¢'Y 08S'1— ¥L0'C ELI'S 011-9¥CUD 061-$92019pP 091 0€T-L81AID Ov1-6LEUD 10971 Rt |
01T 1#€9— TS 0— 8LT1— 87€0— 89¢°G 011-9¥CUD 061-S9201P 2001 00$-8000£P 002-100€NVN sa Rt |
PSL'ET  ELIOI— ST 186 1— 6900 61€'S 0€T-L81YID O 1-6LEUD 10071 0ST-1¥0INVN 0ST-280TNVN oy £
90S'61  €6L'€ 78€°0— 686'1— L19°0 €0T'S 0L1-90T€NVN 0S1-L190'1dP 9V 007-L6TINVN 062-L6TINVN o1y £
ISTYeE  L69°0— TEL0 9LT'E 820'1 €09°S 007-6€S9NYN  OFC-€11TNVN a 092-€97LNVN 007-S€8TNVH v £
8E9'LT  1€8°9— 697°C LSS'€ w6L - €19°6 OvI-1816180  008-L9¥CNVH €001 002-600INVN 0CI-1¥2ENVH 6V B
€¥8'1T  191'S— £70°0— ¥98°C 1zec— 919 008-L9YCAVH  OF1-0€0¥NVN €001 001-912UD 081-1Z6TININ a o
€20ST  ¥0LO 96T 1— LOL'9 €6'1— €19°G 0ST-S¥SONVH 0ST-92SNVN IV 0ST-SLI-¥dSAl  OLI-#0T-¥dSdl c1a 4 NS4
IR INIRIAN
Sy INIRIAL 19T gawosowoIy) Sy IDIBIAL 19T [swosowoIy)
(%) AAd aa va av Vv ao1 0T [0  uonBIAUSD L]

-
[
o0
g
-
a
£
panunuod g Id[qe], N



Euphytica (2015) 203:121-144

139

Lint percentage

Six M-QTLs (two significant QTLs) were detected in
the F,.3 population. Two significant QTLs, gLP-F.;-
A6-1 and ¢qLP-F,.3-D5-2, were detected, which
explained 6.02 and 15.19 % of PV, with LOD scores
of 4.91 and 5.98, respectively. All QTLs from AQ
were responsible for the increase in LP. One pair of
E-QTLs was detected. These E-QTLs are distributed
on two chromosomes or linkage groups and displayed
—0.030 AA effects, —0.043 AD effects, 0.014 DA
effects and 0.020 DD effects, accounting for 20.773 %
of PV.

Seed cotton yield

Two pairs of E-QTLs, including interactions between
two loci on Chr. A3 and Chr. D8 and between two loci
on Chr. D1 and Chr. D8, were detected in the F,.;.
These E-QTLs demonstrated 11.502 and —12.416 AA
effects, 2.727 and —19.917 AD effects, 3.003 and
14.343 DA effects and 10.370 and 8.181 DD effects,
explaining 13.692 and 21.831 % of PV, respectively.

Lint yield

One M-QTL, gLY-F,.;-D10-1, was detected in the F,.3
population, which explained 6.72 % of PV, with a
LOD score of 2.60. The favorable alleles originated
from 08-10604. In addition, six pairs of E-QTLs were
found, which are distributed on ten chromosomes or
linkage groups and displayed —6.949 to 2.180 AA
effects, —12.855 to 5.798 AD effects, —11.122 to
9.879 DA effects and —16.669 to 14.745 DD effects,
explaining 10.586-33.594 % of PV.

Seed index

Four M-QTLs (one significant QTL) were detected in
the F, and F,.; populations. Among three M-QTLs,
one significant QTL, ¢SI-F,.;-D1-1, was detected in
the F,.3 population, which explained 3.79 % of PV,
with a LOD score of 5.32; the favorable alleles of the
three M-QTLs originated from AQ. In the F, popu-
lation, one M-QTL, ¢SI-F»-D9-1, was detected, which
explained 3.41 % of PV, with a LOD score of 2.86,
originating from 08-10604. Meanwhile, seven pairs of
E-QTLs were detected, which are distributed on nine
chromosomes or linkage groups and displayed —0.549

to 0.366 AA effects, —1.312 to 0.912 AD effects,
—0.626 to 0.912 DA effects and —2.661 to 1.573 DD
effects, explaining 13.962-28.186 % of PV.

Boll number per plant

Nine pairs of E-QTLs were detected, which are
distributed on 10 chromosomes or linkage groups
and displayed —1.159 to 2.819 AA effects, —16.753 to
16.104 AD effects, —11.910 to 3.923 DA effects and
—18.791 to 14.007 DD effects, accounting for
12.511-33.610 % of PV.

Epistasis-QTLs for interactions between boll
and yield-related traits

In addition, we further observed two groups of
interacting marker intervals, each of which simulta-
neously controlled two traits. The interacting marker
intervals NAU2300-600-HAU1997-1000 on Chr. A13
and NAUS5121-180-Gh354-150 on Chr. D5 influenced
both SI and BD. The interacting marker intervals
NAU4907-1000-HAU1785-400 on Chr. D5 and
cgr5834-180-BNL786-130 on Chr. D1 influenced
both BCW and BLN. Five groups of interacting
marker intervals were detected, each of which had
interactions on the same chromosome. Chr. A9
contains one pair of interacting marker intervals for
BCW, BNL1672-100-NAU6130-200 and cgr6692-
150-NAU490-500. Chr. A13 contains one pair of
interacting marker intervals for BW, HAU0539-210-
CIR221-150 and NAU6122-320-BNL1421-200. Chr.
D1 contains one pair of interacting marker intervals
for LY, MNL2921-180-Gh216-100 and TME03-200-
JESPR-221-190. Chr. D5 contains two pairs of
interacting marker intervals, including one for SI,
Gh354-150-JESPR-204-220 and NAU779-600-
TMCO05-190 and one for BN, NAU4907-1000-
HAU1785-400 and BNL3347-150-NAU5121-180. In
addition, some marker intervals had interactions with
other multiple marker intervals to control different
traits. For example, the marker interval NAUS5035-
250-NAU1167-500 had interactions with multiple
marker intervals including cgr6692-150-NAU490-
500, BNL1667-150-HAU3297-300, cgr6680-200-
NAU5439-230 and HAU2738-300- NAU3201-220
to control four traits, BCW, BLN, BD and SY,
respectively.
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Discussion

The F, population has the most complete genetic
composition of all populations and can provide the
most abundant genetic information; theoretically, this
population can be applied to QTL and genetic effect
analysis. However, the F, represents a temporarily
separating population, and its trait performance cannot
be repeated among generations, which greatly limits
the application of the F, population to QTL mapping.
Although the genetic compositions of the F, and F.;
populations differ, a highly positive correlation exists
between these populations (Xu and Zhu 1994). The
use of the average value of each line in the F,;
population to estimate the phenotypes of F, individ-
uals can reduce the environmental error and improve
the accuracy of QTL location. However, this tech-
nique underestimates the dominance and over-domi-
nance effects of QTLs. Considering the advantages of
the F, and F,.; populations, it is essential to use both
populations for QTL analysis. Hence, both F, and F.;
populations were employed for QTL mapping in this
study, and common QTLs were simultaneously
detected in the same or similar positions, suggesting
that these QTLs can be used for further verification
and analysis and thus, for marker-assisted breeding.
However, many previous studies have focused on
QTL mapping of cotton yield and fiber quality traits,
but few studies have examined traits related to cotton
bolls, especially for boll weight-related traits such as
BD, BL, BLN and BCW (except for BW), despite the
fact that these traits play important roles in cotton
breeding (Ashraf and Ahmad 2000; Tang and Xiao
2014). In this study, we detect 58 M-QTLs in the F,
and F,.3 populations for boll-related traits, including
13 BCW, 12 BL, 10 BD, six BLN, five BLW, nine BW
and three BSN QTLs. Moreover, we also found six
pairs of common QTLs conferring boll-related traits
(including two pairs each for BCW, BL and BD,
respectively), suggesting that these common QTLs
have high reliability and can be utilized for MAS to
improve boll weight.

In addition, we detected several boll-related QTL-
rich regions with QTLs conferring yield-related or
fiber traits on a few chromosomes. For instance, a
region on Chr. Al10 contains 17 M-QTLs (eight
significant QTLs) controlling BCW, BL, BLN,
BLW, BW, BSN, BD and FE. A region on Chr. A13
contains 10 M-QTLs (two significant QTLs),

@ Springer

including those controlling BCW, BL, BW, FE, FL
and LP. A region on Chr. D1 contains 17 M-QTLs (12
significant QTLs) controlling BCW, BL, BLN, BD,
FS, FU, MIC and SI. A region on Chr. D5 contains 16
M-QTLs (nine significant QTLs) controlling BCW,
BL, BLN, BLW, BW, BD, FE, FS and LP. The
clustering of QTLs within linkages indicates that
genes for different traits on the same chromosome are
linked or that the phenotypes are due to pleiotropic
effects of a single QTL, especially QTLs for boll
weight traits, which is consistent with the results of
correlation analysis. The synergistic alleles of QTLs of
boll-related traits mainly came from AQ. For example,
we found that the additive effect of the traits BL and
BD originated from the same parent, AQ. Therefore,
AQ can play an important role in improving boll
weight. In this study, five QTL clusters for boll-related
traits were found on Chr. A10, A13, D1 and D5.
Unlike those for boll-related traits, the M-QTLs for
fiber quality traits detected in this study were not
clustered, although QTL clusters for fiber quality or
plant architecture traits were previously been reported
in cotton (Chen et al. 2009; Mei et al. 2004; Wang
et al. 2006; Zhang et al. 2005, 2009, 2012a). Said et al.
(2013) also detected QTL clusters comprising regions
containing four or more QTLs for various traits
(including fiber quality and others). Said et al.
(2013) ascribed the different results from various
studies to the use of different genetic populations,
markers and marker densities, and testing environments.

Many previous studies have focused on QTL
mapping for fiber quality and yield traits using
intraspecific maps (Chen et al. 2009; Guo et al.
2006; Qin et al. 2008, 2009; Shao et al. 2014; Shen
et al. 2005, 2007; Sun et al. 2012; Ulloa et al. 2005;
Wang et al. 2007; Wu et al. 2009; Zhang et al. 2010,
2012a, 2005, 2009). However, it is difficult to compare
the QTLs detected in these studies because few
common markers exist in the diverse intraspecific
populations employed, and the maps produced in these
studies cover different chromosome regions of the
cotton genome. Nonetheless, both the present study
and the previous studies have revealed many common
characteristics for QTLs conferring fiber quality and
yield traits, and these QTLs for fiber traits were
mapped to the same chromosomes in different popu-
lations. For example, some QTLs for fiber quality and
yield traits detected in the current study were also
mapped to the same chromosomes in previous studies,
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including three QTLs for FS (Shao et al. 2014; Sun
et al. 2012; Wu et al. 2009), two QTLs for FL (Liang
et al. 2013; Shao et al. 2014; Shen et al. 2005; Zhang
et al. 2005, 2009, 2012a), four QTLs for MIC (Liang
et al. 2013; Qin et al. 2008, 2009; Shao et al. 2014,
Shen et al. 2005, 2007; Zhang et al. 2012a, 2013), two
QTLs for FU (Shao et al. 2014; Zhang et al. 2012a),
three QTLs for FE (Liang et al. 2013; Qin et al. 2008;
Shao et al. 2014; Shen et al. 2005; Sun et al. 2012;
Wang et al. 2007; Zhang et al. 2012a, 2013), six QTLs
for BW (Ning et al. 2014; Shen et al. 2007; Xia et al.
2014; Zhang et al. 2010), four QTLs for LP (Liu et al.
2012; Wang et al. 2007; Wu et al. 2009; Zhang et al.
2009, 2013), one QTL for LY (Xia et al. 2014) and
three QTLs for SI (Liu et al. 2012; Shen et al. 2007,
Wang et al. 2007; Wu et al. 2009; Xia et al. 2014).
These QTLs may be common QTLs for fiber quality
and yield traits in upland cotton, which may be verified
through the use of many more common markers in the
future.

Furthermore, in the present study, some QTLs were
not mapped to the same chromosomes as those of
previous studies. For example, six QTLs for yield
traits were detected on different chromosomes,
including three QTLs (qBW-F,-A13-1, qBW-F,-
A13-2 and gBW-F,-A9-1) for BW on Chr. A9 and
A13, two QTLs (qLP-F,.5-A13-1 and qLP-F,.3-A13-
2) for LP on Chr. A13 and one QTL (gSI-F,.3-D1-1#)
for SI on Chr. D1. Moreover, one QTL (qFE-F,-A12-
1) for fiber quality (FE) was also detected on Chr. A12.
Our results indicate that these seven positive additive
QTLs were from the elite parent AQ, and they are
distributed on different chromosomes, implying that
these QTLs are unique to upland cotton and may be
useful for cotton improvement.

Finally, epistasis, or interlocus interaction, is a type
of gene interaction whereby one gene interferes with
the phenotypic expression of another non-allelic gene.
A considerable body of evidence from -classical
studies strongly suggests the prevalence of an epistatic
effect on quantitative traits in genetic populations
(Zhang et al. 2001). Based on heterosis research in
rice, Yu et al. (1997) found that epistasis plays an
important role in the inheritance of quantitative traits
and heterosis. Xing et al. (2002) further reported that
epistasis, in the form of additive-by-additive interac-
tions, plays a highly important role in controlling the
expression of yield and yield-component traits. Some
studies have demonstrated that E-QTLs play an

important role in the genetic control of plant archi-
tectural traits in cotton (Wang et al. 2006; Song and
Zhang 2009) and other crops such as maize (Xu et al.
2009) and wheat (Wang et al. 2010). In this study, we
identified 64 pairs of E-QTLs for 12 boll weight-
related traits in both populations examined, including
seven for BCW, six for BL, five for BLN, two for
BLW, nine for BN, six for BW, eight for BSN, five for
BSN, one for LP, six for LY, seven for SI and two for
SY. Notably, two pairs of interacting marker intervals
simultaneously control two traits. Moreover, some
marker intervals have interactions with other multiple
marker intervals to control different traits. However,
no E-QTLs detected in the current study were mapped
to the same chromosomes as those of previous studies.
In addition, no E-QTLs for fiber quality were detected
in the current study, which is inconsistent with a
previous report employing different populations
(Wang et al. 2013).

In conclusion, in the F, and F,.; populations,
common QTLs were detected in the same and similar
positions simultaneously, suggesting that these are
major QTLs that can be used for further verification
and analysis and thus, for marker-assisted breeding.
QTL clusters were inferred and identified using the
positions and distribution of QTLs along the Gossy-
pium genome. The presence of QTL clusters indicates
that genes pertaining to certain traits are more heavily
concentrated in certain regions of the genome than in
others. The markers associated with E-QTLs identified
in the current study will be important for future
breeding programs aimed at developing cotton
cultivars.
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