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Abstract Increasing seed oil content is an impor-

tant breeding goal for Brassica napus L. (B. napus).

The identification of quantitative trait loci (QTL) for

seed oil content and related traits is important for

efficient selection of B. napus cultivars with high

seed oil content. To get better knowledge on these

traits, a molecular marker linkage map for B. napus

was constructed with a recombinant inbred lines

(RIL) population. The length of the map was

1,589 cM with 451 markers distributed over 25

linkage groups. QTL for seed oil content, seed hull

content and seed coat color in three environments

were detected by composite interval mapping (CIM)

tests. Eleven QTL accounted for 5.19–13.57% of the

variation for seed oil content. Twelve QTL associated

with seed hull content were identified with contribu-

tion ranging from 5.80 to 22.71% and four QTL for

seed coat color accounted for 5.23–15.99% of the

variation. It is very interesting to found that

co-localization between QTL for the three traits

were found on N8. These results indicated the

possibility to combine favorable alleles at different

QTL to increase seed oil content, as well as to

combine information about the relationship between

seed oil content and other traits.
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Abbreviations

QTL Quantitative trait loci

RIL Recombinant inbred lines

SRAP Sequence related amplified polymorphism

SSR Simple sequence repeat

AFLP Amplified fragment length polymorphism

TRAP Target region amplified polymorphism

cM Centimorgans

CIM Composite interval mapping

PCR Polymerase chain reaction

DNA Deoxyribonucleic acid

CTAB Cetyl trimethyl ammonium bromide

LOD Log likelihood ratio

OC Seed oil content

HC Seed hull content

SC Seed coat color

Introduction

Brassica napus L. (B. napus) represents an excellent

cash crop in the world. The economic value of

derived products such as oil is used for both

nutritional and industrial purposes. China is the
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largest producer with 7.5 million ha of harvested area

and 11.9 million tons of production in 2004. Global

demand is developing rapidly, but production is

presently unable to meet that demand. Improvement

in seed oil content of B. napus is one of the important

breeding objectives for breeders.

Among the agronomic traits, seed oil content in B.

napus is a typical quantitative trait under polygenetic

control, which is controlled by a large number of genes

with mainly additive and few epistatic gene actions

(Zhao 2002) and influenced by environment (Zhao

et al. 2005). Furthermore, seed oil content is positively

correlated with seed coat color (Rahman et al. 2001),

erucic acid content (Cheung and Landry 1998) and

negatively correlated with protein content (Zhao et al.

2005) and seed hull content (Wang et al. 2003).

Seed oil content can be improved through the

development of yellow-seeded cultivars, which are

known to contain higher oil and less fiber content.

Yellow seeds of B. rapa and B. napus have 5% and

3–4% lower fiber content, respectively, compared

with those of dark-seeded varieties (Stringam et al.

1974). Seeds of yellow-seeded cultivars of B. rapa

and B. napus have 2.5% higher oil content than those

of the dark-seeded varieties (Daun and DeClercq

1988). The higher seed oil content in yellow-seeded

B. napus is partially attributed to the lower seed hull

content. The palisade layer is reduced to half to two-

third of its thickness in yellow seeds compared with

black seeds (Stringam et al. 1974). There seeds also

have some other advantages, including higher trans-

parency of the crude oil, higher protein content and

lower fiber content with better feeding value for

livestocks (Liu et al. 2006).

The identification of QTL represents a first step

toward dissecting the molecular basis of these

complex traits. Gül (2002) identified six oil QTL,

of which two were detected by Ecke et al. (1995) and

four of them showed a close negative linkage with

protein QTL, explaining the conflict between seed oil

content and protein content in seed, while two oil

QTL and one protein QTL might be inherited

independently, demonstrating the possibility of com-

bining high seed oil and protein content. Burns et al.

(2003) found seed oil content QTL on N3, N6, N8,

N13, N14, N18, and N19 in B. napus by an

intervarietal set of part chromosome substitution

lines. Qiu et al. (2006) identified six seed oil content

QTL on N4, N8, N10, N12, N13 and N17 by DH

population. Eight QTL with additive effects and nine

pairs of loci with additive 9 additive epistasis with

high genotype 9 environment interactions were

detected in a cross involving a Chinese and a

European parental line (Zhao et al. 2005). Delourme

et al. (2006) detected also many genomic regions

involved in seed oil content in two DH populations,

such as QTL on N3 was revealed in all the studies

and the QTL on N1, N8 and N13 were revealed in

three studies out of five. Several QTL linked to seed

coat color and the hereditary pattern of seed coat

color in Brassica species have been reported (Fu et al.

2007). By now, there is some QTL report about the

seed hull content, which is likely to be controlled by a

number of genes, and therefore appropriate for QTL

analysis (Badani et al. 2006).

The objectives of this study were to enrich

knowledge on seed oil content and its correlation

with seed hull content and seed coat color, through a

well constructed linkage map and phenotypic and

QTL analysis synchronously in three different

environments.

Materials and methods

Plant materials and field experiment

In this study, the RIL were developed through

successive selfing up to six generations from a cross

between yellow-seeded female parent GH06 and

black-seeded male parent P174 by single seed

descent. GH06 is a yellow-seeded inbred line and

also the parent of the yellow-seeded cultivar ‘‘Yuhu-

ang 1’’ (Li et al. 2001). The RIL were cultivated in

2005/Beibei, 2006/Beibei and 2006/Wanzhou to

measure seed oil content, seed hull content and seed

coat color. The altitude of Beibei and Wanzhou is

about 260 and 1,000 m, respectively. Each plot

contained 3 rows with 15 plants per row. Seeds were

harvested from open-pollinated plants for trait anal-

ysis. Genomic DNA was extracted from 1 g leaves of

F2:6 individual plants using the modified CTAB

method (Murry and Thomspon 1980) in 2005/Beibei.

Traits measurements

The seed oil content was measured by Soxhlet

extractor method (Chinese National Standard GB
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2906-82). Seed oil content (%) = 100 9 (B - C)/

(B - A), A represents paper package weight; B

contains paper package weight and sample weight;

C contains paper package weight and extracted

sample weight.

The seed hull content measurement was conducted

according to Wang et al. (2003). Seed was dried at

105�C for 5 h and weighed as seed weight and then

hull and embryo were separated. The hull was dried

in 105�C for 5 h and weighed as seed coat weight.

Seed hull content (%) was estimated as seed coat

weight/seed weight 9 100%.

The measurement of seed coat color was as

described by Fu et al. (2007).

The analysis of SRAP, SSR, AFLP and TRAP

markers

The SRAP procedure was performed according to a

previous description (Ferriol et al. 2003). In total, 64

forward primers and 64 reverse primers were used,

resulting in 4,096 primer combinations. For the

design of SRAP primers, the method described by

Li and Quiros (2001) was used and the amplified

system and procedure were performed with minor

modifications.

Sequences of public SSR primer pairs were

downloaded from the Brassica database (http://www.

ukcrop.net/perl/ace/search/BrassicaDB) and other

SSR primer pairs were obtained from Piquemal et al.

(2005). The composition of the mixture and the PCR

procedure were the same as those reported by

Piquemal et al. (2005).

The AFLP analysis was conducted according to

Vos et al. (1995) with minor modifications. The

genomic DNA was double-digested with restriction

enzymes EcoR I and Mse I.

In this study, three genes (RuBPc, FAEl, and

FAD2) were analyzed with TRAP markers and the

fixed primer was designed according to the EST

sequence of the target gene; each forward or reverse

fixed primer was combined with different reverse or

forward arbitrary primers of SRAP. The amplified

system and procedure were conducted refer to Hu and

Vick (2003).

The sequence of all these primers was synthesized

by Shanghai Sangon Biological Engineering Service

Co. Ltd. (China). The PCR reaction was carried out in

a PTC-200 thermocycler. The SRAP, SSR, and

TRAP PCR products were detected using non-dena-

turant polyacrylamide gel electrophoresis, while the

AFLP PCR products were detected using denaturant

polyacrylamide gel electrophoresis.

The SRAP and AFLP polymorphic loci were

named according to the primer combination

employed, e.g., SRAP marker EM1/ME22 designates

the fragment generated by the combination of primer

EM1 and ME22 and AFLP marker E3/M6 designates

the fragment generated by the combination of primer

E3 and M6. The TRAP polymorphic loci were coded

according to the combination of the arbitrary primer

and the fixed primer of the corresponding gene, e.g.,

Table 1 Phenotypic analysis of the seed oil content, seed hull content and seed coat color in three different environments for the RIL

and parents of B. napus

Traits Year/Location GH06

Mean

P174

Mean

RIL population

Mean Stand var. Range Skewness Kurtosis

Seed oil content(%) 2005/Beibei 39.70 34.80** 32.62 3.29 23.90–40.74 -0.05 -0.24

2006/Beibei 37.20 36.96** 39.11 2.56 32.37–46.07 -0.20 -0.20

2006/Wanzhou 44.20 39.69** 45.99 3.81 36.97–54.19 -0.15 -0.38

Seed hull content(%) 2005/Beibei 12.30 16.80** 14.66 1.88 9.31–21.38 0.18 0.37

2006/Beibei 15.35 21.26** 16.83 2.28 11.42–23.60 0.19 0.38

2006/Wanzhou 15.80 21.05** 17.14 2.39 12.86–25.70 0.23 0.47

Seed coat color(%) 2005/Beibei 86.69 30.65** 57.82 18.88 18.93–82.97 -0.61 -1.02

2006/Beibei 86.42 29.49** 60.34 18.94 19.21–91.56 -0.38 -1.10

2006/Wanzhou 87.84 26.98** 59.18 21.12 17.36–88.30 -0.58 -1.09

** Indicates differences between the parents for the traits significant at level of P \ 0.01
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RuBPc ME64 designates the fragment generated by

combination of the forward arbitrary primer ME64

and the reverse fixed primer RuBPc. All SSR markers

adopted their original names in the Brassica database.

If a primer combination detected multiple polymor-

phic loci, small letters will be assigned to these loci

according to the descending fragment size.

Linkage map construction and QTL mapping

The analyses of correlations, means, frequency

distributions and other phenotypic analysis were

carried out by SAS programme (1989). JoinMap 3.0

(Stam and Ooijen 1995) was used to construct a

linkage map with minimum LOD score 3.0. Com-

posite interval mapping (CIM) was conducted to

locate QTL with additive effect by WinQTLCart 2.5

(Basten et al. 1999). CIM analysis were calculated

using forward regression, a walking speed of 2 cM

and a window size of 10 cM and the number of

markers for the background control was set to 5. A

permutation-based LOD threshold value of more than

2.5 was used to declare a putative QTL (LR C 11.5).

The LOD peaks were considered as the most likely

position of the QTL. The QTL were named according

to the suggestions of McCouch et al. (1997).

Results

Phenotypic analysis of seed oil content, seed hull

content and seed coat color

Yellow seeds had significantly higher seed oil content

but lower seed hull content than black seeds in the

three different environments (Table 1). The differ-

ence between the two parents was significant at a

level of P \ 0.01. Curves depicted the distribution of

frequencies of the three traits (Fig. 1). Analyses of

variances (ANOVA) demonstrated the presence of

significant variability for the three traits in the RIL.

Seed oil content and seed hull content in the three

environments displayed approximately continuous

variations.

The correlations of seed oil content with seed hull

content and seed coat color were analyzed in the three

different environments (Table 2). The correlation

between seed oil content and seed hull content were

-0.321(P \ 0.01), -0.493(P \ 0.01) and -0.709

(P \ 0.01) in 2005/Beibei, 2006/Beibei and 2006/

Wanzhou, respectively. Seed oil content was positively

related with seed coat color in 2005/Beibei, 2006/

Beibei and 2006/Wanzhou [0.208(P \ 0.01), 0.272

(P \ 0.01) and 0.455(P \ 0.01), respectively]. Seed

hull content was significantly negatively correlated

with seed coat color in the three environments, the

correlations of 2005/Beibei, 2006/Beibei and 2006/

Wanzhou were -0.538(P \ 0.01), -0.615(P \ 0.01)

and -0.715(P \ 0.01), respectively.

Fig. 1 The frequency distribution of seed oil content, seed

hull content and seed coat color. Abscissa: Phenotypic value of

the traits, Ordinate: The number of lines
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Construction of the linkage maps

The numbering of the 25 linkage groups was

mainly based on the map of Piquemal et al.

(2005). The numbers of linkage groups were more

than 19 as expected, which implied the interruption

within chromosomes caused by large gaps. Twenty-

four of our linkage groups were partially homolo-

gous to corresponding Piquemal‘s linkage groups.

One linkage group was constructed by AFLP

markers only, which was failed to compare with

any other published linkage group. We assigned this

linkage group as LG14, which might be N14,

because there was no corresponding N14 marker in

our linkage groups.

This linkage map covered 1,589 cM and was

consisted of 198 SRAP, 140 SSR, 107 AFLP 6

TRAP. The length of each linkage group ranged from

31 to 123 cM and the number of marker on each

linkage group varied from 4 to 46. The average

distance between adjacent markers was 3.52 cM and

ranged from 1.4 to 10.6 cM.

QTL mapping for seed oil content, seed hull

content and seed coat color

Results from CIM are summarized in Table 3 and

Fig. 2. A total of 5 QTL in 2005/Beibei, 4 QTL in

2006/Beibei and 2 QTL in 2006/Wanzhou were

detected for seed oil content. Alleles increasing seed

oil content came from GH06 (N3, N4, N5, N7, N8

and N13) and P174 (N1 and LG14), respectively.

The qOC05B-1 colocalised with qOC06B-1 and

qOC06W-1, all of which had similar additive effects

and explained 7.67–13.57% of the phenotypic

variation.

A total of 3 QTL in 2005/Beibei, 6 QTL in 2006/

Beibei and 3 QTL in 2006/Wanzhou were detected

for seed hull content. Alleles increasing seed hull

content came from GH06 (N9 and N12) and P174

(N3, N4, N7 N8, N12 and N15), respectively. Co-

location between seed hull content QTL for 2005/

Beibei, 2006/Beibei and 2006/Wanzhou was identi-

fied on N8 and the contributions for the seed hull

content were 17.40, 15.20 and 20.00%, respectively.

Table 2 Correlation analysis of seed oil content with seed hull content and seed coat color in three different environments

Trait HC

(06Beibei)

HC

(06Wanzhou)

OC

(05Beibei)

OC

(06Beibei)

OC

(06Wanzhou)

SC

(05Beibei)

SC

(06Beibei)

SC

(06Wanzhou)

HC

(05Beibei)

0.251* 0.133 -0.321** -0.068 -0.141 -0.538** -0.500** -0.327**

HC

(06Beibei)

0.319** -0.275* -0.493** -0.323** -0.505** -0.615* -0.354**

HC

(06Wanzhou)

-0.211* -0.245* -0.709** -0.385** -0.440** -0.715**

OC

(05Beibei)

0.257* 0.132 0.208* 0.140 0.145

OC

(06Beibei)

0.314** 0.194 0.272* 0.209*

OC

(06Wanzhou)

0.126 0.166 0.455**

SC

(05Beibei)

0.801** 0.494**

SC

(06Beibei)

0.534**

OC, Seed oil content; HC, Seed hull content; SC, Seed coat color

* Indicates significant at level of P \ 0.05

** Indicates significant at level of P \ 0.01
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The additive effects of these three loci were negative,

which indicated that P174 increased seed hull con-

tent. Two co-localized QTL with similar additive

effects were identified on N12 in 2006/Beibei and

2006/Wanzhou, which accounted for 19.10 and

14.40%, of the phenotypic variation for seed hull

content, respectively.

Only four seed coat color QTL distributed over the

environments accounted for 5.23–15.99% of the

phenotypic variation. Alleles increasing seed coat

color all came from GH06. The qSC06B-8 was tightly

linked with qSC06W-8, both of which had similar

additive effects and accounted for 7.03 and 15.99% of

the phenotypic variation.

The most important QTL cluster was on N8. One

seed oil content QTL accounting for 9.58% variation

detected in 2006/Wanzhou was tightly linked with

seed hull content QTL detected in the three environ-

ments (R2 = 15.20–20.00%) and two seed coat color

QTL detected in 2006/Beibei and 2006/Wanzhou

(R2 = 7.03 and 15.99%).

Discussion

In B. napus, the genome structure is very complex, as

the species arose by the hybridization of B. rapa and B.

oleracea, although each of the progenitor genomes

Table 3 Results of mapping QTL for seed oil content, seed hull content and seed coat color in the three different environments

Trait QTL N Marker interval (cM) LOD ADD R2 (%) Nearst marker

OC05BB qOC05B-1 1 EM7/ME29-Ol12-F11 4.47 -1.03 7.67 Ol12-F11

qOC05B-4 4 E2M3/g-EM11/ME23a 3.31 0.76 5.19 EM10ME32a

qOC05B-5 5 ME16/EM17c-sN12353b 3.57 0.90 7.39 EM11/ME22a

qOC05B-13 13 EM11/ME19a-EM10/ME17c 6.43 1.19 13.22 E2M3/b

qOC05B-14 14 E2M5/c-E5/M3/a 3.63 -0.86 5.61 E2M5/c

OC06BB qOC06B-1 1 Ol12-F11-E4M5/d 6.65 -1.14 13.57 EM8/ME17c

qOC06B-3 3 EM7/ME30c-EM7/ME53c 2.57 0.66 6.27 EM7/ME30c

qOC06B-5 5 EM1/ME22c-E6M8/c 2.83 0.66 6.28 EM2/ME14d

qOC06B-7 7 EM2/ME14a-Ra2-A01 6.39 0.98 13.52 Ol10-F09

OC06WZ qOC06W-1 1 Ol12-F11-CB10258 2.80 -1.11 7.83 CB10258

qOC06W-8 8 CB10530a-EM9/ME37a 3.48 1.22 9.58 CB10364

HC05BB qHC05B-8 8 sR9411-CB10364 5.64 -1.53 17.40 Ol12-F08Ab

qHC05B-9 9 CB10427-Ol10-E05 3.12 0.59 9.40 ME16/EM40c

qHC05B-15 15 CB10027f-ME16/EM32c 2.87 -0.48 8.70 EM11/ME45d

HC06BB qHC06B-3 3 CB10413-EM8/ME19e 3.28 -0.82 10.6 CB10413

qHC06B-4 4 BRAS072b-E6M4/a 2.79 -0.56 6.80 BRMS166

qHC06B-8 8 sR9411-EM9/ME37a 5.47 -1.77 15.20 Ol12-F08Ab

qHC06B-12 12 EM12/ME22a-EM5/ME15e 6.37 -1.85 22.71 E2M3/h

qHC06B-12 12 EM11/ME30c-CB10350 5.68 1.70 19.10 CB10350

qHC06B-15 15 CB10229-ME16/EM57 2.77 -0.59 6.10 CB10229

HC06WZ qHC06W-7 7 E3M4/c-E1M6/c 2.51 -0.87 5.80 EM7/ME15a

qHC06W-8 8 EM8/ME14-EM6/ME30d 6.29 -2.24 20.00 CB10364

qHC06W-12 12 EM3/ME21b-BRMS090 3.68 1.30 14.40 CB10350

SC05BB qSC05B-4 4 EM12/ME13a-EM3/ME19 2.5 4.36 5.23 EM12/ME13a

SC06BB qSC06B-8 8 EM8/ME14-EM9/ME37a 3.02 5.09 7.03 CB10364

qSC06B-16 16 E3M6/a-E5M2/e 3.08 4.87 6.55 Na10-C06

SC06WZ qSC06W-8 8 sR9411-EM9/ME37a 5.13 8.73 15.99 Ol12-F08Ab

‘‘05’’ and ‘‘06’’ indicate traits measured in 2005 and 2006 respectively; ‘‘BB’’ and ‘‘WZ’’ indicate traits measured in different

location of Beibei and Wanzhou, respectively. Positive effect of each quantitative trait loci signifies that the allele of ‘GH06’ has a

positive contribution to the trait. Linkage Groups (N), Logarithm of Odds (LOD)
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EM1/ME1a0.0
CB106282.7
E1M7/b5.9
EM11/ME207.7
EM6/ME30b10.3
EM1/ME1b12.9
EM1/ME10a15.3
CB1009218.5
E2M3/a21.6
E2M3/f24.3
Na12-H0927.6
EM2/ME11c30.7
EM2/ME10c34.2
EM8/ME60a38.2

E6M2/a45.6

Na14-H11c50.3

N2

EM1/ME6b0.0
CB1006512.1
CB1009720.5
EM1/ME8c24.7
EM1/ME23e29.6
E1M8/f35.9
EM6/ME20c51.1

N1-2

sN11516b0.0
EM11/ME27b12.5
EM11/ME5917.7
sR9555b18.4
CB10196a19.8
sN11516a21.5
OI10-B0623.9
EM11/ME20b27.3
E5M8/b29.8
Na12-D0934.0

N4-2

CB103350.0
CB104939.2
OI11-H018.7
EM8/ME60b23.9
EM3/ME10c30.6

N4-3

FAD2/EM47a0.0

E6M3/c15.2
Na12-E0118.9
Na10-E02a23.6
Na10-B0825.1
EM5/ME38a29.7
CB1008032.1
E4M7/b34.1
EM10/ME13d36.1
EM11/ME39a39.9
EM8/ME19a43.7
EM2/ME3b50.4
EM9/ME38d58.4

N5-2

E6M8/d0.0
EM9/ME37b7.0
E6M7/a13.9
BRAS072a30.5
BRAS072c40.4

N5-3

EM2/ME10b0.0
ME16/EM40b13.0
OI11-G1118.8
EM2/ME2a25.2
CB1014331.5
Na12-D0841.8
E6M7/b49.2
E6M8/b50.8
E2M4/f54.6
EM3/ME3a55.4
Ra1-F0657.9
EM2/ME25c59.8
ME16/EM17a63.4
E1M4/a65.6
CB1009968.5
ME13/EM1070.2
E6M3/a71.2
EM10/ME13c73.4
E4M7/c75.4
E5M1/a76.7
EM8/ME1679.1
Na12-G1180.3
EM12/ME13b80.9
ME16/EM27b81.5
E1M6/g82.5
EM2/ME14c84.0
BRAS01186.9
EM1/ME23a88.9
MR013a91.1
Na12-B0894.5
sR717899.5
nga12102.7
E2M5/b105.6
CB10204111.0
OI10-G05115.0
BRMS221117.3
OI13-F08118.9
BRAS014122.8

N6

EM9/ME24a0.0
EM1/ME6a1.3
E1M7/c6.5
EM9/ME38b7.2
EM5/ME38b8.0
EM9/ME38a11.3
EM6/ME1413.0
EM9/ME24c14.6
EM11/ME39d16.5
EM9/ME38c17.2
EM11/ME1417.8
EM11/ME50b19.2
EM3/ME10a19.8
EM10/ME51b20.6
EM10/ME2722.7
EM10/ME51a23.6
OI10-B1125.6
EM9/ME37c27.8
EM9/ME24b29.7
EM1/ME931.4
E3M5/c33.4
EM3/ME10b34.2
EM1/ME1135.8
CB1052436.9
EM1/ME8b38.2
EM9/ME33d39.0
EM5/ME15c40.5
EM2/ME11a42.5
E2M1/b44.8
EM1/ME12a46.2
E5M8/c47.9
EM2/ME10d52.8
E2M1/c54.4
sR12307Ib67.6
EM2/ME10e71.8

N10

sN117070.0
E1M6/e11.7
E10M11/b21.6
CB1058736.5

N11

EM11/ME16a0.0
CB100576.5
E6M2/b11.6
E4M6/d15.7
Na10-B0119.4
EM3/ME2020.9
EM5/ME3d24.4
EM5/ME15b27.9
EM10/ME36b40.4

N13-2
E4M3/a0.0
CB102344.4
ME15/EM14b7.3
E4M3/b9.8
EM12/ME22b11.3
EM12/ME31a16.8
ME15/EM14a20.6
EM11/ME51b29.4
ME15/EM4344.3

N16-1

Na12-H02b0.0
Na14-F116.6
EM11/ME2112.6
Ra3-E0514.3
Na12-H02a16.9
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Fig. 2 Linkage map of B.
napus and the locations of

quantitative traits loci

(QTL) for seed oil content,

seed hull content and seed

coat color. The QTL and

markers were draw by the

MAPCHART Version 2.0

software (Voorrips 2002).

Cumulative recombination

distances are shown on the

left (in centiMorgans) and

to the right of each linkage

group is the marker name

Euphytica (2009) 170:355–364 361

123



largely retains its original organization (Parkin et al.

2003). Lombard and Delourme (2001) predicted the

length of B. napus genome size is about 2,127–

2,480 cM, the length of B. napus genetic map in our

study is 1,589 cM. One of our linkage groups was

composed of AFLP markers entirely, because maps

based on a high number of AFLP, SSR and RFLP

frequently exhibited areas of dense clusters (Lacape

et al. 2003). Because of the lack of consensus SSR

markers for N14, we should increase the number of

consensus SSR markers for the convenience of map

comparison.

Some research (Ochodzki et al. 2003) indicated

that the yellow-seeded B. napus had lower seed hull

content. The results of our research strongly con-

firmed that the seed hull content was negatively

correlated with seed oil content and seed coat color.

Due to the negative correlation between seed oil and

hull content, some of the detected QTL might increase

one compound while decreasing the other one.

However, few QTL have been successfully used for

rapeseed breeding, perhaps because QTL are envi-

ronmentally sensitive and QTL-environment interac-

tion has been considered as a common phenomenon

(Piepho 2000; Cao et al. 2001). Then, genetic analysis

and identification of QTL involved in hull content or

conditional QTL mapping of seed oil content with

respect to seed hull content have to be performed in

order to identify regions that influence seed oil content

independently from seed hull content in future.

Phenotypic analysis showed that the environment

has a significant effect on seed traits and also few

QTL was identified in three different environments.

The seed oil content in 2005/Beibei trials was lower

than that obtained in 2006/Beibei and 2006/Wanz-

hou. Similarly, the seed hull content in 2006/Wanz-

hou was lower than that detected in 2005/Beibei and

2006/Beibei. Significant environmental contribution

to seed oil content variation was also observed by

Zhao et al. (2005) who performed the experiments in

very contrasted locations (Germany and China).

Similar results were obtained in seed hull content

and seed coat color when QTL studies were per-

formed in different environments. Climate and har-

vest time generally have effects on seed coat color to

certain extent, which result in instability of phenotype

and QTL analysis.

Six QTL located in a same genomic regions on N8

have effect on three traits. Three of them (qHC05B-8,

qHC06B-8 and qHC06W-8) were detected for seed

hull content in the different environments, suggesting

that they are not, or less affected by the environment.

One QTL for seed oil content detected in 2006/

Wanzhou and two QTL for seed coat color were

identified in this same region on N8, which could

co-localized with published QTL detected in other B.

napus populations.

Delourme et al. (2006) found that seed oil content

QTL on N8 were revealed in only three studies out of

five. Burns et al. (2003) found seed oil content QTL on

N8 in B. napus by an intervarietal set of part

chromosome substitution lines. Qiu et al. (2006)

identified six seed oil content QTL on N4, N8, N10,

N12, N13 and N17 by DH population. The distribution

for seed oil content QTL identified in the RIL

populations confirmed the polygenic determinism of

this trait. The alleles for increasing seed oil content

were mainly derived from GH06 parent. Additive

effect of individual QTL ranged from 0.66 to 1.22 in

seed oil content. The results were consistent with

previous studies performed in oilseed rape where

quantitative genetic studies concluded to the preva-

lence of additive gene action in the control of seed oil

content and the alleles increasing oil content are mainly

derived from the parent with high seed oil content

(Grami and Stefansson 1977; Engqvist and Becker

1991; Shen et al. 2005).

In this research, we first detected a co-localized

QTL of seed oil content, seed hull content and seed coat

color on N8. And the results also provide important

clues for cloning of the candidate gene corresponding

to these stable QTL. Further study includes increasing

markers and determining how the detected QTL would

be used in increasing seed oil content of B. napus

potentially by marker-assisted selection.
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