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Abstract In traditional quantitative genetics, addi-

tive effects of genes acting in a population of

biparental homozygous lines are estimated on the

basis of the phenotypic observations only, usually by

taking a difference between mean values for extreme

lines. Current molecular methods allow to estimate

the additive effects by additionally taking into

account the marker data. In this paper we compare

these two methods of estimation of additive gene

action effects analytically, by simulations and by

analysis of real data sets for doubled haploid lines

and recombinant inbred lines. The analytic compar-

ison shows under which conditions an agreement of

the two methods can be achieved. In most of the

considered experimental data and in simulations we

observe that the additive effect calculated on the basis

of the marker observations is smaller than the total

additive effect obtained from phenotypic observa-

tions only. This result is discussed, and a weighted

regression approach is proposed as a method which

can close the gap between the purely phenotypic and

genotypic approaches.

Keywords Additive gene action effect �
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Introduction

Traditional quantitative genetics studies organisms on

the basis of phenotypic observations and tries to reach

conclusions about their genotype, in particular about

the way in which quantitative traits are inherited. This

is usually accomplished by describing the gene action

by genetic parameters, functions of phenotypic means

and variances (Falconer and Mackay 1996). One of

these parameters is the effect of additive gene action,

usually denoted by a, and defined as half of the

difference between the genotypic values of two

homozygotes. Additive effects are fixed in the

population as it increases its homozygosity in

succesive generations. Therefore, a significant addi-

tive gene action effect in certain population means

that selection begining in the early generations gives

hope for obtaining transgressive homozygous lines

(Mather 1949; Surma 1996).

The progress of experimental methods allows now

for exploration of the genome. It is possible to

analyze individuals with respect to the molecular

markers reflecting their genomic constitution. It is

also possible to combine methods of quantitative

genetics and of molecular genetics for localization of

quantitative trait loci (QTL) relative to markers and

J. Bocianowski (&)

Department of Mathematical and Statistical Methods,

Poznan University of Life Sciences, Wojska Polskiego 28,

60-637 Poznan, Poland

e-mail: jboc@up.poznan.pl

P. Krajewski

Institute of Plant Genetics PAS, Strzeszyńska 34,
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for estimation of their effects. In most studies,

homozygous lines are used for QTL analysis. In

consequence, attention is mainly paid to estimation

and interpretation of additive gene effects.

The two methods of estimation of the additive

genetic effect: first, using just phenotypic data, and

the second, which additionally takes into account the

genotypic marker data, are both based on the

polygenic model of inheritance. The ‘‘phenotypic’’

method estimates the total additive effect of all loci

affecting the trait under study, while the ‘‘genotypic’’

method allows for estimation of the contributions of

individual genes. Comparison of these two methods

with respect to obtained estimates and breeding

recommendations has not been adequately considered

in the literature. To our knowledge, only Snape

(1997, p. 44, Table 6) discussed briefly this issue on

the basis of one experiment with barley doubled

haploid lines and one trait—flowering time. He found

the ‘‘phenotypic’’ estimate of a to be smaller than the

‘‘genotypic’’ one, and proposed as the explanation an

inadequate representation of the population extremes

in the examined sample of lines.

The aim of the study reported in this paper was

comparison of two methods of estimation of the

parameter connected with the additive gene action:

the phenotypic method, used traditionally in quanti-

tative genetics, and the genotypic method, which is

based on marker observations and now is used

routinely in many species. The comparison was

performed by analytical methods, by analyses of real

data sets and by a simulation study. Also, a modi-

fication of estimation of the additive gene action

effect by using weighted multiple linear regression

was considered with the aim to set a bridge between

the two compared methodologies.

In our considerations we use the form of the

additive gene action effect estimator based on

phenotypic observations of biparental homozygous

progeny and mean values for groups of extreme lines

described by Surma et al. (1984). Genetic and

mathematical interpretation of additive and other

genetic parameters was presented e.g. by Falconer

and Mackay (1996, chapter 7).

As to the QTL mapping method, we use the

multiple linear regression model (Jansen 1993; Haley

et al. 1994) of trait values on marker observations

acting as explanatory variables (Jansen 1996). It

permits for elimination of markers which reveal

linkage to a QTL when tested one by one, but in

multiple analyses are not characterized by any

influence on the phenotypic trait. It assumes that

the QTL are located at marker positions.

Material and methods

Estimation methods

If in the experiment we observe n biparental homo-

zygous (recombinant inbred or doubled haploid) plant

lines, we get an n-vector of phenotypic means y = [y1,

y2, …, yn]0 and q n-vectors of marker genotype

observations ml, l = 1, 2,…, q. The i-th element (i =

1, 2, …, n) of vector ml is equal to -1 or 1,

depending on the parent’s genotype exhibited by the

i-th line.

Estimation of the additive gene effect on the basis

of phenotypic observations y requires identification

of the groups of extreme lines, i.e., lines with

minimal and maximal expression of the observed

trait. In this paper we identify the groups of extreme

lines using the quantile method (Bocianowski et al.

1999), in which as minimal (maximal) lines are taken

the ones with the mean values smaller (bigger) than

0.03 (0.97) quantile of the empirical distribution of

means. On the assumption that the minimal and

maximal lines contain, respectively, only alleles

decreasing and only alleles increasing the value of

the trait (Choo and Reinbergs 1982), the total additive

efect a of all genes controlling the trait (Mather 1949)

can be estimated by the formula (Surma et al. 1984)

âF ¼
1

2
�Lmax � �Lminð Þ; ð1Þ

where �Lmin and �Lmax denote the means for the groups

of minimal and maximal lines, respectively.

In the presence of observations of molecular

markers, estimation of a is made on the assumption

that the genes responsible for the trait are completely

linked to observed markers. After deciding which p

markers out of all observed sufficiently well explain

the variability of the trait, we can model phenotypic

observations for the lines as

y ¼ Xbþ e; ð2Þ

where X denotes the n 9 (p + 1)-dimensional matrix

of the form X ¼ ½1;ml1 ;ml2 ; . . .;mlp �; l1, l2, …, lp [
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{1, 2, …, q}, b denotes the (p + 1)-dimensional

vector of unknown parameters of the form b ¼
l; al1 ; al2 ; . . .; alp

� �0
; and e denotes the n-dimensional

vector of random variables of the form e ¼
e1; e2; . . .; en½ �0 such that E(ei) = 0, Var(ei) = r2,

Cov(ei,ej) = 0 for i = j, i,j = 1, 2, …, n. The

parameters al1 ; al2 ; . . .; alp are the additive effects of

the genes controlling the trait. If X is of full rank, the

estimate of b is given by (Searle 1982)

b̂ ¼ X0Xð Þ�1
X0y ð3Þ

The total additive effect of genes influencing the trait,

defined as the sum of absolute values of individual

effects, can by found as

âG ¼
Xp

k¼1

âlkj j: ð4Þ

Selection of markers chosen for model (2) can be

made, e.g., by a stepwise regression procedure

(Charcosset et al. 2001). Here we used a three-stage

algorithm, in which: first, selection was made by a

backward stepwise search independently inside all

linkage groups; then, markers chosen in this way

were put in one group and subjected to the second

backward selection (see Jansen and Stam 1994).

Finally, at the third stage, we considered situations, in

which chosen markers were located on the chromo-

some very close to each other (closer than 5 cM).

Because these markers are linked probably to one

QTL, only the marker with the largest value of the

test statistic was retained in the set. At the first and

second stages we used the critical significance level

equal to 0.001, resulting from a Bonferroni

correction.

The modified version of trait regression on marker

data in this paper, used only in simulations, is

considered by taking a weighted multiple linear

regression, that is, regression with a diagonal matrix

W of unknown variances of observations, which,

however, may be empirically found by estimation. In

this model the estimate of b is

b̂ ¼ X0W�1X
� ��1

X0W�1y;

where W = (wii), with wii being the estimated

variance for i line, i = 1, 2, …, n. Selection of

markers for the weighted regression is made by the

same method as described for the unweighted case.

Data sets

To compare the estimates of a obtained by different

methods the following data sets were used.

Data set 1

Doubled haploid lines of barley (cross Steptoe 9

Morex). The data concern 150 DH lines of barley

obtained from the Steptoe 9 Morex cross, used in the

NABGM project and tested at 16 environments

(Kleinhofs et al. 1993; Romagosa et al. 1996; http://

wheat.pw.usda.gov/ggpages/SxM). The linkage map

used consisted of 223 molecular markers, mostly

RFLP, with mean distance between markers equal to

5.66 cM. The lines were analysed for eight pheno-

typic traits (alpha amylase, AA; diastatic power, DP;

grain protein, GP; grain yield, GY; height, HE;

heading date, HD; lodging, LO; malt extract, ME;

Hayes et al. 1993). Grain protein, lodging and malt

extract were transformed by arcsin
ffiffiffiffiffiffiffiffiffiffiffiffi
x=100

p
: Missing

marker data were estimated by the method of Mar-

tinez and Curnow (1994), that is, using non-missing

data of flanking markers.

Data set 2

Doubled haploid lines of barley (cross Harrington 9

TR306). The data come also from the NABGM project

(Tinker et al. 1996, http://wheat.pw.usda.gov/ggpages/

maps/Hordeum) and concern 145 DH lines of barley

obtained from the cross Harrington 9 TR306. The lines

were analysed for seven phenotypic traits (weight of

grain harvested per unit area, GY; number of days from

planting until emergence of 50% of heads on main

tillers, HD; number of days from planting until physi-

ological maturity, NM; plant height, HE; lodging

transformed by arcsin
ffiffiffiffiffiffiffiffiffiffiffiffi
x=100

p
; LO; 1000 kernel

weight, KW; test weight, TW). We used the map

composed of 127 molecular markers (mostly RFLP)

with the mean distance between markers equal to 10.62

cM. Results shown below concern observations from

five environments (in four environments observations

were made over 2 years).

Data set 3

Recombinant inbred lines of maize (cross B73 9

H99). The data used for this example concern 138 RI
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lines of maize, derived from the cross B73 9 H99 at

Department of Genetics and Microbiology, Univer-

sity of Milan (for details see Frova et al. 1999; Sari-

Gorla et al. 1999). The lines were investigated with

respect to nine phenotypic traits (ear length, EL; ear

weight, EW; kernel weight per ear, KWE; kernel

number per ear, KN; 50-kernel weight, 50 KW; male

flowering time, MFT; female flowering time, FFT;

anthesis-silking interval, ASI; plant height, PH), in

drought conditions and under irrigation. Trait obser-

vations were transformed to tolerance indices, i.e.,

the ratios of observations obtained in two different

conditions. We use observations of 144 molecular

markers (RFLP, SSR and AFLP). The mean distance

between markers in the map was equal to 15.13 cM.

Simulation studies

In the simulation studies comparing the ‘‘phenotypic’’

and ‘‘genotypic’’ estimates of the additive gene action

effect the following variants of assumed parameters

were adopted. The true value of the parameter was set

to 10 (a = 10) and the total mean value of the trait to

100. 150 homozygous lines were analyzed and 150

markers. Markers were located in 5, 7 or 10 linkage

groups (LG). LG contained 30 (for 5 groups) or 15 (for

10 groups) markers; for seven LG the numbers of

markers in individual groups were 21, 21, 21, 21, 22,

22 and 22. Distances between markers were all equal

(12 cM) or unequal (for 5 groups: 10, 11, 12.5, 14 and

15 cM; for 7 groups: 10, 11, 11.5, 12.5, 13.5, 14 and 15

cM; for 10 groups: 10, 10.5, 11, 11.5, 12, 13, 13.5, 14,

14.5 and 15 cM). The number of QTL affecting the trait

was assumed to be 1, 4 or 10. The QTL were (i)

distributed on the whole genome, (ii) located in one LG

or, in the case of 10 genes and seven- or 10-

chromosome genome, (iii) in the two LG. Effects of

individual genes were assumed to be: (i) equal for all

genes or (ii) one QTL effect was much larger than

others. The error variance was equal to 5 or 10. For

each combination of the parameters, 1000 data sets

containing the vector of phenotypic observations and

vectors of marker genotype observations were gener-

ated. For each data set the additive gene action effect

estimates âjF and âjG; j = 1, 2, …, 1000, were calculated

by the methods presented above. Then, mean values of

parameter estimates âF ; âG for each series were

calculated, together with the mean squared errors.

In the simulations concerning the weighted

regression, the situation in which each homozygous

line is represented by five plants was analyzed. The

same values of the additive gene effect and of the

total mean were assumed as for the unweighted

case. The simulations were limited to the case of

seven linkage groups with distances between mark-

ers equal to 12 cM. The trait was assumed to be

determined by four or 10 QTL with equal values of

the additive effect. These QTL were located in one

(for four QTL), two (for 10 QTL) or in many LG.

The variance for lines was assumed according to

four variants: (i) equal for all lines, (ii) greater for

extreme lines than for other lines, (iii) smaller for

extreme lines than for other lines, (iv) different for

minimal lines, maximal lines and other lines. The

error variance was equal to 5 for all generated

observations. For each combination of parameters,

2000 random generations of the data set containing

the vector of phenotypic observations and vectors of

marker genotype observations were made. For each

data set, the line variances were estimated, and the

total additive gene effect was estimated by the

phenotypic method and by unweighted and weighted

version of the genotypic method. The results were

summarised by mean values for series of simula-

tions and mean squared errors.

Results

Analytical comparison

Analytical comparison of formulae (1) and (4) is

possible with the two genetic assumptions:

(i) that the markers are unlinked, that is, for any two

markers probability of encountering a line with

observations (1,1) or (-1, -1) is the same as

observing a line with (1, -1) or (-1,1);

(ii) that the segregation of each marker is concor-

dant with the genetic model appropriate for the

analysed population, which in our case means

that the probability of observing ‘‘-1’’ is the

same as observing ‘‘1’’ (1:1 segregation).

If the marker data satisfied exactly assumptions (i)

and (ii), we would have X0X = nI, where I is the
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identity matrix, and the estimator (4) could be written

as

âG ¼
Xp

k¼1

1

2
�y
þð Þ

lk
� �y

�ð Þ
lk

� �����

����; ð5Þ

where �y
þð Þ

lk
and �y

�ð Þ
lk

denote the mean values for lines

with observations of the lk-th marker equal to 1 and -

1, respectively, with k = 1, 2, …, p.

Practically, the marker data do not fulfill exactly

the assumptions taken above as leading to (5). The

assumption (i) is, however, approximately true if the

markers chosen to model (2) are weakly linked, that

is, if they are far from each other in the linkage map

(e.g., in different linkage groups). The assumption (ii)

is usually tested by a v2 test before any linkage

analysis is done. Therefore, in practice the estimates

of the parameters alk ; additive effects of the individ-

ual loci, are close to the values which would be used

in the simplified formula (5).

Note that (5) is similar in form to (1), the

difference being that in (1) means for phenotypically

extreme lines are used, while in (5) the means for

genotypic classes are taken. Note also that each

component of (5) is smaller than the estimator âF

obtained by (1). Thus, analytical comparison of the

methods of estimation shows that comformity of the

estimates obtained by (1) and (4) can be achieved by

summing a right number of individual gene effects.

Numerical comparison

Figure 1a shows the summary of the comparisons

between genotypic and phenotypic estimates of the

total additive effect in the form of a box-and-whisker

diagram of the observed values âG=âFð Þ � 100 for

data set 1 (variability over 16 environments). In most

of the considered situations the total additive effect

calculated on the basis of the marker observations

was smaller than the total additive effect obtained

from phenotypic observations only. However, the

range of the calculated coefficients is quite large,

from 34.14% for GY in one of the environments, to

153.3% for GP. The smallest range of values was

observed for the trait HD.

In Fig. 1b a similar summary for data set 2 is shown.

Again, most of the genotypic estimates were smaller

than the phenotypic ones. The range of the comparative

coefficients was from 0% for TW in one of the

environments (i.e., no significant markers were found

for the trait), to 148.3% for GY. The smallest range of

the values was observed again for the trait HD.

Figure 2 summarizes comparison of estimates of a,

scaled by the trait mean value, obtained for data set 3.

Here, the estimates based on the genotype were much

smaller than the ones based just on the phenotype. For

four of the traits, the phenotypic estimate exceeded

50% of the mean value; the total genotypic effect was

never larger than 18% of the mean.

Fig. 1 Relative comparison of phenotypic and genotypic

estimates of the total additive effect: box-and-whisker diagram

of the values âG=âFð Þ � 100; classified by the observed

phenotypic traits; (a) data set 1, (b) data set 2

Euphytica (2009) 165:113–122 117

123



Simulation study

Table 1 summarizes results of simulations performed

to compare the estimates obtained by the phenotypic

and genotypic methods.

The mean phenotypic estimate was always bigger

than 10, the true value (only for 10 QTL in many

linkage groups the effect was 9.42). The largest

values were obtained for 1 QTL, which may be

explained by the fact that in this situation there is

50% of minimal and 50% of maximal lines, not 3%

as the method assumes, and the difference between

extreme lines is overestimated. Also, a large value

was obtained for QTL located in one linkage group,

as in this situation all QTL are linked, and their

effects are accumulated in an additive way, which

increases the difference between extreme lines. We

observe also that increasing the error variance

results in an increase of the phenotypic estimate,

which is a result of a bigger range of mean values

for lines.

As to the mean genotypic estimates in Table 1,

they were smaller than 10, unless there was 1 QTL or

one linkage group. The values decreased with

increasing number of QTL or linkage groups, that

is, when it was more difficult to find all assumed

significant QTL with the stepwise regression. The

mean genotypic estimates were also smaller when

QTL effects were not equal, which is caused by a

difficulty with finding smaller effects.

The mean difference between the phenotypic

estimate and the genotypic estimate was always

positive and was the smallest when many QTL were

assumed.

The last two columns of Table 1 show that, in

general, a decrease of the estimates was accompa-

nied by an increase of their mean squared error.

Fig. 2 Scatterplot of genotypic estimates of the total additive

effect vs. corresponding phenotypic estimates (both values

expressed as % of the mean value of the trait)

Table 1 Phenotypic and

genotypic estimates of the

total additive effect

obtained in the simulation

study

Mean values calculated for

different values of

simulation parameters

Parameter Values Estimate Mean squared error for

âF âG âF � âG âF âG

Number of QTL 1 15.10 10.26 4.84 0.47 0.68

4 12.98 9.57 3.41 0.62 0.82

10 10.38 7.92 2.46 0.66 1.30

QTL effects Equal 12.13 9.38 2.75 0.64 0.96

Unequal 11.96 8.33 3.63 0.60 1.09

Number of LG with QTL 1 13.53 10.22 3.31 0.57 0.82

2 11.21 8.56 2.65 0.68 1.02

Many 10.99 7.83 3.16 0.65 1.21

Error variance 5 11.39 8.94 2.45 0.55 0.87

10 12.72 8.88 3.84 0.69 1.17

Total number of LG 5 12.09 9.22 2.87 0.62 1.09

7 12.03 8.84 3.19 0.62 1.01

10 12.06 8.67 3.39 0.62 0.96

Distances among QTL Equal 12.00 8.90 3.10 0.62 1.02

Unequal 12.12 8.92 3.20 0.62 1.02
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Tables 2 and 3 contain results of simulations

performed to analyse properties of the genotypic

estimates based on weighted regression. They were

always bigger than the ‘‘unweighted’’ ones. In

Table 2 it is seen that a difference exist is also in

the situation when the assumed variances for lines

were all equal; it was observed that this was caused

by a bigger number of markers selected as significant

by the weighted regression. This property probably

caused the weighted effect to be bigger in the

situation when the variance of extreme lines was

larger. Theoretically, the larger variance of extreme

lines, and, consequently, their smaller weights in

regression, decrease the regression coefficients. This

is because the means of marker classes are shifted

towards non-extreme values. An opposite effect of

increasing the estimate by assuming smaller variance

for extreme lines was correctly observed. If all

assumed variances were different, just a shift of

weighted means for extreme lines was observed,

without a big change of the estimate of the additive

effect. The mean squared errors of the weighted

estimates were bigger. The weighted estimates were

always closer to the phenotypic estimates than the

unweighted ones.

In Table 3 it can be seen that the difference

between unweighted and weighted estimates

decreased when the number of QTL and the number

of linkage groups with QTL increased. The weighted

estimates were closer to the phenotypic ones than

unweighted estimates in all situations except for the

last case, when the number of QTL and linkage

groups was large; here, the weighted estimate was

closer to the true value of 10.

Discussion

The aim of the breeding process is obtaining new

genotypes with characteristics improved over the

parental forms. The parameter connected with the

additive gene action can influence decisions about

usefulness of the breeding material for that purpose.

In this paper the methods of estimation of the total

additive gene action effect were compared analyti-

cally, numerically and by simulations.

The analytic comparison shows that, under the

assumption of correct segregation and no linkage

between markers, the formulae for the phenotypic

and genotypic estimators are comparable, and that the

Table 2 Phenotypic and genotypic estimates of the total additive effect obtained in the simulations performed to study the per-

formance of weighted regression

Variance of lines Estimate Mean squared error for

âF âG Weighted âG âG � weighted âG âF âG Weighted âG

Minimal Other Maximal

10 5 10 9.83 9.28 9.40 -0.12 0.23 0.46 1.72

10 10 10 9.82 9.26 9.80 -0.54 0.23 0.49 1.58

10 20 10 9.83 9.25 10.12 -0.87 0.24 0.56 1.65

10 20 30 10.36 9.18 9.98 -0.80 0.33 0.75 2.6

Mean values for different assumed variances of lines

Table 3 Phenotypic and genotypic estimates of the total additive effect obtained in the simulations performed to study the per-

formance of weighted regression

Number of QTL Total number of LG Estimate Mean squared error for

âF âG Weighted âG âG � weighted âG âF âG Weighted âG

4 1 11.51 10.12 11.09 -0.97 0.18 0.18 1.19

4 m 10.97 9.93 10.40 -0.47 0.27 0.18 1.54

10 2 9.65 8.91 9.49 -0.58 0.30 0.53 1.84

10 m 7.69 8.01 8.33 -0.32 0.29 1.35 2.98

Mean values for different simulation parameters
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additive effect of each individual QTL is smaller than

the phenotypic effect. Therefore, the number of

declared QTL is mostly responsible for the relation

between phenotypic and genotypic estimators.

The numerical comparison of estimates of the

additive gene action effect was based on three

examples: two concerning doubled haploid lines of

barley and one concerning recombinant inbred lines

of maize. In total 162 sets of observations were

analyzed. The comparison shows that usually the

genotypic estimate of a is smaller than the phenotypic

one. So, the situation is different than in the case

study reported by Snape (1997). But our results agree

with the intuition, because the phenotypic estimate is

an estimate of the total additive effect of all genes

influencing the trait, whereas the estimate obtained on

the basis of genotypic observations is an estimate of

the additive action of only selected genes. The range

of differences between the two estimates observed in

our study is most probably a consequence of consid-

ering a large variety of experimental situations, traits

and environments.

The simulation study performed to compare the

estimation methods could not, obviously, take into

account all possible experiemental situations. In our

opinion, however, the applied combinations of

parameters correspond to the cases often met in real

QTL studies. The results obtained from the simula-

tion study show some stability of the properties of

both methods of estimation over different types of

genetic material. The lack of influence of the number

of chromosomes on estimation of additive gene

action effect by both methods and on conclusions

concerning the comparison of proposed methods of

estimation, shows good prospect for application of

our conclusions for different plant species. Moreover,

the lack of influence of the distance between markers

shows a possibility of using those methods for

different genetic maps.

In contrary, the number of assumed QTL and their

assumed positions, in one or many linkage groups,

were found to have a large effect on the estimates and

their comparison. The phenotypic estimate decreased

towards the true value of a when the number of

assumed QTL was increasing, that is, when the

applied criterion of selection of extreme lines (3%)

became realistic. For the largest number of QTL, 10,

it could be smaller than the true value, as the

genotypic combinations generating extreme lines

were not adequately represented in the simulated

sample. Also, the phenotypic estimate tended to the

true value when the number of linkage groups with

QTL increased, that is, when no excessive accumu-

lation of linked individual effects took place. The

genotypic estimate decreased its value in approxi-

mately the same way as the phenotypic one.

However, it could become smaller than the true

value already for a moderate number of QTL, 4, and

for a moderate number of linkage groups, 2, that is,

when, in addition to underrepresentation of the tails

of the distribution, also the problems with identifying

all significant QTL were accumulating. The differ-

ence between the phenotypic and the genotypic

estimate was the smallest when there was many

QTL, that is, when a model closest to a truly

polygenic one applied.

The discrepancy between phenotypic and geno-

typic estimates of the total additive effect, observed

in both our numerical and simulated comparisons,

comes partially from the fact that, obviously, the

genotypic methods does not find all genes affecting

the trait. Our study of weighted regression shows,

however, that the difference between the phenotypic

and genotypic estimate can be decreased when we

agree that a natural possibility of a smaller variance

of the minimal and maximal lines, located at the

extremes of the phenotypic distribution, exists. When

appropriate bigger weights are used in regression of

the trait on marker data, the individual QTL effects

are increased, and the number of QTL found is bigger

than in ordinary regression. As a result, the total

genetic effect is expected to be closer to the true

value.

With respect to the weighted regression, it is also

interesting to note that the phenotypic estimate of the

additive effect a given by (1) is equivalent to the

coefficient of regression of phenotypic values of

extreme lines on a dummy variable with elements 1

and -1 for, respectively, maximal and minimal lines.

In other words, its calculation is equivalent, theoret-

ically, to performing weighted regression of

phenotypic observations on one hypothetical marker,

with weights equal to 1 for extreme lines and 0 for

other lines. Now, QTL localization methods by

ordinary regression use many markers and weights

equal for all lines. So, the weighted regression can be

seen as an intermediate approach, which can give

more weight to the extreme lines, thus closing the gap
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between the phenotypic and genotypic estimates of

the additive effect. We see this fact as interesting

from theoretical rather than practical point of view.

The weighted regression can rarely be applied in

practice, as usually only the plot data are available, or

the number of measured plants is small, which may

affect the quality of the variance estimates.

We admit that, to some extent, the results obtained

by the estimation method utilizing the genotypic

information depend on the QTL localization method

used. The method used here was a simple one, of

stepwise regression. However, a comparison with the

sources reporting analysis of the same data by using

other methods, also interval mapping (Frova et al.

1999; Hayes et al. 1993; Hayes and Iyarnabo 1994;

Sari-Gorla et al. 1999; Tinker et al. 1996) shows that

comparable results were obtained, with respect to the

number of QTL and amount of variability explained

by the model. This suggests that in our computations

no downward bias, resulting from an incomplete

linkage between markers and QTL, was observed.

Also, the model used for estimation of additive

effects does not take into account epistasis. Pre-

liminary computations using a model with QTL 9

QTL interactions suggest that in such a model the

estimated additive effect is usually decreased. So, the

conclusions reached here should not be changed

when epistasis is considered. However, this has not

been proved yet by simulations.

Note that our results obtained from the data

analysis, showing that usually the genotypic estimate

was smaller than the phenotypic one, and results of

simulations, showing that it was smaller than the true

value, suggest that no upward bias, in the sense of

Melchinger et al. (1998), was observed. Therefore, no

cross-validation described by these authors was used.

The general conclusion from our results is that, in

practical studies, estimates of the total additive effect

for quantitative trait loci smaller than the total

phenotypic estimate should be expected. If an

opposite situation is found, it should be analysed,

for example, if the genetic assumptions of correct

segregation and no close linkage among markers are

fulfilled.
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