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Abstract Flour color is an important trait in the
assessment of flour quality for the production of
many end products. In this study, quantitative trait
loci (QTLs) with additive effects, epistatic effects,
and QTL x environment (QE) interactions for flour
color in bread wheat (Triticum aestivum L.) were
studied, using a set of 168 doubled haploid (DH) lines
derived from a Huapei 3 x Yumai 57 cross. A
genetic map was constructed using 283 simple
sequence repeats (SSR) and 22 expressed sequence
tags (EST)-SSR markers. The DH and parents were
evaluated for flour color in three environments. QTL
analyses were performed using QTLNetwork 2.0
software based on a mixed linear model approach.
A total of 18 additive QTLs and 24 pairs of epistatic
QTLs were detected for flour color, which were
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distributed on 19 of the 21 chromosomes. One major
QTL, galB, closely linked to barc372 0.1 cM, could
account for 25.64% of the phenotypic variation of a*
without any influence from the environments. So
galB could be used in the molecular marker-assisted
selection (MAS) in wheat breeding programs. The
results showed that both additive and epistatic effects
were important genetic basis for flour color, and were
also sometimes subject to environmental modifica-
tions. The information obtained in this study should
be useful for manipulating the QTLs for flour color
by MAS in wheat breeding programs.
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Introduction

Wheat (Triticum aestivum L.) is one of the most
important staple crops worldwide. Flour color is an
important trait in the assessment of flour quality for
the production of many end products (Parker and
Langridge 2000). Flour with high levels of yellow
pigmentation is preferred for Chinese and Japanese
alkaline noodle production. In many Asian countries,
noodles are prepared from flour specifically selected
to enhance the color of the final product (Kruger et al.
1994). Miskelly (1984) detected a significant positive
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correlation between flour color and noodle sheet
yellowness in both Chinese and Japanese noodles.
However, other end products such as bread, steamed
bread, dry white noodles, and dumplings require
white flour with extremely low levels of yellow
pigmentation. Color readings are usually expressed as
L* (lightness), a* (red-green chromaticity), and b*
(yellow-blue chromaticity) of the flour sample (CIE
1976). Theoretically, a pure white flour should have
zero values for a* and b*, and one hundred for L*
(Sun et al. 2002). Low values of L* with high
positive values of a* result in a gray and dull color.
Significant variations in flour color exist among
genotypes of wheat. Moreover, environment and
management practices may have impacts on flour
color. Grain protein content, hardness, vitreousness,
seed coat color, and kernel size and shape may all
contribute to variations in flour color (Zhang and
Tian 2008). The flour color from low-protein-content
wheat is more white than the flour from high-protein-
content wheat at the same milling extraction ratio.
Flour from wheat with a red seed coat has higher a*
values than flour from the wheat with a white seed
coat (Zhang and Tian 2008). Some recently released
varieties show good agronomic characteristics and
are high yielding but contain high levels of flour
carotenoids, limiting the end product uses (Parker and
Langridge 2000). It is of great value to understand the
wheat cultivar’s molecular genetic regulation and to
select them effectively for genetic and plant breeding
purposes. Flour color behaves as a typical quantita-
tive trait. With conventional breeding methods, the
selection efficiency for flour color is low.

Recently, the development of molecular markers
such as restriction fragment length polymorphisms
(RFLPs) and simple sequence repeats (SSRs), and their
maps, have provided powerful tools for elucidating the
genetic basis of quantitatively inherited traits, includ-
ing most of the agriculturally important and quality
traits, which makes them feasible to detect and map
QTLs in a wheat population, even from a cross between
two wheat cultivars (Huang et al. 2003). QTLs asso-
ciated with important traits have been identified in
wheat, including agronomic traits, grain yield, disease
characters, and quality traits (Borner et al. 2002; Liu
et al. 2002; Ma et al. 2005; Huang et al. 20006).
Furthermore, DNA MAS has made it possible to
develop near-isogenic lines and chromosome segment
substitution lines for QTL regions affecting agronomic
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and quality traits (Lin et al. 2000; Ma et al. 2002).
There are several reports for flour color associated with
markers. Parker et al. (1998) identified ten RFLP
marker loci that showed significant associations with
QTLs for flour color, located on chromosomes 3A and
7A, by using 150 single seed descent (SSD) lines. The
estimated heritability of flour color was calculated as
0.68, indicating that a large part of the expression of
this trait is genetically controlled, making it easier to
manipulate at the genetic level in a breeding program.
Mares and Campbell (2001) reported that xanthophyll
content was very strongly associated with QTLs
located on chromosomes 3B and 7A in 163 DH lines
derived from Sunco x Tasman. Zhang et al. (2006)
identified eight QTLs for b* located on chromosomes
1DS, 2DL, 3A, 4D, 5D, 6AL, 6D, and 7AL. Knott
(1984) reported that a gene for b* was linked to Lr19 in
‘Agatha’ wheat. One SSR and sequence related
amplified polymorphism (SRAP) marker closely
linked to a Lrl9 resistance trait was obtained, and
were named wms44 and M73 with genetic distances 0.9
and 2.6 cM, respectively (Li et al. 2005; Liu et al.
2007a). A co-dominant amplified fragment length
polymorphism (AFLP) marker linked to a major locus
controlling flour color in wheat has been converted to
an sequence tagged sites (STS) marker for wider
applicability in MAS (Parker and Langridge 2000).
However, most previous studies have focused on b*;
very few studies have reported on a* and L* values,
which are also very important components of flour
color in wheat.

Epistatic effects have been considered to be impor-
tant for complex traits by many researchers (Cao et al.
2001; Fan et al. 2005; Ma et al. 2005, 2007). Deter-
mining the contribution of epistasis to complex traits is
important for understanding the genetic basis of
complex traits. Hence, genetic models for QTL
mapping assuming no epistasis could lead to a biased
estimation of QTL parameters. Large numbers of
epistatic effects have recently been detected in rice and
maize by using polymorphism markers in the whole
genome (Cao et al. 2001; Fan et al. 2005; Ma et al.
2007). Ma et al. (2005) provided strong evidence for
the presence of epistatic interactions on dough rheo-
logical properties in a wheat DH population. So far, no
information has been found available on the role of
epistasis in controlling flour color in wheat.

Genotype-by-environment  interactions  have
received much attention in crop-breeding programs
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(Dudley et al. 1996), which are important for MAS in
crop improvement (Wang et al. 1999). A mixed-
model-based composite interval mapping (Wang
et al. 1999) methodology was proposed for mapping
QTLs with additive effects and epistatic effects as
well as their QE interactions, and the software
QTLNetwork 2.0 (Yang and Zhu 2005) has been
developed for analyzing the experimental data. This
method has been successfully applied in recent QTL
mapping studies (Liu et al. 2007b; Ma et al. 2007;
Rebetzke et al. 2007).

In the present study, we investigated flour color for
a DH population by using the software of QTLNet-
work 2.0 (Yang and Zhu 2005), based on the method
of mixed linear models (Wang et al. 1999). The
primary goal of the study described here was to detect
QTLs with additive effects, epistatic effects, and QE
interactions for flour color (a*, b*, and L*), with the
aim of identifying markers that could be used for
MAS. The results should be useful in relevant wheat
breeding programs.

Materials and methods
Plant materials

A population of 168 DH lines was produced by
hybridization with maize pollen of wheat F; hybrid
plants from the cross between two Chinese bread
wheats Huapei 3 x Yumai 57 and used for the con-
struction of a genetic linkage map. Huapei 3 and
Yumai 57 were registered by Henan in 2006 (Hai and
Kang 2007) and by the State (China) in 2003 (Guo
et al. 2004), respectively. Huapei 3 is a hard wheat
with a higher grain protein content and wet gluten
content. Yumai 57 is a soft wheat with higher gluten
index and sodium dodecyl sulfate (SDS) sedimenta-
tion volume and is more productive under different
ecological conditions (Hai and Kang 2007; Guo et al.
2004). The parents both have white seed coats.

Field trials and flour color evaluation

Field trials were conducted under three environments
during 2005 and 2006 in Taian, Shandong Province,
and in 2006 in Suzhou, Anhui Province. The exper-
imental design followed a completely randomized

block design with three replications at each location.
In autumn 2005, all lines and parental lines were
grown in 2-m-long three-row plots (25 cm apart),
whereas in autumn 2006, they were grown in 2-m-
long four-row plots (25 cm apart). Suzhou and Taian
show large differences in climate, soil conditions, and
day length. At Taian, there were remarkable differ-
ences in temperature and soil conditions between the
years 2005 and 2006. Management was in accordance
with local practice. The lines were harvested individ-
ually at maturity to prevent yield loss from
overripening. Harvested grain samples per line from
the three replicates at each environment were mixed
and cleaned prior to conditioning and milling in order
to maintain a manageable number of samples for
quality testing.

One thousand grams of grain samples from each
line at each environment were milled by using a
Buhler experimental mill (model-MLU 300 M/s
Buhler, Uzwil Switzerland). Color measurements of
flour samples were carried out using a Minolta Color
Meter 310 (Minolta Camera Co, Ltd, Japan) on the
basis of L*, a*, and b* values (CIE 1976). The L*
value indicates the lightness, with 0—100 representing
darkness to lightness. The a* value gives the degree
of the red—green color, with a higher positive a*
value indicating more red. The b* value indicates the
degree of the yellow-blue color, with a higher
positive b* value indicating more yellow (Hutchings
1994). Colorimeter scores were taken five times per
sample. The mean values of flour color in each
environment were used for statistical analyses.

DNA marker assay and construction
of genetic map

DNA was extracted from freeze-dried leaves as
described by Ellis et al. (2005). A total of 2,002
polymorphism markers were determined using paren-
tal DNA. Primer sequences for 260 Xgwm (wms) and
82 Xgdm microsatellite markers were available from
Roder et al. (1998) and Pestsova et al. (2000). Mark-
ers, 621 Xwmc and 480 Xbarc, were available from the
Graingenes website (http://www.wheat.pw.usda.gov/
ggpages/SSR/WMC/) and the US wheat and barley
scab initiative website (http://www.scabusa.org/pdfs/
BARC_SSRs_011101.html), respectively. Thirty BE
markers were available from Chen et al. (2005). Fifty
Xcfa, 130 Xcfd, 48 Xcwem, and 301 Xcfe markers were
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kindly provided by Dr. Xianchun Xia, Chinese
Academy of Agricultural Sciences, Beijing, China.
Amplification reactions were carried out in a 20 pl
reaction mixture, containing 3.6 pl genomic DNA
(20 ng/pl), 1.5 pl MgCl, (25 mmol/l), 1.2 ul dNTP
mixtures (2.5 mmol/l), 2.0 pl 10x PCR buffer, 0.5 pl
primer (10 pmol/l), 0.2 pl Tag polymerase enzyme
(5 units/pl), and 11.0 Wl ddH,O. The polymerase
chain reactions (PCR) were performed in 96-well
microtiter plates by using an Eppendorf AG 22331
Hamburg thermal cycler (Eppenf, Hamburg, Ger-
many). DNA amplification was programmed at 95°C
for 5 min, followed by 36 cycles of 95°C for 1 min,
50-65°C (depending on the primer combinations) for
50 s, 72°C for 1 min, and a final extension of 10 min
at 72°C before cooling to 4°C. After amplification, the
PCR products were mixed with 5.6 pl loading buffer
(2.5 mg/ml bromophenol blue, 2.5 mg/ml diphenyl-
amine blue, 10 mmol/l EDTA, 95% (v/v) formamide),
denatured for 5 min at 95°C, and chilled on ice for
5 min. The PCR products were separated using 6%
(W/V) denatured polyacrylamide gel and were
detected by silver staining (Karakousis et al. 2003).

Statistical analysis

Analysis of variance (ANOVA) was carried out using
the SPSS version 13.0 (SPSS, Chicago, USA)
program. QTL analyses were performed using QTL-
Network software version 2.0 (Yang and Zhu 2005)
based on a mixed linear model (Wang et al. 1999).

Composite interval analysis was undertaken using
forward-backward stepwise, multiple linear regres-
sion with a probability into and out of the model of
0.05, and window size set at 10 cM. QTL was
declared if the phenotype was associated with a
marker locus at P < 0.005. The final genetic model
incorporated significant additive effects and epistatic
effects as well as their environment interactions.

Results
Statistical analysis of the phenotypic assessments

Mean values of flour color for the parents Huapei 3
and Yumai 57, as well as the 168 DH lines under
three environments in 2005 and 2006 cropping
seasons, are shown in Table 1 and Fig. 1. Huapei 3
had a higher value for b*, while Yumai 57 had higher
values for both a* and L*. Transgressive segregants
were observed for the three traits among the DH lines
in the three environments. Three traits of the DH
population segregated continuously and followed a
normal distribution (Fig. 1), and both absolute values
of skewness and kurtosis were less than 1.0 (Table 1),
indicating its polygenic inheritance and suitability of
the data for QTL analysis (Cao et al. 2001).

The correlations among the a*, b*, and L* values
are shown in Table 2. Significantly negative correla-
tions were detected between L* and b* (r = —0.559),
and between a* and b* (r = —0.494).

Table 1 Phenotypic of flour color (a*, b*, and L*) for Huapei 3, Yumai 57, and their DH progenies evaluated at three environments

in the 2005 and 2006 cropping seasons

Trait Environment Parents DH population
Huapei 3 Yumai 57 Mean SE Max. Min. SD Skew. Kurt.
a* Envl: 2006 Suzhou —1.16 —-0.96 —-1.17 0.02 -0.71 —1.78 0.20 —0.04 —-0.24
Env2: 2006 Taian —1.05 —0.95 -0.97 0.01 —0.49 —1.44 0.17 —0.24 0.35
Env3: 2005 Taian —1.00 —0.92 —0.91 0.01 —0.50 —1.31 0.18 —0.01 —0.60
b* Env1: 2006 Suzhou 9.29 7.15 8.32 0.07 10.66 6.39 0.86 0.10 0.55
Env2: 2006 Taian 9.13 6.67 8.22 0.07 10.21 6.01 0.93 —0.10 —0.47
Env3: 2005 Taian 9.27 7.12 8.35 0.08 10.84 6.07 1.02 0.10 —0.60
L* Env1: 2006 Suzhou 90.85 91.08 90.78 0.07 93.36 88.16 0.83 —0.50 0.89
Env2: 2006 Taian 92.10 93.32 92.41 0.04 93.44 91.17 0.48 —0.07 —0.67
Env3: 2005 Taian 91.45 93.25 92.46 0.05 93.53 90.64 0.58 —0.52 —0.09

Mean, SE, Max., Min., SD, Skew., and Kurt. are the average, standard error, maximum, minimum, standard deviation, skewness, and
kurtosis of all observations for the DH population in the three environments
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Table 2 Coefficients of pairwise correlations of flour color
(a*, b*, and L*) for the DH progenies evaluated at three
environments in the 2005 and 2006 cropping seasons

Trait a* b*
b* —0.494%*
L* —0.181%* —0.559%*

* Significance at the 0.05 level of probability
** Significance at the 0.01 level of probability, respectively

Construction of the genetic map

A genetic map of the DH population with 305 SSR
markers, including 283 SSR and 22 ESTs loci, was
constructed, covering a total length of 2141.7 cM,
with an average distance of 7.02 cM between adja-
cent markers in the genome. Ten SSR markers
remained unlinked. These markers formed 24 linkage
groups at logarithm of the odds ratio (LOD) >3.0.
The chromosomal locations and marker orders in the
map were in accordance with the microsatellite map
for Triticum aestivum L. (Somers et al. 2004). The
recommended map distance for genome-wide QTL
scanning is an interval length less than 10 cM
(Doerge 2002). Therefore the map is suitable for
genome-wide QTL scanning.

QTLs for flour color

Eighteen QTLs with additive effects and/or addi-
tive x environment (AE) effects were detected for
flour color in three environments (Table 3, Fig. 2),
ranging from four to eight QTLs for each trait, and
were distributed on 12 of the 21 chromosomes.

Twenty-four pairs of QTLs with epistatic effects
and/or epistasis x environment (AAE) effects were
detected for flour color in the three environments
(Table 4, Fig. 2), ranging from four to ten QTLs for
each trait. The highest numbers of QTLs with
epistatic effects were found in b* and L* with ten
pairs of QTLs. In contrast, only four pairs of QTLs
were detected for a*.

QTLs for a*

Six additive QTLs were detected for a*, on chromo-
somes 1B, 3B, 5D, 6A, 6D, and 7D. They increased a*
from 0.03 to 0.10, explaining phenotypic variance from
2.24% t0 25.64%. galB had the most significant effect,
accounting for 25.64% of the phenotypic variance.

@ Springer

Three QTLs (qalB, qa5D, and ga6D) had negative
effects on a* and were contributed by Yumai 57 alleles
while the other loci had positive effects on a* and were
transmitted by Huapei 3 alleles. This suggested that
alleles which increased a* were dispersed within the
two parents, resulting in small differences of pheno-
typic values between the parents and the transgressive
segregants among the DH population. The total
contribution of all the six QTLs to a* was 41.29%.
ga5D was also involved in AE interactions in two
environments. The AE interactions explained 2.90% of
the phenotypic variance of a*.

Four pairs of epistatic effects were identified for a*
and located on chromosomes 1A—7B, 2A-4B, 4D-6A,
and 5B-7B. They explained the phenotypic variance
ranging from 0.60% to 2.35%. qa4D/qa6A had a
positive effect of 0.03. However, the other three pairs
showed negative effects on a*. The general contribu-
tion of four pairs of epistatic QTLs was 7.10%, while
no main-effect QTL was detected in epistatic effects.
No AAE interactions were identified for a*.

For a*, the total QE interactions could explain
2.90% of the phenotypic variance.

QTLs for b*

Four QTLs with additive effects significantly influ-
enced b* were located on chromosomes 2B, 3D, 4D,
and 5A. The gb5A made the highest contribution and
explained 4.30% of the phenotypic variance. All four
QTLs could account for 11.21% of the phenotypic
variance and were derived from Huapei 3 alleles,
which was in accordance with Huapei 3 having much
larger b*. No AE interactions were identified for b*.

Ten pairs of epistatic effects were resolved for b*
and were located on chromosomes 3D-5B, 1A-1B,
2A-3D, 2B-7A, 3A-5B, 3D—4D, and 6B-7D. Among
them, gb3A/gb5B had the highest contribution and
accounted for 6.15% of the phenotypic variance.
Three pairs of epistatic QTLs (¢gb3D-2/gb5B, qb3A/
gb5B, and gb6B/qb7D) had negative effects on b*.
However, the other seven pairs showed positive
effects on b*. The total contribution of ten pairs of
epistatic QTLs was 31.88%, so epistasis played a
strong effect on b*. One main-effect QTL, gb3D-2,
was involved in three pairs of epistatic effects. No
AAE interactions were identified for b*.

For b*, no QE interactions were detected in this
study.
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QTLs for L*

Eight main-effect QTLs were identified for L*. These
QTLs increased the L* from 0.06 to 0.16, and
accounted for the phenotypic variance ranging from
0.82% to 6.14%. The total contribution of the main-
effect QTLs could explain 22.28% of the phenotypic
variance of L*. Among them, three alleles (¢/I/B-1,
ql4B, and ¢l7B) came from the parent Huapei 3 and
the rest derived from the parent Yumai 57 alleles.
This suggested that alleles for increased L* were
dispersed within the two parents. This result was also
in accordance with the presence of a wide range of
variation and transgressive segregations of L* in the
DH population. Two QTLs were involved in AE
interactions, which could explain 3.01% of the
phenotypic variance of L*.

Ten pairs of epistatic QTLs for L* were resolved,
explaining the phenotypic variance ranging from
0.80% to 6.24%. ql4D-1/ql5A had the largest effect,
with a negative effect of —0.17, accounting for 6.34%
of the phenotypic variance. The total contribution of
epistatic QTLs was 21.36%. Three main-effect QTLs
(g/3D, ql7B, and ql7D) were detected in epistatic
effects. Two pairs of epistatic QTLs were also
involved in AAE interactions, accounting for 3.88%
of the phenotypic variance.

For L*, the total QE interactions could explain
6.89% of the phenotypic variance.

Discussion

Epistasis is an important genetic basis of flour
color in wheat

Epistasis as an important genetic basis of complex
traits has been well demonstrated in recent QTL
mapping studies (Cao et al. 2001; Fan et al. 2005; Ma
et al. 2005, 2007). Ma et al. (2005) provided strong
evidence for the presence of epistatic effects on dough
rheological properties in a wheat DH population. In the
present study, 24 pairs of QTLs with epistatic effects
and/or AAE effects were detected for flour color in
three environments (Table 4, Fig. 2), ranging from
four to ten QTLs for each trait. Epistatic effects could
explain 7.10%, 31.88%, and 21.36% of the phenotypic
variance of a*, b*, and L*, respectively. Furthermore,
epistatic effects had a significant effect on b*, which

could account for 31.88% of the phenotypic variance.
So epistasis is an important genetic basis of flour color
in wheat. The results indicate the complexity of the
genetics of wheat flour color.

Relationship between additive effects and
epistatic effects of flour color in wheat

It would be interesting to study the relationships
between additive QTLs and epistatic QTLs identified.
The majority (92.59%) of loci involved in the epistatic
interactions did not appear to have significant additive
effects on flour color in wheat. For example, ten pairs
of epistatic effects were identified for L*; 15 single
loci involved in epistatic effects had no additive
effects. Similarly, Ma et al. (2007) observed that 37%
of the main-effect QTLs were involved in the epistatic
interactions in maize grain yield and its components.
This indicated that many loci in epistatic effects might
not have significant effects for flour color alone but
might affect its expression by epistatic effects with the
other loci. The results also suggest that some of the
additive QTLs might be detected with effects con-
founded by epistatic effects, if the epistatic effects
were ignored in QTL mapping. Thus, breeders must
take into account such complexity and test for the
effects of individual loci in the targeted genetic
background in order to obtain the expected pheno-
types of the interested genes.

Comparison of the present study with previous
researches

In previous studies (Knott 1984; Parker et al. 1998;
Mares and Campbell 2001; Zhang et al. 2006), QTL
studies for wheat flour color were conducted based on
the additive-dominant model and usually assumed
absence of epistasis among QTLs. However, epistasis
between nonallelic QTLs for some complicated
quantitative traits may exist. In the present study,
both additive and epistatic effects of QTLs were
obtained based on the method of mixed linear
models. Furthermore, epistasis was an important
component for b*, accounting for 31.88% of the
phenotype variation (Table 4).

Knott (1984) reported a gene for b* linked to Lri9
in ‘Agatha’ wheat. One SSR and SRAP marker
closely linked to Lrl9 resistance trait were obtained,
and were named wms44 and M73 on chromosome 7D
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with genetic distances 0.9 and 2.6 cM, respectively
(Li et al. 2005; Liu et al. 2007a). At a similar
location, additive QTLs associated with a* and L*
were also detected in this study. Near this location,
one epistatic QTL was detected for b*. Parker et al.
(1998) identified ten RFLP marker loci that showed
significant associations with QTLs for flour color,
located on chromosomes 3A and 7A, by using a SSD
population of 150 lines. Zhang et al. (2006) identified
eight QTLs for b*, located on chromosomes 1DS,
2DL, 3A, 4D, 5D, 6AL, 6D, and 7AL. Mares and
Campbell (2001) reported that xanthophyll content
was very strongly associated with QTLs located on
chromosomes 3B and 7A in 163 DH lines derived
from Sunco x Tasman. In this study, three epistatic
QTLs were also detected for b* on chromosomes 3A,
5B, and 7A. Four QTLs with additive effects were
resolved for b* on chromosomes 2B, 3D, 4D, and 5A,
and ten pairs of epistatic effects were detected for b*
on chromosomes 3D-5B, 1A-1B, 2A-3D, 2B-7A,
3A-5B, 3D-4D, and 6B-7D in the present study.

These differences might be attributed to following
possibilities. First, differences in mapping popula-
tions and experimental environments were studied in
various QTLs mapping. Second, different QTL
mapping approaches were used in various studies.
Third, some of the genes involved in the wheat flour
color pathway did not show any allelic variation
between the two parents (Huapei 3 and Yumai 57).
Consequently, several loci could not be identified on
some chromosomes. Fourth, the coverage of the
genome was not complete in the present map; some
QTLs associated with b* could not be detected,
which might possibly affect the QTLs in the DH
population. For complete analysis, a detailed map
with total genome coverage is required.

To date, very few studies reported the QTLs which
are associated with a* and L*. A significantly negative
correlation was detected between L* and b* (r = —
0.559) and a* and b* (r = —0.494). So it was very
important to study the genetic basis of a* and L* so as
to achieve ideal flour color in wheat. In this study, six
additive QTLs and four pairs of epistatic QTLs were
detected for a*. One major QTL, galB, was closely
linked to barc372 0.1 cM and could account for
25.64% of the phenotypic variance of a* without any
environmental influence. So, gal/B can be used for
wheat MAS. This is a new and promising locus to
improve our knowledge of wheat flour genetic

@ Springer

mechanism for a*. To better understand it, a
marker-assisted backcrossing procedure had been
initiated in our group. Near-isogenic line development
and fine mapping of galB are now ongoing following
a strategy described by Saito et al. (2004). Closely
linked flanking markers associated with major QTL
could be further developed by converting them to STS
markers for application in MAS. Eight additive QTLs
and ten pairs of epistatic QTLs were identified for L*.

The present investigation might be the first report
of epistatic QTLs associated with flour color using
molecular markers. The results indicated that epista-
sis was an important genetic basis of flour color in
wheat. Therefore, genetic models for QTL mapping
assuming no epistasis could lead to a biased estima-
tion of QTL parameters. The results showed that both
additive and epistatic effects were important genetic
bases of flour color. In addition, additive effects and
epistatic interactions were also sometimes subject to
environmental modifications.

In summary, a total of 18 additive QTLs and 24 pairs
of epistatic QTLs were detected for flour color in 168
DH lines derived from a Huapei 3 x Yumai 57 cross,
which were distributed on 19 of the 21 chromosomes.
One major QTL, galB, was closely linked to barc372
0.1 cM and could account for 25.64% of the pheno-
typic variation of a* without any influence from the
environment. Therefore, galB could be used in MAS in
wheat breeding programs. The results showed that both
additive and epistatic effects were important in the
genetic basis of flour color, and were also sometimes
subject to environmental modifications.
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