
Abstract The importance of reduced tillage

in sustainable agriculture is well recognized.

Reduced-tillage practices (which may or may

not involve retention of crop residues) and their

effects differ from those of conventional tillage

in several ways: soil physical properties; shifts in

host–weed competition; soil moisture availability

(especially when sowing deeply or under stub-

ble); and the emergence of pathogen popula-

tions that survive on crop residues. There may

be a need for genotypes suited to special forms

of mechanization (e.g. direct seeding into resi-

dues) and to agronomic conditions such as

allelopathy, as well as specific issues relating to

problem soils. This article examines issues and

breeding targets for researchers who seek to

improve crops for reduced-tillage systems. Most

of the examples used pertain to wheat, but we

also refer to other crops. Our primary claim is

that new breeding initiatives are needed to

introgress favourable traits into wheat and other

crops in areas where reduced or zero-tillage is

being adopted. Key traits include faster emer-

gence, faster decomposition, and the ability to

germinate when deep seeded (so that crops

compete with weeds and use available moisture

more efficiently). Enhancement of resistance to

new pathogens and insect pests surviving on

crop residues must also be given attention. In

addition to focusing on new traits, breeders

need to assess germplasm and breeding popu-

lations under reduced tillage. Farmer participa-

tory approaches can also enhance the

effectiveness of cultivar development and

selection in environments where farmers’ links

with technology providers are weak. Finally,

modern breeding tools may also play a sub-

stantial role in future efforts to develop adapted

crop genotypes for reduced tillage.
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Introduction

Reduced tillage is becoming popular among

farmers around the globe. Due to the potential

for enhanced productivity and cost savings, most

leading agricultural institutions and governments

are promoting reduced tillage. The practice is

gaining popularity in rice–wheat cropping areas in

South Asia (Hobbs 2001; Joshi et al. 2005), which

at 14 million hectares cover around one-third of

the total rice area and two-fifths of the total wheat

area in India, Pakistan, Nepal, and Bangladesh,

and account for some 30% of those nations’ rice

and wheat outputs (Hobbs and Morris 1996) and

over half of the 24 million hectares of rice–wheat

systems in the Asian subtropics (Ladha et al.

2000; Joshi et al. 2005). Continuous rice–wheat

cropping in South Asia for several decades has

led to declines in productivity and raised concerns

about sustainability (Paroda et al. 1994; Hobbs

and Morris 1996; Joshi et al. 2006). The recent

adoption of resource-conserving practices is con-

sidered beneficial, but has also turned the atten-

tion of agricultural scientists to breeding

strategies that address the new production

circumstances.

Conventional tillage operations have three

broad objectives: (i) to place seed in the soil,

(ii) to break capillaries and aerate the soil, and

(iii) to control weeds. Zero-tillage or reduced

tillage does not involve these operations and

presents growing plants with conditions that differ

substantially from those of tilled soils, particularly

where residues are retained.

How no-till is different from conventional

tillage?

It has been suggested that no-till farming is more

than just the elimination of ploughing; it involves

developing a complete package of agro-ecologi-

cally sound management practices to fit the

overall scheme of farm systems trends of specific

regions (Lal et al. 2004). The concept challenges

the scientific basis of ploughing as an original,

universal method of soil preparation (Lal et al.

2004). From the viewpoint of plant breeding,

reduced tillage and its effects differ from those

of conventional tillage in many ways: (i) the

micro-environment (soil structure, available

moisture); (ii) the range of host–weed competi-

tion over years; (iii) the moisture regime for

deep-sown seed or under stubble; (iv) different

host–pathogen interactions/thresholds in the

presence of stubble and other crop residues; (v)

residue decomposition effects; (vi) abiotic stres-

ses; (vii) types of mechanization (seed drills, bed

planters); (viii) allelopathy effects; and (ix) crop

performance in problem soils (e.g. salinity, with

surface salt).

Suitable cultivars

In areas where reduced tillage is gaining popu-

larity, farmers require cultivars adapted to the

new practices (Joshi et al. 2004a, 2006). For sur-

face seeding and zero-tillage planting, the cultivar

should possess faster root development to enable

rapid establishment of the crop (Trethowan and

Reynolds 2005), thereby getting the seedling past

an early, harsh environment and taking the best

advantage of available soil moisture. The two

leading abiotic stresses of wheat, heat and

drought, are expected to intensify in future due to

global warming and water scarcities. Much of

South Asia’s rice–wheat zones qualify as heat

stressed, as defined by Fischer and Byerlee

(1991), with mean daily temperatures above

17.5�C in the coolest month. In addressing this

issue, breeders need to remain cognizant of the

importance of assimilate availability during the

rapid spike growth phase (Fischer 1985). Stress

adaptive traits, extensive root systems, medium-

tall to tall stature, and high tillering capacity, in-

crease the potential for nutrient and water up-

take, but do not necessarily increase yield (Blum

1996; Reynolds 2002).

Early studies failed to detect genotype · tillage

practice interactions (Dao and Nguyen 1989;

Ditsch and Grove 1991)—likely a result of the

small number of genotypes tested and perhaps the

fact that they were bred under conventional till-

age (Trethowan and Reynolds 2005). Recently,

significant genotype · tillage interaction was re-

ported in tests involving diverse genotypes,

requiring plant breeders to tailor cultivars to till-

age systems (Sayre 2002; Klein 2003). In a com-

parison of a conventional cultivar (Janz) and a
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novel experimental line (Vigor 18) bred for high

leaf vigour, Watt et al. (2005) found that the latter

grew best in unploughed soil. They suggested

faster root growth, different exudates promoting

more beneficial rhizosphere microflora, or modi-

fied shoot responses as possible mechanisms for

the superior growth of Vigor 18. Hence, vigorous

genotypes may present an opportunity for in-

creased productivity under reduced tillage (Watt

et al. 2005). In a study at Banaras Hindu

University, Varanasi, India, comparing 12 wheat

lines under conventional and zero-tillage condi-

tions for 3 years (2002–2004), cultivars PBW 443

and HD 2627 did not perform well under zero-

tillage, whereas cultivars HUW 468, HUW 234,

and PBW 343 performed equally well under both

tillage systems (Table 1). It is worth noting that

both HUW 234 and PBW 343 were developed

under conventional tillage and are known in India

as widely adapted and currently occupy some two

and six million hectares, respectively.

The tillage · genotype interactions discussed

above suggest that cultivar development should

be targeted to tillage requirements. Following this

approach, wheat breeders of the International

Maize and Wheat Improvement Center

(CIMMYT) have begun to select parental

materials on the basis of performance under zero-

tillage (Trethowan and Reynolds 2005). The

products of this approach need to be tested in

farmers’ fields.

In many regions, such as the eastern Indo-

Gangetic plains of South East Asia, reduced till-

age and residue retention are enabling farmers to

sow wheat earlier than normal, when tempera-

tures remain somewhat higher than the optimum

20�C. For such areas, wheat lines must possess

early heat tolerance. Alternatively, mild vernali-

zation could maintain cultivars in the vegetative

growth phase when temperatures are higher.

Likewise, it was observed that short-duration

wheat cultivars performed poorly (drastically re-

duced tillering and biomass accumulation) if sown

early. This is not the case with cultivars like PBW

343, considered late-maturing in the eastern Indo-

Gangetic plains. Hence, there is need to produce

cultivars with higher biomass and high grain

yields, given the same nutrient input. This genetic

improvement must come through both photo-

synthetic assimilation capacity and by partitioning

of assimilates to promote high grain number and

growth rate (Richards 1996; Reynolds et al. 2001).

Another way to increase grain number in wheat

will be to breed for multi-ovary florets with up to

six kernels per flower (Chen et al. 1998), taking

due care that this does not lead to very small

grains.

As indicated above, physiological selection

traits may also improve genetic yield potential in

wheat. A study in a high-yielding environment in

Mexico revealed that leaf photosynthetic rate,

leaf conductance, and canopy temperature

depression (CTD) were associated with yield

gains in eight spring wheat lines, representing

progress in yield potential between 1962 and 1988

(Fischer et al. 1998). These issues are equally

relevant under reduced-tillage environments. In

addition, physiological traits, including CTD,

were strongly associated with performance in

yield trials at a number of warmer wheat-growing

locations worldwide (Reynolds et al. 1994).

Physiologically selected traits for drought toler-

ance have been incorporated into a number of

Australian wheat breeding programs, including

higher transpiration efficiency, greater early vig-

our, and reduced tillering (Richards et al. 1996).

Leaf traits such as erect leaf posture could also be

useful under some conditions. Work at CIMMYT

Table 1 Yield performance of 12 wheat genotypes under
zero-tillage and conventional sowing in 3 years of testing

Genotype Treatments and mean yield
(kg)

Mean

Conventional Zero-tillage

HUW 234 4,211.11 4,323.44 4,267.28
HUW 468 5,152.33 5,209.67 5,181.00
HUW 510 4,125.33 4,172.11 4,148.72
HUW 516 5,309.44 5,350.11 5,329.78
PBW 343 5,212.11 5,134.56 5,173.33
PBW 443 4,201.11 3,985.67 4,093.39
HD 2627 5,002.89 4,828.11 4,915.50
HD 2733 4,886.78 4,943.11 4,914.94
UP 2338 4,503.11 4,550.11 4,526.61
NW 1012 4,710.89 4,767.11 4,739.00
DBW 14 4,275.11 4,333.11 4,304.11
Raj 3765 3,943.56 3,985.11 3,964.33
Mean 4,627.81 4,631.85

LSD0.05 for genotype main effects—42.51, treatment main
effects—NS, genotype · treatment combinations—60.12
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with near isogenic lines of spring wheat showed

that erect leaves were associated with higher

grain number and increased transpiration (Araus

et al. 1993). This trait was shown to reduce dis-

eases such as spot blotch in South Asia (Joshi and

Chand 2002) and reported to be useful under

moisture stress (Innes and Blackwell 1983). In

view of its importance, erect leaf was introgressed

into the wheat germplasm base, and is present in

some of CIMMYT’s highest-yielding durum and

common wheat lines (Fischer 1996).

Soil factors

The roots are the first and most important organ

that nourishes the plant, but has been neglected

by many plant breeders (Bais et al. 2001; Manske

et al. 2001). In reduced tillage, soils may initially

be more compact and unfavourable for root

growth. Reduced root growth in high-strength

soils may be partly responsible for patchy growth

and losses in yield of direct-drilled wheat with

surface straw retained (Cornish and Lymbery

1987; Kirkegaard et al. 1994). Plant breeders can

address this issue by developing cultivars with

increased root mass, able to handle soil physical

resistance and harvest nutrients from deeper

profiles. In a study at Banaras Hindu University,

root biomass was measured in pot experiments

for 12 wheat lines (Table 2). The plastic pots

(60 cm height · 30 cm diameter) were filled with

8 kg soil medium of two types (7.5:2:0.5 and 5:3:2

mixture of sand:silt:clay) to assess differences

among genotypes under diverse growing media.

Two cultivars (PBW 443 and HD 2627) that did

not yield well under zero-tillage possessed sig-

nificantly lower root biomass, whereas HUW 234,

the most popular cultivar of the Northeastern

Plains Zone of India, had a high root biomass

(Table 2). Other cultivars showed similar root

biomasses in the pot experiments.

In reduced tillage, soil is less disturbed; it is

thus suggested that soil–root contact is improved

and more suitable for the release of root exudates

(organic acids, carbohydrates, amino acids, en-

zymes, alkaloids, flavonoids, steroids, and terpe-

noids) that promote rhizosphere microflora and

can help protect the roots from pathogens

(Hocking 2001). There is a need to investigate

lines and cultivars for this trait.

Water requirements

Crops are often grown in environments where

water is a limiting factor, water use efficiency and

reduction in soil evaporation are important con-

siderations. Any increase in early seedling vigour

should reduce evaporative losses (Richards 1992).

If the crop duration is short, greater vigour is

likely to increase final biomass and yield and may

be an effective way to reduce weed growth. The

available information on the variation and

genetics of seedling emergence for wheat (Singh

et al. 1998a) and oats (Radford and Key 1993) can

be exploited for such purposes.

Among traits that contribute to increased

seedling vigour, coleoptile length is the most

important (Fick and Qualset 1976; Whan 1976).

Short coleoptiles result in poor emergence, lead-

ing to poor crop establishment. In dry environ-

ments, farmers sowing into a declining moisture

profile following rainfall often sow at greater

depth (8–12 cm) to ensure seed contact with

moisture (Paulsen 1987). Better emergence is

achieved by sowing wheat with long coleoptiles.

Table 2 Root biomass of 12 wheat genotypes under zero-
tillage and conventional sowing in 3 years of testing

Genotype Treatments and mean root
biomass (g)

Mean

Sand:
silt:clay
(7.5:2:0.5)

Sand:silt:
clay (6:3:1)

HUW 234 3.16 3.31 3.24
HUW 468 3.41 3.46 3.44
HUW 510 2.85 2.93 2.89
HUW 516 3.62 3.54 3.58
PBW 343 3.47 3.39 3.43
PBW 443 2.86 2.68 2.77
HD 2627 3.30 3.02 3.16
HD 2733 3.35 3.30 3.33
UP 2338 3.11 3.01 3.06
NW 1012 3.22 3.18 3.20
DBW 14 2.94 2.94 2.94
Raj 3765 2.98 2.83 2.90
Mean 3.19 3.13

LSD0.05 for genotype main effects—0.08, treatment main
effects—0.03, genotype · treatment combinations—0.11
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The presence of dwarfing genes is associated with

a significant reduction in coleoptile length (Allan

et al. 1962; Feather et al. 1968; Fick and Qualset

1976) and poor emergence under deep sowing or

stubble (Richards et al. 2001). Allan (1980) sug-

gested that the accumulation of modifier genes

which favour emergence could be important in

breeding for better-emerging semi-dwarf wheat

cultivars. Increased coleoptile length can be

achieved by selecting within semi-dwarf germ-

plasm (Beharev et al. 1998), but greater progress

can be made using parents that are sensitive to

gibberellic acid (GA), although short stature also

needs to be sought (Rebetzke et al. 1999). Wheat

cultivars and lines with long coleoptiles also tend

to have large early leaves and more rapid rates of

emergence, which together contribute to faster

leaf area development (Richards et al. 2001).

Trethowan et al. (2001) suggested the possibility

of selecting within families carrying Rht1 and

Rht2 dwarfing genes for potentially longer co-

leoptiles; they also suggested that wheat breeders

should be able to select short stature, non-Rht1 or

non-Rht2 hexaploid wheats (for example, those

bred from Seri 82 and Culiacan 89) with better

emergence characteristics, for environments

where deep sowing into stored soil moisture is

practiced.

Host–pathogen interactions

Despite the fact that surface residues constitute a

principal source of inoculum, reduced tillage with

residue retention has increased significantly

throughout North America (Anonymous 1995)

and many other countries. The effects of tillage

on the development and severity of crop diseases

vary, depending on the disease, type of tillage

system, and the effectiveness of other disease

management practices (Felton et al. 1978)

(Table 3). Of particular concern are crop diseases

favoured by cool and wet soils. The most trou-

blesome diseases in high-residue systems are

Fusarium head blight (Bai and Shaner 1994; Dill-

Macky and Jones 2000) and tan spot (caused by

Pyrenphora tritici repentis) (Trethowan and Rey-

nolds 2005). On the other hand, increases in soil

organic matter may favour friendly fungi such as

Trichoderma (Harman et al. 2004). T
a

b
le

3
E

ff
ec

t
o

f
cr

o
p

re
si

d
u

e
s

o
n

th
e

g
ro

w
th

a
n

d
re

p
ro

d
u

ct
io

n
o

f
p

a
th

o
g

e
n

s
o

f
d

if
fe

re
n

t
cr

o
p

s
g

ro
w

n
in

ri
ce

–w
h

e
a

t
cr

o
p

p
in

g
a

re
as

o
f

In
d

ia

D
is

e
a

se
P

a
th

o
ge

n
a

n
d

it
s

n
a

tu
re

H
o

st
ra

n
g

e
In

ci
d

en
ce

S
p

a
ti

a
l

v
a

ri
a

b
il

it
y

T
em

p
o

ra
l

v
a

ri
a

b
il

it
y

E
ff

e
ct

o
f

cr
o

p
re

si
d

u
e

S
o

il
b

o
rn

e
(s

e
e

d
li

n
g

d
is

e
a

se
s,

co
ll

a
r

ro
t,

d
a

m
p

in
g

o
ff

)

F
a

cu
lt

a
ti

v
e

p
a

ra
si

te
s:

P
h

y
th

iu
m

,
P

h
y

to
p

th
o

ra
,

R
h

iz
o

ct
o

n
ia

,
S

ce
le

ro
ti

u
m

,
M

a
cr

o
p

h
o

m
in

a

B
ro

a
d

L
o

ca
ll

y
h

ig
h

V
er

y
h

ig
h

d
e

p
e

n
d

in
g

o
n

sc
a

le
a

n
d

h
a

b
it

a
t

P
e

ri
o

d
ic

cy
cl

e
s

o
f

d
is

e
a

se

M
a

y
p

ro
m

o
te

d
is

e
a

se
u

p
to

1
5

N
o

v
e

m
b

e
r

in
E

a
st

e
rn

In
d

o
-

G
a

n
g

e
ti

c
p

la
in

s
W

il
t

F
a

cu
lt

a
ti

v
e

sa
p

ro
p

h
y

te
:

H
ig

h
D

e
p

e
n

d
s

o
n

sc
a

le
a

n
d

h
a

b
it

a
t

P
e

ri
o

d
ic

cy
cl

e
s

o
f

d
is

e
a

se

S
u

rv
iv

e
o

n
h

o
st

re
si

d
u

e
fo

r
2

–
4

y
e

a
rs

.
N

o
m

u
lt

ip
li

ca
ti

o
n

o
n

o
th

e
r

cr
o

p
re

si
d

u
e

s

F
u

sa
ri

u
m

u
d

a
m

P
ig

e
o

n
p

e
a

F
u

sa
ri

u
m

o
x

y
sp

o
ru

m
fs

p
.

C
ic

er
i

C
h

ic
k

p
e

a

F
.

o
x

y
sp

o
ru

m
fs

p
.

p
is

i
P

e
a

F
.

o
x

y
sp

o
ru

m
fs

p
.

li
n

i
L

en
ti

l
N

e
cr

o
tr

o
p

h
(f

o
li

a
r

d
is

e
a

se
s)

F
a

cu
lt

a
ti

v
e

sa
p

ro
p

h
y

te
R

es
tr

ic
te

d
,

e
x

ce
p

t
sh

ea
th

b
li

g
h

t
p

a
th

o
g

e
n

o
f

ri
ce

V
e

ry h
ig

h
V

er
y

h
ig

h
d

e
p

e
n

d
in

g
o

n
th

e
sc

a
le

a
n

d
h

a
b

it
a

t
P

e
ri

o
d

ic
cy

cl
e
s

o
f

d
is

e
a

se

S
u

rv
iv

a
l

n
o

t
d

e
te

ct
e

d
o

n
re

si
d

u
e

s
o

f
w

h
e

at
a

n
d

p
a

d
d

y
.

A
ll

p
a

th
o

ge
n

s
su

rv
iv

e
o

n
th

e
re

si
d

u
e

s
fo

r
li

m
it

e
d

p
e

ri
o

d
s.

M
o

st
p

a
th

o
g

e
n

s
a

re
h

o
st

sp
e

ci
fi

c,
a

n
d

d
o

n
o

t
in

fe
ct

o
th

e
r

h
o

st
s

S
h

e
a

th
b

li
g

h
t

o
f

ri
ce

R
h

iz
o

ct
o

n
ia

so
la

n
i

B
a

ct
e

ri
a

l
b

li
g

h
t

o
f

ri
ce

X
a

n
th

o
m

o
n

a
s

o
ry

z
a

e
p

v
.

o
ry

z
a

e
S

p
o

t
b

lo
tc

h
o

f
w

h
e

at
a

n
d

b
a

rl
e

y
B

ip
o

la
ri

s
so

ro
k

in
ia

n
a

Euphytica (2007) 153:135–151 139

123



Pathogens that survive and multiply on crop

residues may be promoted by reduced tillage.

However, not all pathogens have broad host

ranges nor survive on all types of crop residue.

For example, Fusarium pathogens of pulses sur-

vive on residues of host crops, but not on rice or

wheat. Spot blotch caused by Bipolaris sorokini-

ana, considered the most important disease of

wheat in the eastern Indo-Gangetic Plains of

India (Joshi et al. 2002, 2004b, c; Pandey et al.

2005), did not increase during a recent 3-year

(2001–2004) survey of 172 farm fields growing

cultivar HUW 234 across 39 villages in Varanasi,

Mirzapur, and Chandouli Districts of eastern

Uttar Pradesh (Table 4). This is a zone where

zero-tillage of wheat is gaining momentum and

covered about 100,000 ha in 2005. However, gi-

ven the ability of pathogens to evolve rapidly,

breeding programs must continually strengthen

resistance levels in germplasm using suitable

resistance sources. In this regard, a simple mor-

pho-physiological marker can be helpful. One

example is leaf tip necrosis associated with resis-

tance to spot blotch (Joshi et al. 2004b) and genes

Lr34 and Yr18 involved in slow rusting resistance

to leaf rust (Puccinia triticina) and stripe rust

(Puccinia striiformis), respectively (Dyck 1991;

McIntosh 1992; Singh 1992a, b). In addition to

disease incidence, reduced tillage may have ef-

fects on insect pests. Deep ploughing in summer

kills many over-wintering insects by exposing

them to high temperatures and birds. This does

not happen in reduced tillage and may favour

insect pests such as shoot borers (Sesamia inferens

and Scirpophaga incertulus) in paddy.

Residue decomposition as a genetic trait

Crop residues are a tremendous natural resource

(Kumar and Goh 2000). Decomposition of re-

tained residues is influenced primarily by the

environment and management factors (Parr and

Papendick 1978; Tanaka 1986) and to a minor

extent by the species (Smith and Peckenpaugh

1986) and cultivar type (Summerell and Burgess

1989). Several workers reported differences in

residue decomposition due to differences in N, C/

N, lignin/N, and polyphenol/N ratios, even for the

same species (Kumar and Goh 2000). Summerell

and Burgess (1989) reported cultivar differences

in the decomposition of wheat and barley straw,

suggesting a potential for selection of cultivars

with variable decomposition rates. Faster residue

decomposition is preferred for most environ-

ments. However, in some warm wet situations, a

slower rate of decomposition may be needed to

maintain soil cover for a longer period. More

studies are required to identify variation among

genotypes under reduced tillage and residue

retention.

Ecological and environmental factors

Heavy crop residues could allow less sunshine for

emerging seedlings leading to greater retardation

in growth compared with conventional tillage.

Table 4 Comparison of area under disease progress curve (AUDPC) and mean severity (%) of spot blotch in 172 fields of
cultivar HUW 234 grown under zero-tillage and conventional sowings in 3 years of testing in eastern Uttar Pradesh, India

Year District No. of fields AUDPC Mean severity (%)

Conventional Zero-tillage LSD0.05 Conventional Zero-tillage LSD0.05

2001–2002 Varanasi 7 1,349.29 1,237.86 NS 61.43 57.50 NS
2002–2003 Varanasi 11 1,174.09 1,135.00 NS 53.64 51.82 NS
2003–2004 Varanasi 14 1,353.21 1,057.14 205.8 62.86 53.57 7.99
2001–2002 Mirzapur 22 1,351.82 1,143.18 NS 61.36 55.45 NS
2002–2003 Mirzapur 24 1,185.21 1,023.13 141.7 55.42 50.00 NS
2003–2004 Mirzapur 33 1,189.55 1,175.30 NS 57.27 55.45 NS
2001–2002 Chandouli 12 1,209.58 1,092.08 NS 55.83 51.67 NS
2002–2003 Chandouli 21 1,461.67 1,253.81 182.3 63.81 57.62 6.01
2003–2004 Chandouli 28 1,340.36 1,316.61 NS 60.00 60.36 NS
Mean 1,289.01 1,267.09 NS 59.19 55.12 2.37

NS non-significant
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Reduced tillage also affects soil temperatures

(Unger and McCalla 1980), resulting in a cooler

field in summer (Hatfield and Prueger 1996).

Indirectly, this may benefit early sowing (October

or early November) of wheat in the Indo-

Gangetic Plains or in environments where opti-

mal temperatures occur in the second half of

November. It may also be beneficial for summer

crops such as urd (Vigna mungo) and mungbean

(Vigna radiata) in population-dense regions of

South Asia, where cropping intensity needs to be

increased for food security. Hence, cultivars that

germinate well and produce vigorous seedlings

under lower temperatures are desirable.

Crop residues create phytotoxic conditions for

some crops (Cochrane et al. 1977; Lynch 1978).

Under anaerobic conditions phtyotoxic com-

pounds (e.g. acetic acid and butyric acid) impair

germination (McCalla and Haskins 1964; Guenzi

and McCalla 1966; Rao and Mikkelson 1977;

Wallace and Elliott 1979). This phytotoxicity is

reported within as well as between crops. There-

fore, seedling traits associated with resistance in

to organic acids may also be targeted when

improving crops for reduced-tillage/residue

retention systems.

Agronomic requirements

Tillage is widely used to control weeds directly

and by burying their seeds. Germination of many

weed seeds is stimulated by exposure to light. In

the presence of crop residues, only those weeds

that can grow under diffuse light would flourish.

Hence, changes in weed populations, at both the

species and temporal levels, may occur under

reduced tillage. As mentioned above, cultivars

with faster emergence or displaying better com-

petition are more desirable in both conventional

and reduced/zero-tillage systems. However, they

appear to be of greater importance in situations

with more weeds and where tillage is not used for

weed control. The yield performance of 12 di-

verse wheat lines grown under zero-tillage and

conventional sowing with weed-managed and

non-managed conditions for 3 years at Banaras

Hindu University, Varanasi, is given in Table 5.

In the weed-managed trial, both hand and
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applied to keep the field almost free from weeds.

In the non-managed trial, no weed control was

used. Faster-growing lines, such as HUW 234 and

Raj 3765, gave about 25% less yield in the pres-

ence of weeds, whereas the slow-growing line

PBW 343 had a decline of about 35% (Table 5).

In the Indo-Gangetic Plains, zero-tillage has

been highly beneficial in controlling Phalaris

minor. However, in some cases, crop canopies at

early growth stages may become restricted, so

more weeds may be expected per unit area than

in a ploughed field. For such situations (which

may also occur under conventional tillage),

genotypes with greater early vigour, or those

exhibiting favourable allelopathy, may be se-

lected (White et al. 1989; Weston 1996). Variation

for early vigour was reported in wheat (Singh

et al. 1998a; Richards and Lukacs 2001) and oats

(Radford and Key 1993), and further improve-

ment could be obtained by understanding and

utilizing factors that contribute to greater vigour

in barley (Richards et al. 2002). Several studies

show that some crop cultivars are allelopathic and

that their inhibitory effects on weeds apply under

field conditions (Olofsdotter et al. 1999; Fujii

1993; Wu et al. 1999). For example, residues of

rye and other small grain crops inhibit weed

emergence and growth (Shilling et al. 1986), likely

due to phytotoxic effects (Kumar and Goh 2000).

There has been substantial recent progress to-

ward identifying chemicals responsible for weed

suppression (Rimando et al. 2001; Kato-Noguchi

and Ino 2003; Wu et al. 2000) and understanding

the genetics underlying allelopathy in rice (Olo-

fsdotter et al. 1995; Jensen et al. 2001; Ebana et al.

2001) and wheat (Wu et al. 2003).

Mechanization issues

The sowing depth of seeds may vary under re-

duced tillage. In surface seeding, seeds are dis-

persed on the soil surface, whereas machine

planting into crop residues may place seed at a

lower depth than recommended. Hence, cultivars

displaying better germination and growth under

shallow or surface seeding would be more desir-

able. However, in drier conditions, the surface

soil has increased mechanical impedance, which

may affect seedling emergence (Benoit and

Kiskham 1963). Banley et al. (1965) showed that a

reduction in soil mechanical resistance increases

the probability of root penetration.

The presence of mulch in the topsoil keeps it

wetter; in most situations this is beneficial for

seedling germination and growth. The Star

(Punch) Planter, which penetrates surface mulch,

works well for crops like rice, pulses, and maize,

but can result in poor establishment of wheat,

which performs better when drill-sown. This

suggests a need to either modify the planter to

deliver appropriate amounts of seed, or develop

cultivars with many fertile tillers. The variability

available in synthetic wheat lines may be utilized

to develop such cultivars (Mujeeb-Kazi et al.

1996).

Problem soils

As human populations increase, problem soils in

more marginal or unfavourable cropping areas

are being brought into cultivation. Many may be

hilly and subject to stresses such as high pH,

micronutrient deficiencies, or high or low mois-

ture. The cost savings of reduced tillage are ex-

pected to drive its adoption in such settings. Zero-

tilled crops perform better than conventionally

tilled crops in saline soils in the eastern Indo-

Gangetic Plains, but this may not be true for

alkaline soils. Breeding cultivars tolerant to saline

soils will continue to be an important target.

For direct seeded rice, farmers need cultivars

that do not suffer from iron chlorosis or Zn or P

deficiencies and which can germinate when deep

seeded in moist soils. Genetic diversity in re-

sponses of wheat to deficient levels of soil mi-

cronutrients has been reported (Graham 1984,

1987, 1988a, b; Rerkase and Jamjod 1997). Vari-

ation and inheritance of such traits, or sets of

traits, were investigated in soybean (Weiss 1943;

Fehr 1982; Saxena and Chandel 1992), tomato

(Epstein 1972), celery (Epstein 1972), rye

(Graham 1984), wheat (Majumdar et al. 1990;

Rengel 1992; Graham et al. 1992; Khabaz-Saberi

et al. 1998; Cakmak et al. 2000), and barley

(Graham 1988b; Genc 2003). Such information

must be utilized for evaluation and introgression

of favourable genes in crops under reduced tillage
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where deep sowing is the only alternative for

profitable production.

Breeding approaches

Nearly all crop cultivars now grown under re-

duced tillage were selected in conventionally til-

led environments. Various reports suggest

differences in the performance of cultivars in til-

led and untilled soils (Brakke et al. 1983; New-

house and Crosbie 1987; Triplett 1986). Kronstad

et al. (1978) suggested that to develop cultivars

with improved performance in reduced-tillage

systems, the following should be considered: (i)

growth factors influenced by tillage need to be

identified; (ii) genetic variability for growth fac-

tors affected by tillage must be large enough to

provide sufficient scope for selection; (iii) selec-

tion criteria to identify superior lines in segre-

gating populations must be established; and (iv)

progeny with improved characteristics for re-

duced tillage must possess all other desirable

agronomic traits for an adapted and competitive

cultivar. Francis (1991) outlined the dimensions

of future cropping systems based on current

trends and suggested that, for a reduced-tillage

system having greater amounts of crop residues,

possible plant breeding solutions would be to

incorporate increased seedling vigour, early stress

(cold) tolerance, and tolerance to eco-fallow/

zero-tillage planting.

Among the approaches to breed crops for

reduced or zero-tillage, the simplest would be to

grow segregating populations from crosses

involving parents that adapt well under zero-

tillage and incorporate useful traits (better

emergence characteristics, profuse tillering, and

resistance to diseases common under zero-tillage)

from other parents. The genetic variation created

by such crossing, growing large populations of

segregating generations, and selecting plants that

combine desirable traits, should lead to the

development of superior genotypes. However, for

proper identification of segregants suitable for

reduced tillage/residue retention, segregating

generations need to be grown under the targeted

practice. Selection under reduced-tillage condi-

tions is practical since it does not carry associated

disadvantages.

There is need to carefully assess profitability,

before establishing a long-term breeding program

for new environments such as zero- or reduced-

tillage systems (Francis 1990). Witcombe and

Virk (2001) emphasized a low-cross-number

strategy for inbreeding crops like wheat and rice,

suggesting that a good approach would be to se-

lect and produce large segregating populations,

thereby increasing the probability of recovering

superior genotypes. Singh et al. (1998b) investi-

gated the type of cross and selection scheme

(pedigree, modified bulk, selected bulk, and non-

selected bulk) in wheat and found few differences

among schemes for grain yield or other traits.

Although the four selection schemes did not show

significant differences, the selected bulk scheme

resulted in a larger number of advanced lines at a

relatively low cost. Using simulation studies,

Wang et al. (2003) showed that the selected bulk

approach gave slightly better genetic gains than

other selection schemes. Sowing segregating

populations derived from selected bulks also ap-

pears attractive for zero-tillage plantings, because

a large number of plants can be sown and allowed

to compete among themselves as populations. It is

also advisable to grow selected bulk segregating

populations in conventional and zero-tillage in

alternating generations to ensure that the result-

ing genotypes can be grown under both systems.

Among various methods, the single-backcross

approach has been suggested as very effective in

shifting a greater proportion of progenies in the

segregating generations towards higher mean

values, thereby enhancing the chance of getting

superior lines (Singh and Huerta-Espino 2004).

Following this approach, Singh et al. (2000)

developed derivatives of the two most popular

cultivars, PBW343 and Inqualab 91, in South Asia

that not only carried high levels of oligogenic

adult-plant, durable resistance to leaf rust and

stripe rust, but also had superior grain yield po-

tential. Using this approach, improvement of a

desired trait should be possible without sacrificing

other characteristics. Likewise, it was also possi-

ble to tailor superior genotypes for reduced-till-

age conditions of rice–wheat cropping systems by

focusing on the traits necessary for good perfor-

mance. Two early-maturing lines, Inqualab 91*2/

Kukuna and Attila*2/Star/4/Sonoita/Trap#1/3/
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Kauz*2/Trap//Kauz—improved versions of

the widely grown cultivars Inqualab 91 and

Attila—produced by the methodology described

above had grain yields 15–20% above the best

local check, HUW 234, when tested under zero-

tillage conditions at six locations of eastern

Gangetic plains during 2005–2006, as well as

similar superiority under conventional tillage at

Banaras Hindu University, Varanasi (Fig. 1).

Inqualab 91 is early-maturing, whereas Attila

matures late in eastern India, but both have

performed well under zero-tillage. Hence, a

single-backcross program produced one line with

increased yield potential and another that is

significantly earlier, but with similar yield poten-

tial. These results indicate that the single-

backcross breeding approach is applicable to the

development of lines with high yield under

zero-tillage.

Several studies suggest new physiological tools

can complement conventional wheat breeding

programs (Fischer et al. 1998; Reynolds et al.

1998), helping to select important traits which are

difficult to quantify in breeding materials and to

target highly heritable traits that limit yield

(Richards et al. 2002). The successful Veery lines

produced in the early 1980s (Rajaram et al. 1990)

resulted from a cross of a winter wheat parent

containing a 1RS chromosome (1B/1R transloca-

tion from cereal rye). These Veery lines had

outstanding yield potential and other physiologi-

cal characteristics. One of them, ‘Seri 82’, was

shown to have superior leaf photosynthetic rate,

stomatal conductance, and leaf greenness relative

to a set of hallmark cultivars developed both be-

fore and after its release (Fischer et al. 1998).

Through proper application of physiological cri-

teria, selection for useful traits may be practiced

in early segregating generations and in smaller

populations, thereby reducing costs (Richards

et al. 2002).

Modern genetic enhancement

Molecular tools, derived with increasing knowl-

edge about the molecular and genomic bases of

agronomic traits, can be applied to develop im-

proved cultivars that enable producers to increase

yields and quality, while reducing chemical inputs

and production costs. The complete gene se-

quences of rice and Arabidopsis are known and

our understanding of wheat and other crop

genomes is improving (Varshney et al. 2005). This

has facilitated the development of molecular

markers for agronomic traits, particularly includ-

ing simple sequence repeats (Röder et al. 1998),

single-nucleotide polymorphisms (SNP) (Rafalski

2002), and conserved orthologous sets of markers

(Rudd et al. 2005). The most important use of

markers is for indirect selection of linked traits.
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zero-tillage sowing at six
locations and
conventional sowing
at one location (BHU,
Varanasi) of the eastern
Gangetic Plains,
2005–2006

144 Euphytica (2007) 153:135–151

123



Over 5,000 expressed sequence tags are available

for more than 50 plant species (Rudd et al. 2005).

In wheat, many microsatellites (Röder et al. 1998;

Pestova et al. 2000; Gupta et al. 2002; Somers

et al. 2004; Rudd et al. 2005) are publicly avail-

able and used for gene tagging, mapping, and

phylogenetic studies. The current level of genome

coverage provided by microsatellite markers in

wheat (ca. one every 10–15 cM) is considered

sufficient for genetic diversity studies (Huang

et al. 2002) and for locating resistance genes.

Koebner and Summers (2003) suggested that the

current targets of molecular marker development

for wheat breeding were resistance to Fusarium

head blight, rusts, and viral diseases, and some of

such genes have been mapped in wheat

(McIntosh et al. 2005) for future breeding pro-

grams. Two quantitative trait loci (QTL) on

chromosome 2B associated with seedling alle-

lopathy in wheat against annual ryegrass (Lolium

rigidum; Wu et al. 2003) were identified by their

association with restriction fragment length

polymorphisms, amplified fragment length poly-

morphisms, and microsatellites (SSR). Markers

for resistance to Fusarium head blight and tan

spot or seedling allelopathy would be of great use

in developing cultivars for reduced-tillage envi-

ronments. Markers for height genes other than

GA-insensitive Rht1 and Rht2 (Ellis et al. 2005)

are also expected to play a significant role in

improving coleoptile length, a trait necessary for

better seedling emergence.

In the development of molecular markers for

rice improvement, four main-effect QTL located

on three chromosomes were identified for alle-

lopathy with weeds; the regions collectively ac-

counted for 35% of the total phenotypic variation

for the trait in the population studied (Jensen

et al. 2001). The bacterial blight resistance gene

Xa21 (Chen et al. 2000) was backcrossed into rice

cultivars in China and India, as well as into elite

IRRI lines (Chen et al. 2000; Sanchez et al. 2000;

Singh et al. 2001). As added protection for this

resistance, genes such as xa5 and Xa13 were

combined with Xa21 using marker-assisted

selection (MAS; Sanchez et al. 2000; Singh et al.

2001). Bacterial blight resistance was incorpo-

rated into hybrid rice using MAS (Chen et al.

2000; Cao et al. 2003). Recently, Hayashi et al.

(2005) developed PCR-based SNP for rice blast

resistance genes at the Piz locus, and stressed the

utility of SNP and small insertion/deletion poly-

morphisms (InDels) as DNA markers for genetic

analysis and breeding of rice.

Markers for genes conferring resistance to

cereal cyst nematode, root lesion nematode,

crown rot, and tolerance to boron are now used

routinely at CIMMYT (Trethowan and Reynolds

2005). Advanced CIMMYT lines with improved

root health developed using MAS have been

distributed globally in the Semi-arid Wheat

Screening Nursery (Trethowan and Reynolds

2005). Likewise, somaclonal variation was used to

breed new, high-yielding, early-maturing wheat

lines with resistance to spot blotch under con-

ventional tillage (Arun et al. 2003). Somaclones

of HUW 234, the most widely grown wheat cul-

tivar in the Northeastern Plains of India, were

assessed at two sowing dates during 2001–2004

under conventional and zero-tillage at Banaras

Hindu University. Stability analysis (Crossa et al.

2002) confirmed the superior performance of two

variants (HUW 234-5-44 and HUW 234-5-346)

(Fig. 2).

Useful knowledge about traits of potential

relevance in improving wheat for conservation

agriculture is expected to come from plant model

systems, coupled with genomics research in

Arabidopsis and comparative cereal genomics

studies. ‘‘Tilling’’ (used here in the genetics sense)

for functional analysis, is a well-established tech-

nique in barley (Caldwell et al. 2004) and is being

developed for wheat (Slade et al. 2005). Wheat

genes have significant homologies with 350

Arabidopsis thaliana genes; at least 25 of these are

known to be essential for seed development in

Arabidopsis (Drea et al. 2005). Attempts are

being made to introduce the Arabidopsis DIR-1

gene into wheat, rice, and other crops in order to

increase defense against fungal pathogens (Mof-

fat 2000). Detailed studies have also led to the

discovery of promoter regulatory elements, like

the dehydration responsive element (DRE) or

ABA-responsive element, involved in both

dehydration and low temperature-induced gene

expression in Arabidopsis (Shinozaki and

Yamaguchi-Shinozaki 1997), as well as identifi-

cation of several key transcriptional factors with
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which they interact (Liu et al. 1998). Using

information from Arabidopsis, a comparative

study on the DREB gene was carried out in maize

(Buuren et al. 2002). Transformation of durum

and common wheats using the Arabidopsis

DREB gene improved water stress tolerance

(Pellegrineschi et al. 2002a, b). This kind of work

should eventually benefit crop improvement

programs, including research for rice–wheat

cropping under reduced tillage.

Farmer participatory varietal selection

Genetic enhancement has heretofore employed

standard hybridization, segregation, and whole

plant selection primarily on research stations.

Participatory varietal selection (PVS) provides a

way to capture information about the performance

of experimental cultivars under actual farm con-

ditions and farmer management, as well as

obtaining a better appreciation of the traits and

genotypes valued by farmers (Witcombe et al.

1996, 2001; Ortiz Ferrara et al. 2001; Joshi et al.

2005). Through PVS, farmers in the eastern Indo-

Gangetic plains selected more profitable cultivars

(Ortiz Ferrara et al. 2001). New wheat lines from

CIMMYT and national research centres are being

tested by farmers in the region under zero-tillage

using PVS. This also appears to be a more reliable

and faster way to disseminate new wheat cultivars.

Of new cultivars made available to farmers, rela-

tively few become adopted. In this direction, use of

the single-backcross approach for targeted

improvement of popular genotypes favours the

conservative attitudes of farmers. However, widely

adapted cultivars occupying large areas often be-

come vulnerable to rust diseases. Incorporating

durable resistance into such cultivars will help

prevent major epidemics, while allowing farmers to

Fig. 2 Stability analysis for six traits using the Site
Regression Model involving eight somaclone variants
(R5) and four check cultivars (HUW 234, Sonalika, NW
1014, and Halna) tested for two planting dates over 3 years
in conventional and zero-tillage sowings. Two variants
(HUW 234-5-44 and HUW 234-5-346) proved superior to
parent HUW 234. Note. For somaclonal variants of HUW

234 abbreviated names were used as follows—
HUW5173 = HUW 234-5-173; HUW5282 = HUW 234-5-
282; HUW5301 = HUW 234-5-301; HUW5325 = HUW
234-5-325; HUW5341 = HUW234-5-341; HUW5345 =
HUW 234-5-345; HUW5346 = HUW 234-5-346; HUW544 =
HUW 234-5-44
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continue with chosen cultivars that perform well

under reduced or conventional tillage.

Conclusion

With the increasing adoption of resource-

conserving practices like reduced tillage in the

Indo-Gangetic Plains and elsewhere, crop breed-

ing programs need to focus on developing cultivars

that fit the new practices. Traits for this purpose

should be included among breeding objectives for

developing cultivars that enhance the profitability

and sustainability of agro-ecosystems.

Acknowledgements The help rendered by Dr J. Crossa,
Head, Biometrics and Statistics Unit, International Maize
and Wheat Improvement Center (CIMMYT), Mexico and
Dr Rajender Parsad, Indian Agricultural Statistical
Research Institute, New Delhi, India in the analysis of data
is gratefully acknowledged. The authors acknowledge
Mr Mike Listman for his editing.

References

Allan RE (1980) Influence of semi-dwarfism and genetic
background on stand establishment of wheat. Crop Sci
20:634–638

Allan RE, Vogel OA, Peterson CJ (1962) Seedling emer-
gence rate of fall-sown wheat and its association with
plant height and coleoptile length. Agron J 54:347–350

Anonymous (1995) Conservation impact, 13(9). Conserv
Technol Information Ctr Newsl, West Lafayette, IN,
USA

Araus JL, Reynolds MP, Acevedo E (1993) Leaf posture,
grain yield, growth, leaf structure and carbon isotope
discrimination in wheat. Crop Sci 33:1273–1279

Arun B, Joshi AK, Chand R, Singh BD (2003) Wheat so-
maclonal variants showing, earliness, improved spot
blotch resistance and higher yield. Euphytica 132:235–241

Bai G, Shaner G (1994) Scab of wheat: prospects for
control. Plant Dis 78:760–766

Bais HP, Loyola Vargas VM, Flores HE, Vivanco JM
(2001) Root specific metabolism: the biology and
biochemistry of underground organs. In Vitro Cell
Dev Biol Plant 37:730–741

Banley KP, Fassel DA, Graven EL (1965) The influence of
soil strength on the penetration a loam by plant roots.
Aust J Soil Res 3:69–79

Beharev A, Cahaner A, Pinthus MJ (1998) Genetic correla-
tions between culm length, grain yield and seedling
elongation within tall (rht1) and semidwarf (Rht1) spring
wheat (Triticum aestivum L.). Eur J Agric 9:35–40

Benoit GR, Kiskham D (1963) The soil surface conditions
on evaporation of soil water. Soil Sci Soc Am Proc
27:495–498

Blum A (1996) Yield potential and drought tolerance, are
they mutually exclusive? In: Reynolds MP, Rajaram
S, McNab A (eds) Increasing yield potential in wheat:
breaking the barriers. Proceedings of the workshop,
Cd. Obregon, Mexico, 28–30 March 1996. CIMMYT,
Mexico, DF, pp 90–101

Brakke JP, Francis CA, Nelson LA, Gardner CO (1983)
Genotype by cropping system interactions in maize
grown in a short-season environment. Crop Sci
23:868–870

Buuren MLV, Salvi S, Morgnte M, Serhani B, Tuberosa R
(2002) Comparative genomic mapping between a
754 kb region flanking DREb1A in Arabidopsis
thaliana and maize. Plant Mol Biol 48:741–750

Cakmak I, Ozkan H, Braun HJ, Welch RM, Romheld V
(2000) Zinc and iron concentrations in seeds of wild,
primitive and modern wheats. Food Nutr Bull 21:401–
403

Caldwell DG, McCallum N, Shaw P, Muehlbauer GJ,
Marshall DF, Waugh R (2004) A structured mutant
population for forward and reverse genetics in barley
(Hordeum vulgare L.). Plant J 40:143–150

Cao L, Zhuang J, Zhan X, Zeng K, Cheng S, Cao LY,
Zhuang JY, Zhan D, Zheng KL, Cheng SH (2003)
Hybrid rice resistance to bacterial blight developed by
marker assisted selection. Chin J Rice Sci 17:184–186

Chen TY, Skovmand B, Rajaram S, Reynolds MP (1998)
Novel source of increased spike fertility in wheat
multi-seeded flowers. Agronomy Abstracts. Agron-
omy Society of America, Madison, WI, USA, p 161

Chen S, Lin XH, Xu CG, Zhang Q (2000) Improvement of
bacterial blight resistance ‘Minghui 63’, an elite
restorer line of hybrid rice, by molecular marker-
assisted selection. Crop Sci 40:239–244

Cochrane VL, Elliot LF, Papendick RI (1977) The pro-
duction of phytotoxin from surface crop residues. Soil
Sci Am J 41:903–908

Cornish PS, Lymbery JR (1987) Reduced early growth of
direct drilled wheat in southern New South Wales:
causes and consequences. Aust J Exp Agric 27:869–
880

Crossa J, Cornelius PL, Yan W (2002) Biplots of linear–
bilinear models for studying crossover genotype ·
environment interaction. Crop Sci 42:619–633

Dao TH, Nguyen HT (1989) Growth response of cultivars
to reduced tillage in a continuous wheat cropping
system. Agron J 81:923–929

Dill-Macky R, Jones RK (2000) The effect of previous
crop residues and tillage on Fusarium head blight of
wheat. Plant Dis 84:71–76

Ditsch DC, Grove JH (1991) Influence of tillage on plant
population, disease incidence and grain yield of two
soft red winter wheat cultivars. J Prod Agric 4:360–
365

Drea S, Leader DJ, Arnold BC, Shaw P, Dolan L, Doonan
JH (2005) Systematic spatial analysis of gene expres-
sion during wheat caryopsis development. Plant Cell
17:2172–2185

Dyck PL (1991) Genetics of adult-plant leaf rust resistance
in ‘Chinese Spring’ and ‘Sturdy’ wheats. Crop Sci
31:309–311

Euphytica (2007) 153:135–151 147

123



Ebana K, Yan W, Dilday RH, Namai H, Okuno K (2001)
Analysis of QTL associated with the allelopathic ef-
fect of rice using water-soluble extracts. Breed Sci
51:47–51

Ellis MH, Rebetzke GJ, Azanza F, Richards RA, Spiel-
meyer W (2005) Molecular mapping of gibberellin-
responsive dwarfing genes in bread wheat. Theor
Appl Genet 111:423–430

Epstein E (1972) Mineral nutrition of plants: principles
and perspectives. Wiley and Sons, New York

Feather JT, Qualset CO, Vogt HE (1968) Planting depth
critical for short statured wheat varieties. Calif Agric
22:12

Fehr WR (1982) Control of iron deficiency chlorosis in
soybeans by plant breeding. J Plant Nutr 5:611–621

Felton WL, Freeman DM, Fettel NA, Thomas JB (1978)
Crop residue management tillage. In: Cornish PS,
Pratley JE (eds) New directions in Australian agri-
culture. Inkata Press, Melbourne, Australia, pp 194–
221

Fick GN, Qualset CO (1976) Seedling emergence, cole-
optile length and plant height relationships in crosses
of dwarf and standard height wheats. Euphytica
25:679–684

Fischer RA (1985) Number of kernels in wheat crops and
the influence of solar radiation and temperature.
J Agric Sci (Camb) 105:447–461

Fischer RA (1996) Wheat physiology at CIMMYT and
raising the yield plateau. In: Reynolds MP, Rajaram S,
McNab A (eds) Increasing yield potential in wheat:
breaking the barriers. Proceedings of the workshop,
Cd. Obregon, Mexico, 28–30 March 1996. CIMMYT,
Mexico, DF, pp 150–166

Fischer RA, Byerlee DB (1991) Trends of wheat produc-
tion in the warmer areas: major issues and economic
considerations. In: Wheat for the non-traditional
warm areas. Proceedings of the conference, Iguazu,
Brazil, 29 July–3 August 1990. CIMMYT, Mexico,
DF, pp. 3–27

Fischer RA, Rees D, Sayre KD, Lu Z-M, Condon AG,
Larqué-Saavedra A (1998) Wheat yield progress is
associated with higher stomatal conductance and
photosynthetic rate, and cooler canopies. Crop Sci
38:1467–1475

Francis CA (1990) Breeding hybrids and varieties for
sustainable systems. In: Francis CA, Flora CB, King
LD (eds) Sustainable agriculture in temperate zones.
John Wiley and Sons, Inc, New York, pp 24–54

Francis CA (1991) Contribution of plant breeding to fu-
ture cropping systems. In: Sleper DA, Barker TC,
Bramel-Cox PJ (eds) Plant breeding and sustainable
agriculture: considerations for objectives and meth-
ods. Special Publication Number 18. Crop Science
Society of America, Madison, pp 83–93

Fujii Y (1993) The allelopathic effect of some rice varie-
ties. In: Allelopathy in control of paddy weeds. Tech
Bull No. 134. ASPAC Food and Fertilizer Technology
Centre, Taiwan, pp 1–6

Genc Y, Shepherd KW, McDonald GK, Graham RD
(2003) Inheritance of tolerance to zinc deficiency in
barley. Plant Breed 122:283–284

Graham RD (1984) Breeding for nutritional characteristics
in cereals. Adv Plant Nutr 1:57–102

Graham RD (1987) Triticale, a cereal for micronutrient-
deficient soils. International Triticale Newsletter
1. University of New England, Armidale, NSW,
Australia

Graham RD (1988a) Development of wheats with en-
hanced nutrient efficiency: progress and potential. In:
Klatt AR (ed) Wheat production constraints in tropi-
cal environments. CIMMYT, Mexico, DF, pp 305–320

Graham RD (1988b) Genotypic differences in tolerance to
manganese deficiency. In: Graham RD, Hannm RJ,
Uren NC (eds) Manganese in soils and plants. Kluwer
Academic Publishers, Dordrecht, The Netherlands,
pp 261–276

Graham RD, Ascher JS, Hynes SC (1992) Selecting zinc-
efficient cereal genotypes for soils of low zinc status.
Plant Soil 146:241–250

Guenzi WD, McCalla TM (1966) Phenolic acids in oats,
wheat, sorghum, and corn residues and their phyto-
toxicity. Agron J 58:303–304

Gupta P, Balyan H, Edwards K, Isaac P, Korzun V, Röder
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