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Summary

Molecular mapping is a promising strategy for studying and understanding traits with complex genetic control,
such as partial resistance to oat crown rust. The objectives of this research were to develop molecular maps from
the progenies of the cross UFRGS7 (susceptible) x UFRGS910906 (partially resistant) and to identify QTLs
(quantitative trait loci) associated to partial resistance to oat crown rust in two generations of that population. DNA
of 86 genotypes of the F, and 90 genotypes of the F¢f UFRGS7 x UFRGS910906 population were used to generate
AFLP markers. Molecular maps were constructed using Mapmaker Exp. 3.0 and QTLs for partial resistance to oat
crown rust were identified with Mapmaker/QTL software. Five hundred and fifty seven markers in the F, and 243
markers in the Fg generations were identified. The F, map integrated 250 markers in 37 linkage groups. The Fg
map integrated 86 markers in 17 linkage groups. Five QTLs were identified for partial resistance to oat crown rust
in the F, generation and three QTLs in the Fgs. The QTL identified on Fg through the PaaaMctt340 AFLP marker
showed consistency across two environments and two generations (F4 and Fg), and appear to have potential for

marker-assisted selection in oat.

Introduction

Cereal rusts are amongst the most harmful diseases. In
particular, oat crown rust, caused by Puccinia coronata
f. sp. avenae, results in great damages to the culture
(Simons, 1985; Ohm & Shaner, 1992; Martinelli et al.,
1994). One way to control this disease is through the
use of resistant genotypes, which in general present
qualitative resistance. This kind of resistance makes a
high selection pressure on the fungus population, re-
sulting in an evolution of races that quickly overcomes
the resistance of the host, which shows, therefore, little
durability. An alternative to increase the durability of
the resistance is the use of host partial resistance (Luke
et al., 1972; Wilcoxson, 1981; Johnson, 1984; Wang
et al., 1994), which is characterized by its complexity,
resulting from the interaction of several components:

reduction of the number of lesions, increase of the latent
period, smaller production of spores, smaller pustule’s
size and slow progress of the disease, which means a
smaller rate of disease development (Parlevliet, 1979).

One of the strategies to study and understand traits
with complex control is to develop molecular maps.
Using these maps to identify genomic regions associ-
ated to traits of interest can aid mainly in the evaluation
of diseases that are difficult to be interpreted, due to in-
teractions of the genotype with the environment and
different degrees of virulence of the pathogen (Young,
1996).

Oat molecular maps have been built for the diploid
and hexaploid genomes. Maps related to the diploid
genome AA, were developed from Avena hirtula X A.
atlantica (O’Donoughue et al., 1992; Van Deynze et al.,
1995) and A. strigosa X A. wiestti (Rayapatietal., 1994,
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Kremer et al., 2001), presenting seven different linkage
groups each. For the genome of the hexaploid oat, the
first molecular map obtained was from Avena byzantina
cv. Kanota by A. sativa cv. Ogle (O’Donoughue et al.,
1995). New maps were developed from recombinant
inbred lines (RILs) of the following crosses “Clintand
64” / “IL865698”; (Jin et al., 2000), “Ogle” / “TAM 0-
301" (Portyanco et al., 2001) and “Kanota” / “Marion”
(Groh et al., 2001). The “Ogle” / “TAM 0-301” map
was used to identify QTLs for seven plant and two grain
quality traits (Hoffman et al., 2000).

Mapping of disease resistance traits has been done
for several crops as in barley for leaf blast (Sato
et al., 2001) and leaf rust (Kicherer et al., 2000; Qi,
et al., 1999), in soybean for Sclerotinia sclerotiorum
(Arahana et al., 2001), in rice for rice blast (Guo-
Liang et al., 1994), in oat for barley yellow dwarf virus
(Jin et al., 1998) and in corn for Puccinia polysora
(Brunelli, et al., 2002). Three QTL’s for partial resis-
tance to crown rust were identified in oat RILs from the
cross “MN841801-1” (partially resistant) x “Noble-2”
(susceptible) (Chen et al., 2000).

Mapping of the hexaploid cultivated oat is compli-
cated due to the size of its genome and due to its poly-
ploid nature (2n = 6X = 42). Besides being difficult to
obtain a complete coverage of the genome, it is also
difficult to solve the linkage groups in the 21 expected
chromosomes. Part of this difficulty seems to be due
to differences in translocations among parental lines of
the mapping populations (O’ Donoughue, 2000).

The objectives of this work were to develop F,
and Fg¢ AFLP molecular maps from UFRGS7 x
UFRGS910906 and to identify QTLs associated to par-
tial resistance to crown rust in oat.

Material and methods

F, and F¢ generations of the UFRGS7 x UFRGS-
910906 population were screened with AFLP mark-
ers, based in 86 F, and 90 Fg individuals. The F, and
Fs maps generated were used for QTL identification of
partial resistance to oat crown rust.

DNA was extracted according to the protocol de-
scribed by Murray and Thompson (1980), quantified
in spectrophotometer and diluted to 250 ng/ul.

Molecular mapping

AFLP markers were obtained following the protocol
described by Vos et al. (1995), with some adaptations.

Two hundred and fifty nanograms of DNA were first
digested with the enzyme Tru91 (an isoschizomer of
Msel) (Promega) for two hours at 60°C and later
with the enzyme Psfl (Gibco BRL), for two hours at
37°C.

Specific forward and reverse adapters (MA 1.1 and
1.2; PA 1.1 and 1.2) (Gibco BRL) were annealed at
65°C for 10/, 37°C for 10’ and 25°C for 10'. The
adapters were added to the digested DNA and linked to
it during two hours at room temperature, with the aid
of the T4 DNA ligase enzyme (Gibco BRL).

The first cycle of amplification, called pre-
amplification, was made in a MJ PCT 100 thermocycler
for 20 cycles, at 94 °C for 30', 56 °C for 1’ and 72°C
for 1’. This PCR reaction contained 10 ng of ligated
DNA, 37.5 ng of primer P + A; 37.5 ng of primer M
+ C; 0.8 ANTP mM; 1X Taq DNA polymerase buffer;
1.5 mM of MgCl12; 1U of Taq DNA polymerase.

DNA fragments were amplified with 31 primer
combinations for the F, and 18 combinations for the
Fs UFRGS7 x UFRGS910906 population (Table 1).
The second cycle of DNA amplification, the selective
amplification, was done using PCR touch down with
cycles at 94°C for 60', 65°C for 60 and 72°C for
90'. The annealing temperature started at 65°C and
was reduced 1 °C successively until it reached the tem-
perature of 56 °C which was maintained for the re-
maining 23 cycles, totalizing 32 cycles. The selec-
tive PCR reaction contained 20 ng of pre-amplified
DNA, 30 ng of the Pst I primer; 30 ng of the Mse
I primer; 1.5 mM of MgCly; 0.8 ANTP mM; 1X
Taq DNA polymerase buffer; and 1 U of Tag DNA
polymerase.

The amplified fragments were separated by elec-
trophoresis in 5% polyacrylamide gel (19 bis-
acrylamide:1 acrylamide), at 8O0W, for approximately
2 hours and 30 minutes, accompanied with the marker
PGEM (Promega) or DNA Ladder 100pb (Gibco BRL).
Gels were silver-stained according to the Silver Se-
quenceTM of Promega Corporation protocol (1996).
Two independent readers did visual scoring of the
bands on a table with fluorescent light.

Phenotypic analysis of partial resistance to crown rust

To identify marker-trait associations for partial resis-
tance to crown rust in the present study, the F, genera-
tion (1998) was conducted to Fg (2000) under natural
field conditions for infection. For each generation (F, —
1998, F4 — 1999 and F¢ — 2000) a row of each progeny
and parents was sowed, using 20 seeds per row, spaced



Table 1. AFLP primer combinations used during selective PCR of the
F»> and Fg generations of the UFRGS 7 x UFRGS 910906 population

Generation Pst I Primer Mse I Primer
Fy, Fs P-ATT M-CTT
Fy, Fs P-ACA M-CCC
F,, Fg P-ACC M-CGG
F», Fg P-AGA M-CAC
Fy, Fs P-ATT M-CTC
Fy, Fs P-AGA M-CTG
Fy, Fs P-AAT M-CAG
F», Fg P-AAA M-CAC
F», Fg P-ATG M-CTC
Fy, Fs P-AAA M-CGA
Fy, Fs P-AAC M-CGA
Fy, Fes P-ATC M-CCG
Fy, Fes P-AAA M-CTT
F», Fg P-ATT M-CGA
Fy, Fs P-ATC M-CGA
Fy, Fs P-ATC M-CAC
F P-AAA M-CTG
F P-AAT M-CTG
F P-AAT M-CTT
Fy P-AAG M-CTT
F P-ACC M-CGA
F P-ACC M-CCA
F P-AAT M-CCA
Fy P-AGG M-CAC
F P-ATT M-CTG
Fy P-AAG M-CCC
F P-AGC M-CAC
F P-AAG M-CCT
F P-AAG M-CTC
Fy P-AGG M-CTG
Fy P-ACT M-CAT
Fs P-AAA M-CTC
Fs P-ATC M-CTC

20 cm between plants and 30cm between rows. Each
generation was evaluated weekly during six successive
weeks for disease on the main tiller, using the modi-
fied Cobb’s scale (Peterson et al., 1948). Ten individual
plants were scored for the F4 generation and seven for
the Fg.

QTL identification on the F, generation was based
on individual plants phenotype and genotype. F,4 and
F¢ phenotypic data was analyzed with molecular data
collected from Fg RILs for QTL identification on these
generations.
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Statistical analysis

Markers identified in the F, generation were tested for
the 3:1 and in the Fg for 1:1 segregation rate through
the chi-square test at a significance level of 5% and one
degree of freedom.

Mapmaker EXP 3.0 (Lander et al., 1987) was used
for obtaining the F, and the Fg maps. For the F, map
a LOD 7 and maximum level of recombination 30 cM
were used. Mapping of the Fg was done in two stages:
first using a LOD 10 and maximum recombination 30
cM to establish the main groups and, then, by group-
ing the remaining markers with LOD 7 and maximum
recombination 30 cM.

Interval mapping analysis was used for QTL iden-
tification to partial resistance to oat crown rust and was
accomplished through Mapmaker/QTL (Lander et al.,
1987) statistical package.

Results and discussion
Molecular mapping of the F,

Two hundred and forty three markers were identified
in the F,, giving an average of 7.8 markers per primer
combination tested. From the total markers identified,
35 showed distortion of segregation with the x -square
test, representing 14.4% of total. This result agrees with
those of Portyanco et al. (2001), which obtained 13%
of markers with segregation distortion in the mapping
population.

Five hundred and fifty seven AFLP markers, 243
identified in this study and 314 from Thomé (1999),
were used for mapping the F, UFRGS 7 x UFRGS
910906 population. From these, 250 were integrated
into the F, map (44.9%), being distributed in 37 linkage
groups (Figure 1). The large number of linkage groups
found (37), in relation to the number of oat chromo-
somes (n = 21) can be explained due to the size of the
oat genome, which requires large number of markers
for full coverage and to consolidate smaller linkage
groups into 21 expected linkage groups. The first map
built for hexaploid oat (“Kanota” X “Ogle”) placed
markers in 38 linkage groups (O’Donoughue, et al.,
1995), in spite of integrating a larger number of mark-
ers (532). In a second map built (“Ogle” X “TAM” 0—
301) 426 markers were mapped in 34 linkage groups
(Portyanco et al., 2001).

On the other hand, our map covered almost the to-
tality of the oat genome extension, that is, according
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Figure 1. AFLP map of the UFRGS7 x UFRGS910906 F, population. The arrowheads indicate the QTL’s identified in this generation.
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to O’Donoughue et al. (1995), approximately 3000
cM. However, more markers are still necessary to fill
out the intervals among those already grouped so it
would make possible to determine precisely the link-
age groups and to enlarge genome coverage of those
populations.

Molecular mapping of the F

Two hundred forty three markers were also identified
in the Fg, giving an average of 13.5 polymorphic bands
per primer combination. From the total polymorphic
bands identified, 60 presented distortion in segrega-
tion for the y-square test, representing 24.6%. From
these, 22 segregated towards UFRGS7 and 38 towards
UFRGS910906. It is possible that some percentage of
heterozygosis in F¢ has contributed to a larger distor-
tion in segregation than expected. Another problem that
might have happened was an incomplete digestion of
some samples, although this was not visible from the
gels.

From the 243 identified markers, 86 (35.3%) were
integrated into the map, being distributed in 17 linkage
groups (Figure 2). The linkage groups presented from
2 to 22 markers (average = 5.4 markers per linkage
group) and varied in size from 22.1cM to 616.7cM
with an average of 117.3 cM, with a total extension
map of 1994 cM.

Groups that concentrated larger number of mark-
ers were Group 1, with 22 markers and 616.7 cM of
extension and Group 2, with 17 markers and 460.1 cM
of extension. The other groups presented number of
markers varying between 2 and 6.

Identification of QTL's associated to partial
resistance to oat crown rust in the F,

Five QTL’s were identified by the Mapmaker/QTL pro-
gram in the F, population. Four of these are in linkage
Group 1 and one in linkage Group 13 (Table 2). The
first QTL identified (Group 1) was located in the re-
gion of the marker PacaMcgc383 at 0.0 cM from it,
explaining 12.5% of the phenotypic variation for this
trait. That QTL is in repulsion to the character of inter-
est, in other words, absence of the band in individuals
with smaller disease severity and presence in individ-
uals with larger severity. The second QTL was located
closer to the marker PacgMcag318, at 2.0 cM of dis-
tance, explaining 16.8% of the phenotypic variation
and also showing repulsion to the character of inter-
est. The third QTL was located at 0.0 cM of distance

of the marker PagtMcat358, explaining 19.5% of the
variation and also in repulsion to the character of in-
terest. The fourth QRL was located at 14.3 cM from
the marker PagcMcac285, being linked in repulsion to
the character of interest and explaining 27.6% of its
variation. The fifth QTL, identified in linkage Group
13, was located closer to the PattMcga626 marker, at a
distance of 8.0 cM. This QTL explained 38.2% of the
variation and, unlike the others identified in F,, was
in association to the character of interest, what means
that the band appeared in individuals with smaller dis-
ease severity and was absent in individuals with larger
disease severity.

Three QTL’s associated to oat crown rust partial
resistance trait have been identified by Chen et al.
(2000) in the “MN841801-1" (partially resistant) x
“Noble” (susceptible) American RIL population under
field conditions, explaining together 27% of the trait
variation. However, because the oat populations were
different, it is not possible to conclude that the QTL’s
identified in this studied correspond to QTLs found by
Chen and co-workers.

Identification of QTL' s associated to partial
resistance to oat crown rust in the Fg

Three QTL’s were identified in the Fs mapping pop-
ulation by Mapmaker/QTL program. One of these
(PaaaMctt340) was detected in two generations, in
other words, with phenotypic data collected from the
F¢ and F4 generations in two distinct years (1999 and
2000, respectively) (Table 2).

None of the five QTLs identified in the F, gener-
ation was identified in the Fg. This is due, mainly, to
the ephemeral nature of QTL’s that, when with small
effects, have the expression varied in different envi-
ronments and from highly heterozygous F, to more
homozygous F4 and F¢ generations. The conditions of
the environment for cropping in the years of 1998, 1999
and 2000 were very different amongst themselves, what
interfered in the expression of the partial resistance.
Besides, it is possible that, during the recombination
through the successive generations, linkage breaks had
occurred, which avoided the identification of QTL’s
from F, to Fg.

The first identified QTL in the Fg UFRGS 7 x
UFRGS 910906 population was located in the link-
age Group 1, closer to the marker PatgMctc322, at 12
cM distance from it. This QTL explained 26.5% of
the phenotypic variation for this trait and is in asso-
ciation with the character of interest, that is, smaller
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disease severity. The second identified QTL in the Fg
was located in linkage Group 1, closer to the marker
PagaMctg213, at 14.8 cM of distance and explaining
39.3% of the variation, being in association to the trait
of interest. Such QTL was identified when the pheno-
typic data of the F, generation were used, but was not
further identified in the Fg generation. Probably, the in-
teraction with the environment masked the expression
of this QTL in Fg or it could be due to the loss of the
marker by the linkage break from one generation to the
other. The third QTL was identified in linkage Group
9, located closer to the marker PaaaMctt340, at 16.8
cM of distance. This QTL explained 38% of the phe-
notypic variation and is in association to the character
of interest. It was also identified when the molecular
data collected from the Fg generation were analyzed
with the phenotypic data of the F4 generation, obtained
in the previous year (1999).

The evidence that the QTL linked to the marker
PaaaMctt340 was identified in the two distinct Fy4
(1999) and Fg (2000) generations indicates that this
QTL presents good consistence, since it was identified
in two different environments and through two gener-
ations of recombination. As mentioned previously, the
severities of the rust were very different in both years
for collecting the phenotypic data for the F4 (1999)
and Fg (2000) generations due to the high environ-
mental variation in Southern Brazil. The consistence
of these data, combined to the reasonable effect on
the expression of the resistance (38%) and the link-
age in association to the character of interest, makes
the marker PaaaMctt340 potentially useful for marker-
assisted selection of partial resistance to oat crown
rust. Further studies to validate the effect of this QTL
across different genetic backgrounds and environments
will further elucidate the importance of this genomic
region in controlling partial resistance to oat crown
rust.

The results of the molecular data indicated QTL’s
explaining larger percentage of phenotypic variation
in advanced generations (26.5%, 38% and 39.3%).
In this sense, molecular maps based on recombinant
inbred lines can be more efficient in the search of
more consistent and stronger QTL effects, which could
be more useful to breeding programs. Besides, these
molecular maps facilitate the tests for validation of
QTL’s in different environments, due to a higher ge-
netic stability and immortalized seed source of these
advanced populations what also allow the use of
replications.
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