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Abstract
This paper approaches the interaction of a health professional with an AI system for diagnostic purposes as a hybrid decision 
making process and conceptualizes epistemo-ethical constraints on this process. We argue for the importance of the under-
standing of the underlying machine epistemology in order to raise awareness of and facilitate realistic expectations from AI 
as a decision support system, both among healthcare professionals and the potential benefiters (patients). Understanding the 
epistemic abilities and limitations of such systems is essential if we are to integrate AI into the decision making processes in 
a way that takes into account its applicability boundaries. This will help to mitigate potential harm due to misjudgments and, 
as a result, to raise the trust—understood here as a belief in reliability of—in the AI system. We aim at a minimal requirement 
for AI meta-explanation which should distinguish machine epistemic processes from similar processes in human epistemology 
in order to avoid confusion and error in judgment and application. An informed approach to the integration of AI systems 
into the decision making for diagnostic purposes is crucial given its high impact on health and well-being of patients.

Keywords Hybrid epistemology · Ethics and epistemology of AI · Fuzzy concepts · Medical AI · AI in decision making

First take on the problem: AI, moral decision 
making, and uncertainty

Assume you do not know anything about Artificial Intel-
ligence (AI) except what is out there in the air. Assume you 
do not understand how neural networks work.1 You may 
have seen various colorful diagrams of nodes and layers 
connected by arrows. In deep learning methods as applied 
to pattern recognition, these diagrams with “neurons” and 
weights are learning some incomprehensible magic on 
images, compressing, multiplying, going back and forth, and 
then in the end you have a result, say, “85% dog, 15% wolf”. 
You may have come across various explanations, you may 
even be able to draw an answer if someone asks you what 
this algorithm is doing, in general terms. But that is all you 

know. Most of us, including direct users (people using AI 
systems in devices in their everyday lives) and professional 
users (who may rely on AI technology for performing their 
professional tasks, e.g. doctors),2 are, in the best case, at 
this level of understanding. Moreover, the training of that 
portion of users who do have experience with quantitative 
methods is arguably heavily or solely stemming from fre-
quentist statistics.

Now let’s assume that based on this result alone, you 
have to make a decision on whether you will take an ani-
mal into your care. Can you make this decision based on 
the outcome of the algorithm? Or rather, would it be a 
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good, well-grounded decision? Let's assume, for clarity’s 
sake, that you want to make a present for your kid—a dog 
that he/she has been asking for. Now, the question here 
is not whether it is possible for you to make such a deci-
sion. People make all sorts of decisions, not all of them 
are rational and well-grounded. The question here rather 
is: does the output of the algorithm (This animal is 85% 
dog and 15% wolf) constitute a good justification for your 
decision to bring the animal home to your child, and given 
the uncertainty, whether it is rational for you to take the 
risk that the animal might turn out to be a wolf? Turn it to 
be a wolf, you will have to deal with the consequences of 
having a wild animal in your house. This not only means 
frustrated expectations of your child and a considerable 
impact on your life, but most importantly this will increase 
the possibility that someone in your home will come to 
harm and that the animal will suffer. In the end, you will 
have to weigh your trust in the algorithm against the ways 
in which the uncertainty affects the alternative futures, 
including your responsibilities, other people involved, and 
the destiny of the animal. This example may not appear 
so dramatic: there are a number of ways you could have 
avoided dealing with an unfavorable outcome. But imagine 
that the consequences of your choice would be far more 
severe than just adopting an unwanted animal. Say, that 
based on the result the animal will be killed or let live. 
How should the AI’s 85/15 ratio weigh in your decision 
process now? What if that was not an animal, but a human 
being? Imagine now that you are a medical doctor and you 
are looking at the results of an AI system that tells you that 
the patient in your care has 85% pneumonia, 10% cancer, 
and 5% tuberculosis (further: 85/10/5). How should you 
weigh this ratio against the consequences of your decision 
concerning the patient’s diagnosis for his/her health, well-
being, and potentially life?

The problem we are dealing with stems from (a) the 
fact that the outcome of AI’s calculation figures as a rea-
son in the decision making process, and (b) the fact that 
it is an open question whether this reason is any good. To 
ask this question is especially important, given the weight 
of uncertainty due to the epistemic contribution of an AI 
system against the possible harm. What is at stake here 
is not so much the question about what considerations it 
is sensible for the decision maker to count as reasons for 
action, given that he/she cannot be certain about some key 
parameter, P, relevant to the case. That is to say, not so 
much whether, given that you do not know if the animal 
in question is a dog or wolf (similarly, given that a medi-
cal professional does not know for sure what condition 
the patient is suffering from), it is sensible for you (the 
doctor) to align your (his/her) decision with the output 
of the AI system. This may be the case, under some cir-
cumstances which we do not need to discuss here. The 

question is rather what matters ethically from the perspec-
tive of one potentially harmed by the decision based on 
such considerations: for your child—whether the animal 
is indeed a dog and thus having it in the house won’t 
be associated with danger; for the patient—whether the 
condition she is suffering from is indeed pneumonia, and 
that she will receive fitting treatment. Of direct ethical 
relevance here are the consequences of the mistake that 
results from using AI output as a reason for taking a cer-
tain course of action towards the patient, such that would 
affect her health and well-being (e.g. wrong treatment, 
extra suffering, possible death).3 Seeing the role of AI 
in decision making from this perspective helps answer 
the questions: How should AI results be interpreted dur-
ing decision-making, when such a decision entails risk 
of harm and significant moral cost? How to minimize the 
risk of misdiagnosis when the diagnostic procedure is 
aided by an AI tool?

One aspect of this is minimizing the risk of harm due to a 
wrong decision and making sure that you do not just guess. 
That entails making sure that if a consideration counts, for 
you, as a reason pro or against a certain decision, it is suited 
to be such a reason. Normally that presupposes making an 
effort to find out whether its validity can be independently 
verified. The question here should be: is my expectation that 
this consideration constitutes a good reason for action itself 
reasonable? Is my anticipation, that the consideration repre-
sents an expert opinion or that this consideration is a result 
of certain capacities or skills, backed up by reality or is it a 
mere assumption?

Another important aspect is understanding what sort 
of uncertainty is figuring in the particular situation where 
you are making your decision, which methods are appro-
priate to address this type of uncertainty and, as a result, 
which considerations can count as good reasons. If we take 
the role of an AI decision support system to be the mini-
mization of the probabilistic uncertainty of concepts as 
“event occurrences”, that would entail certain constraints 
on the machine inference process. The decision here is 
supported by quantified information about the uncertainty 
of whether an event is likely to occur or not, given infor-
mation on past occurrences and explanatory and control 
factors. This is firmly rooted in a set of epistemological 
assumptions of clearly delineated, mutually exclusive, 
and repeating events. There is, however, a key departure 
from these in medical decisions. Strictly speaking, what 

3 Here we focus on one aspect of the application of AI in healthcare. 
The spectrum of possible ethical problems that are associated with AI 
in healthcare is well described in research literature. We refer readers, 
e.g., to Morley et al. (2020).
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is uncertain is not whether an event occurs or not, but 
whether the decision maker (e.g. a medical professional) is 
confronted with a case that fits the profile of disease A ver-
sus disease B. This has resemblance to the identification 
problem4 in probabilistic reasoning but here it transcends 
the domain of model specification; instead of misidenti-
fied effects of a variable on a phenomenon, the issue is 
the kind of phenomenon that the model treats altogether. 
Furthermore, there is uncertainty about the ontology of 
A and B: their features may overlap, it is not clear how 
a pool of explanatory factors will lead causally to A as 
opposed to B,5 and in some cases frequency of occur-
rence cannot be established as the ‘events’ appear once 
without prior information because they constitute one-off 
unique cases. This sort of epistemological uncertainty, in 
the domain of diagnosis, moves models away from the task 
of inferring the probability of a phenomenon occurring 
to that of whether it is possible—or whether one should 
believe—that the logical inference of the model is this or 
that phenomenon altogether.

Second take on the problem: hybrid 
epistemology

Cases like AI assisted diagnosis are no longer bound 
merely by the norms of human epistemology. Here we are 
dealing with a new phenomenon of hybrid epistemology 
(or “hybrid intelligence” as in van Baalen et al., 2021). 
By hybrid epistemology, in this context, we understand an 
intimate mix of human cognitive processes and machine 
procedures that manipulate and transform information in 
uniquely different ways. One pitfall to avoid when assess-
ing these procedures and the role they should play in deci-
sion making, is getting trapped in the predominant nar-
rative about AI and continue extrapolating terminology 
describing human cognition. The existing research is still 
over-reliant on the aspirational narrative of replicating 
human cognition in an artificial environment (de dicto). 
As a result, the narrative about AI is still predominantly 
metaphorical, reflecting what we would like algorithms to 
do. Any claim about the role of AI in decision making that 
rests on the analogy between human and machine is bound 
to beg the question. One first has to prove that the analogy 
stands and explain to what extent. We need to realistically 
assess machine epistemology and construct a conceptual 
apparatus that would do justice to the unique elements of 

such epistemology, reflecting what algorithms in fact do 
(de re). There is a pressing need to analyze the epistemic 
capabilities of different types of algorithmic solutions, 
estimate how these capacities relate to the production of 
knowledge, and deduce normative constraints that apply 
to them. This is crucial if we are to realistically assess 
what sort of conclusions we are warranted to draw from 
AI algorithms. On the positive side, the urgency of such 
research has become apparent. One of the overarching aims 
of this paper is to problematize hybrid epistemology and 
contribute to the demarcation of the specific sub-tasks in 
such a system, with clear understanding of the epistemic 
vulnerabilities of the human and machine components as 
well as the inference from the latter to the former. This 
should help to draw the line between the specific epistemic 
responsibilities of each component (on the need to clearly 
delineate the epistemic tasks of AI and the human expert 
in the hybrid intelligence cf. van Baalen et al., 2021; Boon, 
2020), and to minimize “trade-offs at the epistemic and the 
normative level” (Grote & Berens, 2020).

With respect to the problem of hybridization of deci-
sion making, one of our central claims is that AI systems 
are not substituting an element of human epistemology. AI 
is not imitating a human cognitive faculty but is creating 
a unique epistemological product.6 So, the main question 
here is, given the asymmetry between AI and human epis-
temology, how are we to appropriately integrate7 this prod-
uct in the human decision making process? What are the 

5 On the causal roots of probability see Belis (2007).

6 An anonymous reviewer has drawn our attention to a potential 
objection: given that science still does not know the mechanisms that 
underly human cognitive mechanisms (such as drawing conclusions), 
it is possible that human cognitive processes are comparable to those 
of DNN and subject to the same criticism as this paper puts forward 
against the machine inferences. This is an interesting but controver-
sial topic, which requires a thorough investigation of debates in phi-
losophy of science and philosophy of mind. We cannot attempt to 
explore these in detail here. However, to clarify our position in this 
paper, we take a normative approach to the question of cognition, 
drawing from epistemology as a philosophical discipline, which, sim-
ply put, studies rational (i.e. universal and a priori) constraints in the 
concept of knowledge and its forms. The question about mechanisms 
in the brain that underly human cognitive processes (such as thinking, 
imagining, or perceiving) is a descriptive question. The information 
about the latter does not necessarily affect the truth about the former. 
However, if it is true that we do not know exactly how the human 
brain generates knowledge (descriptive domain), there is a very slim 
chance that calculation processes of the current DNN are, in fact, 
exactly the same with the processes in the human brain, unless this 
has happened by chance. In any case, in a situation like this, the bur-
den of proof is on the side of the objector, i.e. one who claims that 
these two cognitive systems are, in fact, identical.
7 Despite being framed in different terms, augmented rather than 
hybrid decision making, Jussupow et  al. (2021) offer interesting 
insights about meta-cognitive skills required for the incorporation of 
AI output in the diagnostic process of a medical professional.

4 The problem of not capturing and measuring the effects of the 
intended concept or attribute through a certain variable, because the 
variable reflects something different or a mixture of different things 
that what the researcher assumed. Any inference will be therefore 
problematic due to misidentification of effects.
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epistemological constraints on such integration? The impor-
tance of this discussion is especially obvious in cases like the 
use of AI tools to aid diagnosis, care and treatment, given the 
high personal cost that mistakes in these domains have for 
the patient. Another aspect of this is the fact that we cannot 
simply assume that there is a symmetry between an AI’s 
output and a certain type of human judgement. Any such 
assumption has to be checked against the facts concerning 
the processes involved in a specific type of an algorithm, and 
without a sufficient reason to establish an analogy between 
any machine process (say, a deep neural network output-
ting a certain ratio) and a human cognitive process (say, a 
judgement about the probability of a certain event), no such 
assumption should be accepted.

Hybrid epistemology for decision making 
purposes in health care: an example

In general terms, the problem with hybrid decision making 
that we have been introducing thus far can be schematically 
presented as follows (Fig. 1)8: 

An example of hybrid epistemology for decision making 
purposes in health care could look something like this:

1. An output of an AI system, designed to assist diagnosis 
of lung condition.

2. A judgment by a human medical professional, based on 
the output of the AI system, as to the condition of the 
patient.

3. A decision about the appropriate treatment of the patient.

A process similar to this would underlie the decision pro-
cedure of medical professionals involved in the application 
of systems like CheXpert Analysis (Irvin et al., 2019) or 
CheXNet (Rajpurkar et al., 2017). Both systems process X-ray 
images. In the former case the medical specialist sees output of 
the type “pleural effusion (very likely), abnormal (very likely), 
atelectasis (likely), cardiomegaly (unlikely)”. In the case of the 
latter, the medical specialist sees a binary result, e.g. “pneu-
monia positive (85%)”.9 Application areas of AI in healthcare 
are diverse and include ophthalmology (e.g. screening for 
glaucoma, diabetic retinopathy, hypertensive retinopathy; cf. 
Gulshan et al., 2016; Poplin et al., 2018), dermatology (e.g. 
skin cancer, cosmetic care; cf. e.g. Elder et al., 2021; Rundle 
et al., 2021), mammography (see e.g. Mayo et al., 2019; Wu 
et al. 2019; Badré et al. 2021; Liu et al. 2021; Sheth & Giger, 
2020), and pulmonology (a range of acute and chronic condi-
tions; see e.g. Kaplan et al. 2021; Almaslukh, 2021; Almalki 
et al. 2021). Such research and development has been also find-
ing its way to online education, for instance via entire speciali-
zations for AI in the medical sphere. For instance, on Coursera, 
the specialization by DeepLearning.AI includes the application 
of such models in the domains of diagnosis, prognosis and 
treatment, and does not require prior medical training. This 
gives a good idea about how the AI assistant could function 
and what sort of input the AI model will offer to the decision 
making process concerning diagnosis.

The type of AI system that we are talking about in the 
context of this paper is based on deep neural networks (DNN) 
as applied to image recognition (visual patterns). For simplic-
ity’s sake, we will use a hypothetical case, similar to the one 
generated by the system in Irvin et al. (2019). In our example, 
a medical professional receives the following result from his/
her AI diagnostic assistant: “85% pneumonia, 10% cancer, and 
5% tuberculosis”. An intuitively appealing mode of hybrid 
reasoning in this case would be something like this:

[α]: [α1] if an output of an AI algorithm is (“85% 
pneumonia, 10% cancer, and 5% tuberculosis”), then 
it is most likely pneumonia,

AI MODEL OUTPUT → HUMAN INFERENCE 
→ HUMAN DECISION → PRACTICAL CONSE-
QUENCES8

Fig. 1  Schematic representation of hybrid decision making

8 This is, of course, a purposeful simplification of the hybrid decision 
making process. The goal here is to isolate and analyze the elements 
which are directly relevant to the problem discussed in the paper. We 
chose to focus on this element of the decision process because it illu-
minates the specific danger at hand, i.e. overreliance on AI diagnos-
tic tools. What we think is especially important at this stage—when 
an explosion of new AI-based diagnostic software happens but the 
understanding of their limitations and proper ways to integrate them 
into the wider diagnostic process are lagging behind—is to prevent 
the situation where AI output is the only thing that is taken into 
account when making a diagnosis or where this output is by default 
given more weight. This motivated us to isolate this specific part of 
the hybrid decision making process and show (a) that there is a high 
danger of incorrectly interpreting the nature of AI output, given its 
deceptive or superficial representation in specialized software, and 
(b) that such output cannot be taken outside the context. Our goal is 
to show that AI diagnostic software must always be evaluated by a 
medical professional(s) in light of additional evidence. We are grate-
ful to an anonymous reviewer for drawing our attention to the need to 
add this clarification

9 For an overview of AI in medical diagnostic imaging see, e.g. 
Kapoor et al. (2019), Fujita (2020), Ting et al. (2021).
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[α2] therefore [for the diagnostic purpose] it is pneu-
monia.

The first part of this reasoning process [α1] represents 
some form of probabilistic inference. One premise in this 
inference is the output of the AI-based diagnostic assis-
tant system (it can be seen as an AI-generated knowledge 
content, i.e. that, which later will become the content of 
human knowledge); the second part [α2] is an inference 
about a matter of fact. This probabilistic inference plays 
a crucial role in the decision making process: it figures as 
a reason that weighs towards a certain course of action. 
This reason sanctions to act as if the patient indeed was 
affected by pneumonia. This dialectic between complex 
epistemology and ontology that has concrete practical 
consequences needs further investigation. Before we can 
accept it as a reason justifying a course of action, we 
have to establish whether [α2] is warranted, by what, 
and to what extent. In other words, the question is: given 
the ethical constraints of the decision making situation 
at hand, to what extent are we justified to move from 
[α1] to [α2]?

It is helpful to break down the reasoning process [α] into 
more specific steps:

[claim]: The output of the AI diagnostic assistant tool 
is “85% pneumonia, 10% cancer, 5% tuberculosis”.
[inference 1]: Therefore, the patient is most likely suf-
fering from pneumonia.
[inference 2]: Therefore, it is a case of pneumonia that 
we are dealing with.
[conclusion]: The patient should be prescribed a treat-
ment for pneumonia.

The initial claim isolates the element of machine epis-
temology, while the rest of the steps represent human 
reasoning. Now, our conclusion is warranted only when 
the intermediate steps (i.e. the moves from inference 1 to 
inference 2 and, in turn, from the initial claim to inference 
1) are warranted. To understand whether we can move 
from 85/10/5 to “most likely x”, we have to find out what 
85/10/5 actually means. This, in turn, is determined by the 
epistemological process by the means of which the algo-
rithm arrives at this ratio. This is what we will be engaged 
in for the rest of the article: in the first part we will show 
how one should not interpret the AI output. For this, we 
will reconstruct two intuitively appealing and most prob-
able interpretations and then discredit them in the light of 
the knowledge about the processes by which the AI system 
arrives at its output. In the second part of the article, we 
will make our suggestion about a more plausible way to 
interpret the AI’s output and fitting ways to incorporate it 
into the decision making process.

How not to interpret AI output

“Most likely”

If we take a closer look at inference 1, it is reasonable to 
assume that this “most likely” may be interpreted in one of 
two alternatives:

(1) A claim about a phenomenon fitting a certain concept. 
It would read something like this: “This case is very 
much like pneumonia, and not so much like cancer or 
tuberculosis”.

(2) A claim about an event likely to occur. “85% x” would 
translate into something like this: “In 85 out of 100 
cases x was the signature of pneumonia”.

Despite their intuitive appeal, both interpretations, as we 
will show, are erroneous. But first we need to say a few 
words about why both are so intuitively appealing. In a 
sense, they both are an expected consequence of the ambigu-
ous language of the standard machine (or deep) learning 
narrative. This narrative is not only largely metaphorical 
(i.e. not literary applicable) when it comes to the attribution 
of human cognitive skills to an artificial system, but—more 
importantly in this context—is not consistent in maintaining 
the analogies with human cognitive skills. Let us explain.

The probabilistic inference of the type “AI output is 85% 
x, 10% y, 5% z, therefore it is most likely x” is based on a 
naïve assumption about the processes leading to an AI sys-
tem’s output. It is this naïve assumption that the illusion of the 
plausibility of this inference relies on. The naïve assumption 
that appears to support this inference goes something like this:

[β] The AI system learns to identify x from examples of x 
to which it is exposed, and then uses the derived knowledge 
of x to identify a new instance of x.

This naïve interpretation is encouraged by the meta-
description of DNN, namely, of the “training” and “predic-
tion” stages that DNN is said to be split into. The spell of 
analogy compels the standard AI narrative to tag the stages 
of the algorithm akin to the stages of a human learning 
agent. The training stage is explained as the part of the algo-
rithm where machine learning happens: the DNN is said to 
extract the features representative of a certain phenomenon 
and fix it in a mathematical formula. The prediction stage 
is presented as the part of the model which applies the pat-
tern it identified to previously unknown samples. During this 
stage, the AI is said to process previously unknown cases 
and identify it as belonging (or not) to the same class. This 
standard AI terminology is stretched to mimic basic human 
cognitive processes necessary for the identification of a new 
instance of something:
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[γ] observation of existing cases → abstraction of relevant 
features → application to new cases

In a very rough explanation, the human process involves 
learning, which is based on induction (involving abstrac-
tion, generalization, and the extrapolation of a principle) and 
the subsequent deduction (i.e. an application of the general 
principle to a new instance). The problem is that in human 
cognition this process can take one of the two basic forms:

[γ1] observation of existing cases → concept → applica-
tion to new cases

[γ2] observation of earlier occurrences of the same phe-
nomenon → rule → prediction of new occurrences

The former is suitable for an a-temporal identification of 
entities (things), while the latter is about events occurring 
in time. If one wishes to follow through the analogy with 
the human cognition, the challenge is to interpret the DNN 
stages and underlying processes in terms of [γ1] and [γ2]. 
This is, however, a nearly impossible task, since the meta-
narrative about AI techniques does not seem to distinguish 
between [γ1] and [γ2], effectively blending these two cog-
nitive procedures. The narrative about “the training stage” 
appears to suggest that the algorithm is forming some sort 
of concept (in our first example, of a “dog” and a “wolf” 
and in our second example, of “pneumonia”, “cancer” and 
“tuberculosis”, since the algorithm is said to be trained to 
recognise instances of each of these). However, “the predic-
tion stage”, as the very name suggests, is supposed to be 
about the prediction of an event. This, of course, opens the 
way for confusion, inviting erroneous interpretations and 
false expectations. It is this blending of two distinct human 
cognitive processes that explains the appeal of the intuitive 
interpretations of “most likely” (i.e. the concept fitting and 
the event prediction).

In the light of this, it is important to evaluate whether 
either of these interpretations are justified. And the way to 
do so is to clarify how AI arrives at the output it does. The 
machine arriving to its output must be properly positioned 
in the general machinery of hybrid decision making, which 
now looks like this (Fig. 2):

In what follows, we will focus on the first node of Fig. 2, 
in order to show that neither of these interpretations, despite 
their intuitive appeal, are justified. We will explain how the 
algorithm works,10 without falling into the trap of metaphors 
(de re, and not de dicto).11 This will help to construct an 
account that fits machine epistemology. First, we will intro-
duce and explain what a machine concept is (distinguished 
from a concept as an element of human epistemology), and 
explain the process involved in the construction and the sub-
sequent application of any machine concept. Next, we will 
argue that in this type of hybrid epistemology, AI models are 
assigned an epistemological role that diverges prohibitively 
from how the predictive output of those same AI models is 
interpreted while inference and decision is being made. In 
somewhat simplifying terms, AI models are given the capac-
ity to generate information about one type of uncertainty, 
but in the end are asked to support decisions by interpreting 
them from the standpoint of another type of uncertainty.

Machine concepts and the signification problem

The naïve interpretation [β] of what a DNN model does is 
based on at least two basic assumptions:

[β1] that the AI system finds a way to identify some-
thing, i.e. an entity or an event. That is to say, that the 
output of an AI system is about a certain phenomenon, 
such as dog (or pneumonia), and
[β2] that the entity (or event) in question is such that it 
can be identified, and identified reliably, by the means 
that the AI system uses. This means two things: that a 
dog as opposed to a wolf or a cat (or that the case of 
pneumonia as opposed to a case of, say, cancer) can be 
singled out by such a method; and that when applying 
the method, one would be able to differentiate between 
animals (or lung conditions) in the future, i.e. were 
one to meet an unknown animal (or lung condition), 
the method would be sufficient to say with reasonable 
certainty whether it is a dog (or, in the alternative 
example, a case of pneumonia).

But does DNN really identify anything in this way? To 
answer this question, we need to understand what sort of 
interpretation of “85% pneumonia” (as an element in the 
broader statement “85% pneumonia, 10% cancer, and 5% 
tuberculosis”) is warranted by the nature of the internal pro-
cess of the algorithm, at each of its stages. This is what we 
will do now. We will refer to expressions such as “85% pneu-
monia” as machine concepts. In this context, we take them 
to be elementary building blocks of machine epistemology, 
which are, as we intend to argue, distinct form concepts as 
building blocks of human epistemology.

The assumption that the output of an AI system is about 
a phenomenon (such as pneumonia), once more, has its 

DATA PROCESSING→AI MODEL OUTPUT →
HUMAN INFERENCE → HUMAN DECISION →
PRACTICAL CONSEQUENCES

Fig. 2  Amended overview of the hybrid decision making process

10 Due to the lack of space, we will only focus on the relevant ele-
ments of DNN. As a result, the description of the algorithm will nec-
essarily omit some details.
11 For a deeper look into the mechanism of DNN we refer the reader 
to e.g. Chollet (2018) (from an applied computer science perspective) 
and Sullivan (2019) (from an epistemological perspective).
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roots in reasoning by analogy with human cognition. In that 
sphere, a word only then is said to mean anything, when it 
refers to something that is real, i.e. to a certain entity, and 
expresses an idea which serves as a mental representation 
of this entity. It is only because lungs can get affected by 
bacteria or a virus in a certain way (the signified: pneumo-
nia as an entity E) and because people have formed an idea 
that reflects the specificity of this condition (the meaning), 
that the word “pneumonia” has the meaning that it has (the 
signifier). This is what is commonly referred to as the sig-
nification triangle (Ogden & Richards, 1923; Peirce, 1998). 
So, the reference to a certain entity, in this paradigm, would 
be necessary to guarantee that 85% means anything at all.

In the attempt to match the narrative of the human mind, 
the standard AI terminology creates an impression that the 
algorithm is producing something similar to the meaning 
of “pneumonia” and that, akin to human mind, this hap-
pens in the interaction between a concept (such as given 
by a human, a developer, and then confirmed by the expert 
opinion of a group of medical experts) and the phenomenon 
(confirmed cases of lungs affected by pneumonia). However, 
the machine semiotics play out in a very different setting. 
The signification of any machine concept like “85% pneu-
monia” happens between the label, data-carrier and pattern.

The first element of the signification involved in the pro-
duction of meaning when it comes to machine concepts like 
“85% pneumonia” is what we will refer to as a data-carrier 
(DC). The data-carrier is an easily understandable by a 
human digital representation of a certain real-life phenom-
enon. It can be a digital image (in our example an X-ray 
image of lungs), video, or audio file. An image is a data-
carrier because its sole goal is to be a medium of data for 
the algorithm. Data is a mathematical representation of the 
information contained in the carrier. It quantifies the partial 
information about the entity. The way an AI system (in our 
case, DNN) comes into epistemic relation with the real life 
phenomenon is radically different from the way a human 
agent does: its relation to the object is always mediated by 
the process of digitalization, which serves the goal of trans-
lating reality into the symbolic language that a machine is 
capable of processing (codification). Digitalization is a pro-
cedure by the means of which the external world, as it is 
presented to humans, is made processable to an algorithm. 
There are a few important elements that are involved in the 
process of digitalization:

– Digitalization involves fragmentation of reality, that is to 
say, it effectively splits an entity (such as a dog or person) 
into spatio-temporal slices.

– Digitalization is a reductionist act because it reduces 
an entity to its fragments, i.e. to a limited selection of 
spatio-temporal slices or even one such slice (e.g. in our 
case, to an X-ray). As a result, it is necessarily selective 

and discriminative of other, potentially significant ele-
ments.

– However, at another level, digitalization is completely in-
discriminative because it does not differentiate the entity 
from its environment. In machine epistemology, an image 
(recognized by a human as a picture of a dog) is a totality 
T (in which a human will distinguish between, say, sky, 
grass, leash and the dog itself). The epistemic noise that 
a human agent will have no problem discarding will fig-
ure in machine calculations on equal grounds with other 
features of the image.

A data-carrier is never the same thing as the entity which 
it represents. To begin with, it is different ontologically: the 
photo of the dog is not a dog. The same way, an X-ray image 
of the lungs affected by pneumonia is not the same thing 
as the actual sick lung. If not for any other reason, then at 
the very least, because the latter evolves and exists in the 
context of the entire organism, while the former is a mere 
snapshot of a certain aspect of it. The only way “pneumonia” 
is represented in it is in the act of perception, that is to say, 
when it is perceived by an agent whose cognitive capacities 
allow her to read the idea of pneumonia into the attributes of 
the image. Furthermore, as an independent entity in its own 
right, the data-carrier supplies the algorithm information not 
about pneumonia, but about itself, i.e. about its every pixel.

The second node in the machine signification triangle is 
the label (L). It is a word or expression used, for example, to 
mark the folder which contains a set of data-carriers, which 
based on the judgement of model designers (or an expert 
in the field) depict certain instances. This is a category that 
grasps the result of categorization of the phenomena by a 
human. As a result, it is tempting to see labels as equivalent 
to concepts. If that were true, labels would anchor images 
in reality: one could argue that despite data-carriers being 
ontologically distinct from the entities they are designed to 
represent, the fact that images are labelled contributes to the 
algorithm’s ability to successfully differentiate between the 
localization of inflammation, characteristic to pneumonia, 
and everything else in the images. Concepts are essentially 
vessels for ideas; they perform certain functions in the com-
munication, learning and reasoning processes of the agents 
carrying out these processes. Unfortunately, labels do not 
work as concepts in the epistemic process of algorithms. 
They do not convey ideas which would then do their epis-
temic work in the process: such as, being understood and 
taken into account in order to identify a new entity. Labels, 
for the algorithms, are epistemic borders: they demarcate 
one set of data-carriers from another. Thus, in order to avoid 
further confusion, one should not equate the label “pneu-
monia” with the concept pneumonia. We rather should talk 
about L-Xness, as in L-dness (to refer to a pattern derived 
from the set of images labeled “dogs”) and L-pmness (to 
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refer to a pattern derived from the images labelled “pneumo-
nia”). Furthermore, from the point of view of the production 
of machine concepts, labels are a way to introduce to the 
algorithm the “correct answer”, the target towards which it 
should work and the internal reference point, against which 
it must calibrate it’s calculation.

The third and most important node of the machine signifi-
cation triangle is the pattern. Pattern is a weighted distribu-
tion of features across a set of data-carriers, demarcated by 
a label. This is how it is being identified by the algorithm. 
The general idea here is that the algorithm scans each data-
carrier clustered under each label (such as “pneumonia”) on 
a spatial basis, pixel by pixel (detailed level), segment by 
segment (aggregated level). Pixels are elementary spatial 
units of a digital image (akin to a dot). What a human under-
stands as a shape is, in machine epistemology, nothing more 
than a combination of values of shades of different colors. 
So the goal of scanning is to calculate, on average, to which 
degree of intensity of color of each pixel should be present 
so that a given data-carrier could score as close to 1 as pos-
sible, where 1 is preassigned the value of total fit, while 0 is 
a value of a complete misfit. The result of this calculation is 
something like a map of averaged weight distribution of fea-
tures (we use features here in a general sense of a property 
of a pixel or a segment). It is important that this is a target 
oriented process: it is designed to work towards the correct 
outcome. The correct outcome is confirming the member-
ship of each data-carrier from the data-set under the label 
L in the dataset with the label L. Crucial in the process is 
adjusting the degrees on each segment (aka “weights”) so 
that they are representative of all the samples in the data 
set. Another crucial element in this process is the idea of 
feedback-loops. A part of algorithm is working backwards: 
it compares its result with the target value of 1 (this, for us, 
means something like this: this data-carrier is correctly cor-
related to the “label L”) and, then, given the discrepancies, 
adjusts (recalculates) the weights distribution map. So essen-
tially the algorithm is tasked with finding a combination of 
weights that is needed to justify an attribution of a label. The 
predetermined membership of a data-carrier in the set L is 
the internal standard of success of the pattern calculation. 
There is no discovering of patterns that will separate things 
or events ontologically; the algorithm is creating patterns to 
match labels.

It is tempting to identify patterns with meaning: one 
could argue that the result of the features weight distribution 
amounts to discovering what it means for a data-carrier to 
be L. But that does not stand. A meaning of a concept, such 
as of “pneumonia”, is such that it must apply to any pos-
sible instance of phenomena that one may encounter, while 
the pattern of features that guarantees the membership of N 
amount of X-rays in the set labeled “Pneumonia” is such that 
it applies reliably only to that specific set. In the end, “85% 

x” is able to signify anything at all because it is generating 
a pattern in the distribution of data in a designated set of 
data-carriers.

Patterns: established (rather than discovered) 
and projected (rather than predicted)

While human learning, in relevant situations, is about mean-
ing (its production and application), DNN’s data process-
ing is about pattern, its creation and projection to a new 
case. We suggest that stages of the DNN algorithms that 
are involved in the production of “85% pneumonia” are bet-
ter described as: pattern calculation/calibration (reflecting 
the feature weighting processes) and the projection stage. 
This terminology grasps more precisely the nature of the 
processes that happen at each of the stages.

So instead of [γ] we have this schema:

scan the totality of features in a data set → weigh the 
distribution of features in this data set → project to a 
new data-carrier

What is at stake here is the difference between discover-
ing a pattern and creating a pattern. When it comes to con-
structing a concept of C or generalizing a principle accord-
ing to which C occurs, we are dealing with discovering a 
pattern, which presupposes, among other things, that

– case 1, case 2, case 3, …, case N, that you are observing, 
share a priori a combination of features and you only 
need to find it, and that

– by referring to this combination, you will be able to say 
with certainty when something is not C.

Firstly, “discovering” a pattern, among other things, pre-
supposes the possibility of failing to discover it, if the rel-
evant combination of features is not present. Secondly, the 
features that you single out as belonging to the pattern must 
be representative of C and only of C. However, neither is the 
case in DNN pattern recognition. Essentially, the DNN is not 
discovering but creating the pattern. With respect to the first 
parameter, the DNN cannot fail to establish a pattern; it will 
always calculate some pattern. But this may not be the pat-
tern that correctly relates to the specific entity correspond-
ing to C. With respect to the second parameter, the features 
that the algorithm singles out are not representative of C. 
Instead, they are representative only of the set of analyzed 
data-carries, whose relationship with C is itself questionable. 
Moreover, the epistemic noise (the features irrelevant to C 
altogether, such as the background) makes it impossible for 
these features to be exclusively representative of C.

The pattern calculation is carried out in preparation for the 
projection stage of the AI model. Here DNN is introduced to 
a data-carrier which is not a part of the original data-carrier 
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sets. The new data-carrier is unlabeled, but the expected out-
put of the model is forced to contain a reference to the labels 
of the sets of data, for which it has calculated/established the 
pattern. The algorithm analyzes new data-carriers through the 
prism of this pattern. More specifically, it evaluates numeri-
cally (“weighs”) the degree to which each of its features is 
represented by the pattern, i.e. it calculates for each shared 
feature of the labelled data-carriers the extent to which its 
commonality within that data set is represented by the new 
data-carrier. The system essentially projects (or reads) into a 
new data carrier the combination of elements typical to data-
carriers that are alien to the unknown instance in question. 
This in effect means that a pattern is forced on new data-
carriers. This is especially obvious in the cases where algo-
rithms produce all sorts of bizarre images, where buildings are 
read into plants, or dogs are projected into any random image. 
This aspect is exploited in AI-generated art (for an example 
see https:// ai. googl eblog. com/ 2015/ 06/ incep tioni sm- going- 
deeper- into- neural. html), and rightfully so, since the closed 
analogy with the human cognitive skill would be the free asso-
ciation characteristic to imagination. What this tells us is that 
the task that the AI system is carrying out is fundamentally 
different from finding out whether an entity before you is, in 
fact, a dog, building, or the case of pneumonia. The significa-
tion at this stage happens within the following triangle:

distribution of features (DF) in the set S ↔ (new data-
carrier X) ↔ the degree of DF(s) in X

Proper distinction between these two stages in DNN is cru-
cial, on the one hand, because they have different functions 
in the machine epistemology and, as a result, are open to dif-
ferent types of mistakes. It is more so, because the machine 
inference from the former to the latter (which is in itself the 
process by which a new phenomenon is categorized) is the 
most epistemologically vulnerable one, i.e. is most prone to 
errors. The final output of the system cannot be taken in iso-
lation from either of them, since the very meaning of “85% x” 
is dependent on the specificity of the elements in the data-set 
the model has been calibrated on [the degree of DF(s) in X]. 
Despite this, the standard AI narrative downplays the impor-
tance of the first stage. This elevates the risk that interrelation 
of the two segments will be overlooked and overlooked, most 
importantly, by those who matter the most for the type of 
decision making we are concerned with here—professional 
users. This may happen—and often does—because profes-
sional users do not come into immediate contact with the 
first segment of the model, where the calibration happens. 
This is something developers of the model are dealing with. 
It is often assumed that this segment of the AI system has no 
effect on the judgment of the user, only the second segment 
does. This assumption increases the epistemological vulner-
ability of the hybrid decision process because it precludes 
fully informed expert evaluation of the model’s output.

Such an evaluation should take into account the following 
considerations. Firstly, since the feature weighting stage of 
DNN (where the signification forms) is designed to corre-
late labels with data (which, for a human observer, translates 
into the correlation between labels and data-carriers such as 
images), we are only justified to conclude that an algorithm 
establishes the degree of relevance of a certain feature of an 
image (and not of an entity) to a certain label (and not the 
concept of pneumonia). As a result, machine concepts such as 
“85% pneumonia” do not express or establish a relationship 
between an entity (such as pneumonia) and an image (such 
as X-rays) that a medical professional is consulting an AI 
algorithm about. This is significant, because (a) a data-carrier 
such as a picture is always a partial representation which 
opens up a possibility for a wide range of biased judgments; 
(b) labelling introduces an element of human epistemology 
into the machine epistemology, which will play a crucial role 
in the way the algorithm will classify new images. Special 
attention must be paid to the way the cases are selected and 
labelled for the pattern calibrating stage of the model. Refer-
ring to labels of the original dataset in the explanation of a 
decision is a hypothetical judgement, not in itself a proof. 
Machine concepts create frequency correlation between any 
possible feature of this X-ray image, on the one hand, and 
any possible feature of all the images that the algorithm has 
been scanning in the feature weighting stage. This means that 
any AI output is necessarily contextual. It is only meaning-
ful in the context of the data-carriers it has been calibrating 
the pattern on. And secondly, despite the appeal of the naïve 
interpretation, β, an AI algorithm does not really identify 
anything at all.12 The fact that X happens to be a dog, or a 
confirmed case of pneumonia, is a contingent thing. With 
this, we must accept that interpreting “85% pneumonia, 10% 
cancer, and 5% tuberculosis” as “X is very much like pneu-
monia” (a concept fitting claim) is not justified.

Does “85% x, 10% y, 5% z” amount to: X is more 
likely to have occurred?

So, returning back to [α], there is one more question that we 
need to answer: does “85% pneumonia, 10% cancer, and 5% 
tuberculosis” equal a claim about the probability of the event 
that this patient is suffering from pneumonia? We argue that not.

To justify the claim that it does, an AI system would 
have to work out whether, given the evidence, an event x 
(pneumonia) occurs 85%, y (cancer) 10% and z (tuberculo-
sis) 5% of the time. However, clarifying this sort of “event 

12 This relates to Sullivan (2019) who problematizes “link uncer-
tainty”, i.e. the degree to which the model fails to be connected to the 
phenomenon in question. Sullivan highlights the need of providing 
additional empirical evidence that ties the model to the phenomenon 
in order to make a scientifically sound judgment about the phenom-
enon in the light of the model’s output.

https://ai.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html
https://ai.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html


 D. Babushkina, A. Votsis 

1 3

22 Page 10 of 15

uncertainty” is nowhere to be found in the setup and training 
of the model. The first thing to remind ourselves is that the 
concept of “event” is not a part of machine epistemology. 
But even if we would accept, for the argument’s sake, that 
something like events are singled out by the system, we still 
run into a number of problems with probabilistic interpreta-
tion. The sample of images that have been inputted to the 
AI algorithm (at the pattern calculation stage) cannot be 
considered as a frequency distribution of the occurrence of 
an “event” across a population as no representative cross-
section data are inputted for that population, nor as a distri-
bution of “events” across time as there are no time series or 
temporal patterns inputted. In either case, no such data is 
inputted that would form the basis of understanding the fre-
quency of occurrence of event x (cases of pneumonia) alone, 
or of event x conditional on the co-occurrence of event(s) 
y, z (cases of cancer and tuberculosis). Secondly, even if 
the above assumption is relaxed,13 the inputted “events” are 
not clearly delineated and mutually exclusive, whereas the 
explanatory and control factors do not clearly and uniquely 
correspond (or being corresponded by the machine) to, 
again, regularly occurring, clearly delineated and mutually 
exclusive “events”. Therefore, when interpreting “85% pneu-
monia, 10% cancer, and 5% tuberculosis” as an equivalent of 
a claim about the probability of an event, we are effectively 
asking from the AI model to derive temporal (frequency) 
patterns where no such patterns have been given to it, there-
fore misapplying to its % outputs extremely popular frequen-
tist statistics notions into a type of uncertainty that is not of 
a “how-often-an-event-occurs” nature.

But what is worked out by an AI algorithm? The algo-
rithm in fact has been provided with the information and 
algorithmic machinery to recognize spatial rather than tem-
poral patterns. What the AI system sees as its input is (a) 
generally unstructured and not always relevant information 
contained in a data carrier, clustered according to (b) labels. 
The algorithmic machinery is then tasked with structuring 
the provided information; but the expectation is that it would 
in some way “learn” to reconstruct “events” x, y and z. What 
is therefore happening is that spatial information is used to 
train a model to predict how much an arrangement of fea-
tures is characteristic of x-ness, y-ness and z-ness, without 
any constraints on order of occurrence or mutual exclusivity.

The naive temporal interpretation, following the frequen-
tist viewpoint of “85 out of 100 cases in the past, this was 
the signature of x (pneumonia), whereas in 10 cases the sig-
nature of y (cancer) and in 5 cases the signature of z (tuber-
culosis)” does not make sense, since the actual task that the 
machine performed was to establish in what arrangement 

certain spatial features make x (presented to it by data-
carriers labelled “pneumonia”), y (data-carriers labelled 
“cancer”) and z (data-carriers labelled “tuberculosis”) con-
currently and in the presence of each other. A closer—but, 
as we have shown earlier, still not accurate—reading of the 
output would be that in 85% of these cases the spatial fea-
tures were arranged in such a manner that were tagged as x, 
but also as y in 10% and as z in 5% of the cases.

If we now refer the reader back to the beginning of the 
paper where we asked how warranted is the intuitively 
appealing mode of hybrid reasoning [α]

if [α1] an output of an AI algorithm is (“85% pneumo-
nia, 10% cancer, and 5% tuberculosis”), then [α2] it is 
most likely pneumonia, therefore [α3] [for the diagnos-
tic purpose] it is pneumonia.

we can conclude that the move from [α1] to [α2] is problem-
atic, and so [α] is not justified. The probabilistic inference “if 
an output of an AI algorithm is 85% pneumonia, 15% cancer, 
5% tuberculosis then it is most likely a case of pneumonia” 
is in fact an assumption, which requires proof from an inde-
pendent source. And, thus, the inference about a matter of fact 
[α3] is a leap of faith, while the practical step of treating the 
patient from pneumonia cannot be supported. Relying only on 
the output of the model to corroborate the decision about the 
patient’s treatment may happen to be the right one, but only 
accidentally so.14 A responsible role in this hybrid decision 
making process requires support from other sources.15

How to interpret the machine output 85% x, 
15% y, 5% z?

So far we have been arguing how not to interpret the 
machine output. But how are we to interpret it? In this sec-
tion we make two claims: (1) that “85% x, 15% y, 5% z” 
only warrants us to make a judgment about trivial similarity 
between x, y, and z, and (2) that it essentially maps a range 
of overlapping boundaries between fuzzy concepts repre-
sented by the labels x, y and z, given the constraints of the 
data-carriers used to calibrate the model. Let’s explain this.

13 One may claim, for instance, that the model developers did man-
age to assemble a sample of data-carriers that is representative of the 
(presumably also clearly defined) population.

14 Grote and Berens (2020) raise a similar concern, when saying that 
“whereas involving machine learning might improve the accuracy of 
medical diagnosis, it comes at the expense of opacity when trying to 
assess the reliability of given diagnosis.” One part of this is opacity 
(see more, e.g. Carabantes, 2020; Heinrichs & Eickhoff, 2019), but 
what is of more importance here is the question of reliability.
15 What sort of evidence and tools are needed for the medical diag-
nosis should be discussed in the context of the nature of medical 
diagnosis itself. We won’t be able to discuss these issues here, but we 
would refer the reader to an interesting recent discussion on the mat-
ter in relation to AI decision support systems by, e.g., Kudina & de 
Boer (2021) and van Baalen et al. (2021).



Epistemo-ethical constraints on AI-human decision making for diagnostic purposes  

1 3

Page 11 of 15 22

Trivial similarity

The closest equivalent to the machine output in human 
epistemology is the judgment about similarity. Similarity 
between case 1, case 2, case 3, …, case N is non-trivial 
when it provides sufficient information for establishing the 
relatedness of the new case to those previously observed. We 
are comparing known cases in order to be able to categorize 
a new case: what is the most informative result of compari-
son? Since we want to find out whether or not the new case is 
the same phenomenon as the previously observed instances, 
arguably, it is a judgement about the similarity of relevant 
features, i.e. about the sharedness of unique distinguishing 
features between such cases/entities. This is what a trained 
professional would do.

One way to fail to make such a judgment about the rel-
evant features, would be to conduct a comparison by taking 
into account

– only randomly limited information about the entity in 
question;

– the totality of features in case 1, case 2, case 3, …, case 
N, that is, by comparing all features in case 1 to all fea-
tures in case 2, case 3, …, case N;

– the totality of features of the environment, in which case 
1, case 2, case 3, …, case N are situated.

This would run a high risk of picking up irrelevant and 
accidental elements, which are non-informative. The result 
would be similarity which does not inform whether the cases 
are instances of the same thing. We can draw an analogy 
with a mistake a radiologist may make if he/she takes into 
account an irrelevant feature of the image, such as the con-
trast medium injected into the joint.

This is, however, exactly what a DNN does, because

– it extracts information from a partial representation of an 
entity (from a data-carrier);

– it scans and compares all segments of all data-carriers in 
a set;

– not all segments of the data-carrier represent the entity 
in question.

The best way to describe what an AI system does is as: 
finding anything that can possibly unite case 1, case 2, case 
3, …, case N. This amounts essentially to constructing simi-
larity, rather than identifying or discovering existing simi-
larity of relevant features. The problem with this approach 
is that in order to be successful in constructing similarity, 
one does not need to take into account how things are. It all 
depends on the level of generality, i.e. on where one sets the 
bar for the abstraction of features. When comparing a dog 
with an oyster, one may not find similarity on the level of 

species, but will find these two similar as living entities, vs. 
non-living ones such as rocks. And in the end, being is the 
underlying unity of everything, including stones, dogs, trees, 
and Hegel’s concept of the Absolute Spirit. This, however, 
comes at a price: the more abstract you go, the less informa-
tive and more irrelevant the similarity judgments become for 
the specific decision making purposes.

So, what we are warranted to infer from the AI’s output 
is a statement about trivial similarity. The algorithm does 
not discriminate between any bit of data, i.e. between any 
detail of the data-carrier when it performs its comparison: 
empty space, noise, background features, any imperfections 
in the data-carrier—everything is taken into account. One 
could object by saying that on the feature weighting stage, 
the algorithm does exactly that: it extracts the most relevant 
distinguishing features. But that is simply not true, otherwise 
we would not have cases when an AI algorithm correctly 
identifies a wolf in a picture because of snow in the back-
ground. Even when the algorithm outputs a higher percent-
age of wolf-ness in the picture which displays a wolf, this 
is nothing more than a coincidence. Calibrating the model 
is normalizing this accidental correctness. The ambiguity 
of the concept of similarity explains the confusion about 
the concept of pattern. In a narrow sense of the word, pat-
tern is a combination of features that are representative of a 
phenomenon; a unique combination of elements that make 
a certain entity distinguishable from other entities. This 
explains why we are able to identify entities by a certain 
pattern. This is not what pattern is in DNN epistemology. 
Here pattern is used in a wide sense of a shared property, 
something that is common to any two or more random enti-
ties. Everything shares a pattern with everything else. Thus, 
the bizarre images of AI art when it sees dogs in images 
of trees is not an error in machine epistemology. They are, 
however, in human epistemology.

On the fuzziness of machine concepts

“85% x, 10% y, 5% z” is in fact describing degree of trivial 
similarity with sets x, y, z instead of either x, or y or z when 
seen as treating concepts; and the amount of times x, y, z 
was tagged as such given a certain arrangement of features, 
instead of frequency of (not) being x, y or z in past cases 
when seen as treating events. Much of the confusion about 
“85% x, 10% y, 5% z” comes from a lack of understanding 
about the nature of the transformation of concepts as epis-
temic units within hybrid reasoning, which results from the 
cooperation of the human with AI that is based on DNN. As 
was just demonstrated, the DNN establishes trivial similarity 
between concepts (represented by labels) while calculating 
the degree to which the distinction between them can be 
blurred. This is to say that DNN fuzzyfies concepts with no 
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regard to the nature of the concepts that stand behind the 
original labelling.

In the domain of soft computing, the distinction between 
hard and fuzzy concepts was best explained by Zadeh (1965, 
1975) and is insightful for the explanation of uncertainty. If 
we describe concepts as sets, then hard concepts are those 
that have sharp boundaries which delineate members of the 
set from non-members. Membership in such a set is a binary 
parameter. “Dog” can be approached as such a concept: X is 
either a dog or not. In cases when it is not clear whether X is 
a dog or a wolf, the uncertainty would be due to incomplete 
information. Fuzzy concepts, however, do not impose sharp 
boundaries and the membership in these sets is a matter of 
degree. The uncertainty in such cases comes from blurred 
boundaries and the fact that something can belong to multi-
ple sets concurrently, but at varying degrees. A widely used 
example of a fuzzy concept is temperature, where hot and 
cold do not share a crisp boundary but rather blend into 
each other along a continuum of varying degrees of hotness 
and coldness. Due to the way they generate signification, 
machine concepts (such as 85% x) do not and cannot gener-
ate a function for binary membership. They always deter-
mine a degree to which X can be seen as belonging to a 
certain labelled set. Machine concepts of the type generated 
by DNN are necessarily fuzzy. In the case of the label “dog”, 
the concept enters the hybrid reasoning system as a hard 
concept because it is a hard concept in human epistemol-
ogy. After the machine output, the same label represents a 
fuzzy concept of the dog, because the algorithm has tried to 
establish a degree of similarity of a certain arrangement of 
spatial features to those shared by the members of the data 
set labelled “dog”, i.e. to L-dness. The machine output “85% 
x, 10% y, 5% z” establishes similarity between a predeter-
mined selection of machine-concepts; it is mapping a range 
of overlapping boundaries between concepts represented by 
the labels x, y and z. For instance, if x, y and z would refer to 
labels “dog”, “wolf” and “cat”, their respective percentages 
in model output would communicate the concurrent degree 
of membership of a given unlabeled data-carrier, DC, in the 
fuzzy sets labelled “dog”, “wolf” and “cat”. This, however, 

does not translate to “more like”/”less like a dog” but to 
“there is x amount of L-dness, y amount of L-wness, and z 
amount of L-cness in your specimen DC.

Rather than following the event-probabilistic interpreta-
tions of judgements about fuzzy concepts, it seems more 
appropriate to adopt Zadeh’s concept of possibility.16 In a 
decision making context, membership degree x(/y/z) of DC 
in a fuzzy set X(/Y/Z) has been re-defined by Zadeh (e.g. 
1999) as degrees of possibility that DC is X/Y/Z and the 
model output “85% x, 10% y, 5% z” should be rather seen as 
answering the question about how possible it is that what we 
are faced with is X and not a question about how probable 
it is.17 The epistemological contribution of model output in 
the decision making chain sketched in Fig. 1 is therefore bet-
ter understood as reflecting the possibility that the entity is 
X/Y/Z. We won’t be able to go into possibility theory in any 
detail here, but it is important to draw attention to a couple 
of considerations. First, as Zadeh notes: “a high degree of 
possibility does not imply a high degree of probability, nor 
does a low degree of probability imply a low degree of pos-
sibility” (1999, p. 14). To use Zadeh’s own example, while 
it is quite possible that Hans will eat 3 eggs for breakfast 
(possibility = 1), it is not very probable that he will do so 
(probability = 0.1). This is because the criteria that deter-
mine whether a phenomenon is more possible are different 
from the criteria that determine whether it is more probable. 
Probability is a question of frequency of a phenomenon hav-
ing a certain characteristic across a set of the phenomenon’s 
occurrences. Possibility distribution, on the other hand, is 
a function of fuzzy restrictions associated with a concept 
C. What is at stake here are “the degrees of compatibility”, 
which can otherwise be explained as the “degrees of ease” 
with which a certain characteristic (represented by C) can be 
attributed to the phenomenon in question. So, while “85% 
pneumonia, 10% cancer and 5% tuberculosis” may point to 
the degrees of ease with which, given the context, one would 
ascribe to the observed case the respective concepts, that 
cannot be translated to the probability distribution of the 
phenomena expressed by these concepts. This brings us to 
the second point. What contributes to the “degree of ease” 
(in the case of possibility) is a variety of highly contextual 
(and often subjective) determinants. In the case of Hans eat-
ing eggs, this determinant is the ease with which he can eat 
3 eggs (and, say, not experience indigestion). While in the 
case of a judgment like “John is young”, the possibility of 
John being young is a matter of ease with which in a certain 
cultural framework people attribute “young” to various age 

16 An insightful discussion on the fundamentally different kinds of 
uncertainty dealt with by sciences and engineering, entitled ‘The elu-
sive concept of uncertainty’, took place in UC Berkeley’s BISC group 
mailing list between Lotfi Zadeh and other prominent researchers in 
AI and soft computing. There, among others, Zadeh (27.11.2013) 
outlined three main types of uncertainty: relating to repetitive ran-
dom events; relating to incompleteness of information on singular or 
unique events; relating to un-sharpness or fuzziness of class bounda-
ries (possibility theory). In response, Marianne Belis (11.5.2014) 
re-grouped uncertainties, depending on the sharpness of the bound-
aries, into two types: due to the incompleteness of information (for 
concepts with sharp or “hard” boundaries) and due to fuzziness (un-
sharpness) of the class boundaries. Probability is a concept suitable 
for the first type; while possibility grasps best the second type.

17 In this respect, note Sullivan (2019) who claims that models such 
as DNN contribute to “how-possibly explanations”, i.e. explanations 
about possible correlations and dependencies, and not “how-actually” 
or “why-questions” about the actual phenomenon.
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categories, and John’s age as attributes to these age catego-
ries. A lot of this has to do with the use of language and 
conventions. In the case of AI systems, it is the DNN itself 
that creates such a determinant in application to the fuzzy 
sets of machine concepts that it creates. Whether such a 
determinant coincides with the constraints on attribution of 
the respective concepts from the human epistemology, is an 
open question.

Conclusion: normative constraints 
on inferences from AI output in decision 
making

We started with the question: in the situation when we do 
not know for certain what an entity is, and given the output 
of an AI decision support system,“85% x, 10% y, 5% z”, are 
we warranted to jump to the conclusion that the entity in 
question is most likely x? To answer this, we had to take a 
closer look at the processes that underlie machine epistemol-
ogy and to understand what the unwarranted interpretations 
of the machine output are. This required analyzing machine 
concepts and distinguishing them from concepts in human 
epistemology, as well as evaluating the applicability of the 
event prediction interpretation. This led to a revised under-
standing of the ways the elements of the machine epistemol-
ogy should be interpreted into the hybrid (human/machine) 
decision making processes.

More specifically, we wanted to understand if, when the 
algorithm processes a data-carrier (in our example an X-ray), 
DC, we can move from the machine statement DC = {x: %, 
y: %, z: %} to a conclusion that, for the diagnostic and treat-
ment purposes, the patient’s condition is indeed x. Is AI 
output by itself enough to warrant this move? And if not, 
then what else is needed? We argued that the conclusion 
that the patient is indeed suffering from x is unwarranted, 
both when model output is seen as concerning the concept 
x and event x. We have shown that, because the AI model is 
equipped to answer a different kind of uncertainty than what 
the human interpreter has in mind when reading the output. 
We argued that these significations are nowhere to be found 
in the algorithmic machinery and information available to an 
AI model. We concluded that model output rather represents 
degrees of membership of the data-carrier DC in a number 
of fuzzy sets, delineated by labels (L-xness). Moreover, in 
a decision making context we suggested that DC = {x: 85%, 
y: 10%, z: 5%} is better understood as representing the pos-
sibility of DC being x/y/z and that additional information is 

needed to answer something about the respective probability. 
In other words, one cannot rely solely on the output of the 
model to corroborate a decision about the patient’s diagnosis 
and treatment.

Of course, if we did have a strong AI,18 such that it would 
be able to navigate in contexts not accessible to the human 
mind, that is to say, if we had an AI that were able to process 
the mass of its own perceptions of reality in its full totality, 
then it could be closer to generating epistemic processes like 
those of human induction/deduction. And if it were able to 
extract relevant elements from the mass of perceptions, then 
it would be useful in mapping a range of fuzzy sets, repre-
sentative of all relevant alternatives, and warranting further 
questions about probability. But the reality is that we do not 
have such an AI.

Ethical implementation of AI decision support systems 
in such high-risk areas as health care requires a responsi-
ble stance on behalf of the human decision maker who is 
involved in the hybrid reasoning process. This, in turn, cre-
ates a number of responsibilities for system developers and 
marketers as well. More specifically:

(a) The human decision maker has an epistemological 
responsibility to develop a factually informed under-
standing of the processes that lead to the formation of 
AI’s recommendation. The developers and marketers 
have a corresponding responsibility to provide realis-
tic description of the processes involved, and not to 
deceive potential (professional) users concerning the 
capacities of the system and its role in the decision 
making process. This includes avoiding fundamental 
mistakes in the utilization of pattern recognition tech-
nology, such as the belief that the machine has the abil-
ity to recognize entities from a sensory input.

(b) The human decision maker has an epistemic responsi-
bility of being aware about the limitations of the par-
ticular AI decision support system he/is using. This is 
required in order to prevent situations when the output 
of the model is not-applicable to the specific circum-
stances of the patient. This creates a corresponding 
requirement for the developers and marketers to supply 
the model with a manual which includes an accurate 
description of the model, detailed description of the 
data set it was calibrated on, and the limitations that 
follow from this calibration as to the new cases that 
the model should be processing. The AI’s applicabil-
ity range must always be clearly defined, and the users 
must be warned that it can never be used a-contextually, 
however narrow that context might be.

(c) The human decision maker should avoid over-relying 
on the AI model. Its output should always be placed 
within the context of other relevant diagnostic pro-
cedures. As diagnosis is itself a fuzzy set, the output 

18 In this context, this term refers to an artificial system capable of 
thought, consciousness  and emotions in a genuinely human  way 
(Searle 1980).
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must always be supplemented by other tools that give 
a better understanding of the relevant causal processes. 
The developers and marketers should warn the potential 
professional users about this necessity.
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