
Agents of responsibility in software vulnerability processes

Ari Takanen, Petri Vuorijärvi, Marko Laakso and Juha Röning
University of Oulu, Finland

Abstract. Modern software is infested with flaws having information security aspects. Pervasive computing has
made us and our society vulnerable. However, software developers do not fully comprehend what is at stake
when faulty software is produced and flaws causing security vulnerabilites are discovered. To address this
problem, the main actors involved with software vulnerability processes and the relevant roles inside these
groups are identified. This categorisation is illustrated through a fictional case study, which is scrutinised in the
light of ethical codes of professional software engineers and common principles of responsibility attribution.
The focus of our analysis is on the acute handling of discovered vulnerabilities in software, including reporting,
correcting and disclosing these vulnerabilities. We recognise a need for guidelines and mechanisms to facilitate
further improvement in resolving processes leading to and in handling software vulnerabilities. In the spirit of
disclosive ethics we call for further studies of the complex issues involved.

Key words: information security, professional ethics, security evaluation, software development, software
testing, software vulnerability

Introduction

To produce robust and trustworthy software, pro-
fessional and proficient approaches to software
development are required. Cost-benefit and risk
analyses may be performed to determine the level of
expertise required in a software project and to specify
the security and quality requirements1of the final
product. Although it is desirable to strive to build
dependable software, in some cases the public can be
adequately served with inexpensive, less robust soft-
ware with no heavy quality assurance procedures. In
cases of more demanding customers requiring
robustness from the product, professional software
engineering methods exist to help software developers
provide better quality software.

However, trivial errors that cause security vul-
nerabilities2 and safety hazards are frequently found

in both consumer software and advanced building
blocks of the security-critical information infra-
structure.3 Information security typically focuses on
protecting the confidentiality, integrity and avail-
ability of information from external threats, whereas
the safety issues of computer systems are related to
risks to life or property from natural or accidental
hazards. Security and safety in software are attributes
that cannot be effectively measured or guaranteed,
and are thus always based on levels of risk. A system
is safe or secure when the level of risk is acceptable.
Modern society depends on software products to the
extent that when considering flaws in security and
robustness, we can often use the terms safety and
security interchangeably, or combine them under the
term dependability. Unfortunately, often all this may
not have been taken into consideration when devel-
oping software. One insecure component in a secu-
rity-critical environment can compromise the
reliability of the whole system.

The scope of this paper is narrowed down to issues
related to creating and handling of unintentional
security-related development flaws, also called soft-
ware vulnerabilities. Our goal is to describe and

1 We divide information security roughly into two dif-

ferent aspects. Traditional information security takes the
perspective of security requirements, focusing on methods
for protecting the confidentiality, integrity and availability

with means such as filtering, attack fingerprinting, user
authentication and encryption. On the other hand, the
software security approach focuses on software quality and

reliability, where the issues relate to the actual development
flaws with security implications and their solutions.

2 A vulnerability can be a lacking security requirement

(e.g. lack of, or improper authentication, encryption, . . .),
or a development error in the software (e.g. buffer overflow,
race condition, . . .).

3 Peter G. Neumann. Computer-Related Risks. ACM
Press/Addison Wesley, 1995; The risks digest. Forum on
risks to the public in computers and related systems. http://

catless.ncl.ac.uk/Risks; Nancy G. Leveson. Safeware: Sys-
tem Safety and Computers. Addison-Wesley Publishing
Company, 1995.

Ethics and Information Technology 6: 93–110, 2004.
� 2004 Kluwer Academic Publishers. Printed in the Netherlands.

identify the main ethical issues to be considered when
assessing software vulnerability processes, focusing
on disclosing the actors and relevant roles involved in
a way that enables more thorough analyses to be
made of the distribution of responsibility among
them. By responsibility we here mean the attribution
of burden resulting from realised compromises of
computer security, but also safety. The existence of
accepted professional guidelines allocates responsi-
bilities to those who claim or are expected to follow
them.

We begin with an introduction to disclosive ethics
and responsibility, and a short presentation of gen-
erally accepted codes of ethics for professional soft-
ware engineers. After outlining the most distinctive
agents and mechanisms involved in software vulner-
ability handling processes and summarising some
viewpoints on the issue, we move to a fictional case
study of software vulnerability exploitation. It illus-
trates the practical meaning of the categories of ac-
tors and roles we define as the main agents in
software vulnerability processes. Subsequently, we
scrutinise the moral and professional responsibilities
and practices of the three major role groups involved.
The article is concluded by focusing our analysis on
the role groups involved in vulnerability handling. By
this analysis we aim to provide a relatively neutral
starting point explicating the necessary facts and
relationships for further normative analyses of this
controversial issue.

Disclosing responsibility and professionalism

Disclosive ethics

Philip Brey4 has suggested a three-level methodology
in identifying and analysing previously undisclosed
ethical issues in information technology consisting of
disclosure, theoretical and application levels. In this
classification, emphasis is placed on illuminating the
often indistinct normativity inherent in computer
systems, but also in their usage and closely related
societal issues. In the actual disclosure level of (dis-
closive) computer ethics Brey recommends a joint
effort of computer specialists, philosophers and social
scientists in its practise. Basically, these disclosure
level studies are descriptions of computer systems and
their usage, where the focus on issues deemed ethical
is directed by a common sense definition of a selected
moral principle. This is done in order not to push a

phenomenon into a narrow predetermined category
imposed by an elaborate ethical theory, but to pre-
serve the pragmatical complexities for further analy-
sis. The actual recommendations for correct policies
concerning the information technology belong to the
area of applied ethics, where normative analyses
founded on selected moral ideologies are made.

As the writers of this article represent the engi-
neering and social sciences traditions, Brey’s recom-
mendation of an interdisciplinary approach is
appreciated. We categorise our article as a variant of
disclosive ethics at the disclosure level, even though
the dilemmas considered here are not altogether
previously unknown5 and have already caused con-
tradictions between different parties involved. How-
ever, the ethical implications of the subject at hand
are hard to grasp as the vulnerability process is usu-
ally not understood as the wide continuum in the
social and societal level it is.

Subsequently, our presentation differs somewhat
from the notion of disclosure level ethics as meant by
Brey, by focusing on the explication of social rela-
tions and societal structures surrounding this issue,
rather than centering on the functioning of the tech-
nology itself. The explicated structures and relations
are then preliminarily utilised in fathoming the dis-
tribution of responsibility between the agents capable
of carrying it (e.g. human agents and compositions
thereof) in the event of unforeseen or unwanted
functioning of the technology. The categories of roles
and actors are defined further in this article to facil-
itate this analysis, the former with reference to indi-
vidual human agents and the latter pointing to the
compositions (groups, structures, organisations, etc.)
of individuals. At this stage we tentatively call our
variant of the disclosive ethics approach as doing
social disclosure level ethics. It should be noted that
we do not attempt to formulate any final normative
(concrete) recommendations regarding our subject in
this article, but leave them for further normative
analysis.

Responsibility

Professional players in information technology are
not without responsibility to those whom they serve,
be they employers or customers. This is especially so
with software with security or safety implications.
Issues such as ignorance, irresponsibility or even
arrogance have an ethical aspect, especially in pro-

4 Philip Brey. Method in Computer Ethics: Towards a
Multi-level Interdisciplinary Approach. Ethics and Infor-
mation Technology, 2(2): 125–129, 2000.

5 OUSPG has collected the past discussions on vulner-
ability handling in a link list. http://www.ee.oulu.fi/re-
search/ouspg/sage/dis_closure-tracking/.

TAKANEN ET AL.94

fessional cadres but also outside of them. Often
malfunctions in computers are attributed solely to
‘‘bugs’’, for example, or the computer itself is seen as
the root cause of the problem, neglecting the fact that
the technology has its makers, suppliers and utilisers
who all carry their share of moral responsibility.6

When considering the relationship between moral
responsibility and security, the malicious intent
which the presumed security is protecting against
does create its own share of moral responsibility.
When considering safety and moral responsibility,
this malicious intent of the abuser is sometimes
missing, thus leaving moral responsibility solely on
the developers, intermediaries and users of the tech-
nological construct. In our article, we prefer to use
the term dependability (combining security and
safety), because we primarily exclude intentionally
malicious attack activity from the analysis of our
article.

Anton Vedder7 describes the conditions of
responsibility attribution in his article discussing the
accountability of Internet access and service provid-
ers. He identifies two aspects of responsibility; pro-
spective and retrospective. By retrospective
responsibility the consequences of actions can be
attributed to persons, whereas by prospective
responsibility he means an obligation or duty to act
or not to act in a certain way prescribed by a moral
principle, which applies to the person at the time of
the event. If a person is to be held retrospectively
responsible, a moral principle has to be shown to
have applied to him at the time of the action, or
omission of action. These principles, apparently, can
be found both in formal and informal (meaning
common sense) cultural forms. Furthermore, it has to
be determined whether the two remaining conditions
for attributing retrospective responsibility, being (1)
causality and (2) intentionality, are sufficiently in ef-
fect. Causality is defined as the contribution of the
person’s action to the effect or consequences, be the
contribution ‘‘direct or indirect, substantial or addi-
tional’’. Intentionality means that the person must
have had some amount of purpose in his actions and/
or their relation to the consequences, and is not to-
tally ignorant of the meaning of his actions and their

consequences. The same of course applies for omis-
sions of action.

Vedder also delves into a philosophical debate
about the applicability of responsibility as a collective
measure in the area of ethics.8 Sara Baase has clari-
fied this dilemma by pragmatically claiming that
responsibility can be attributed to both individuals
and organisations.9 Our application of the concept of
responsibility also has similarities with the notion of
positive moral responsibility as defined by John
Ladd, where emphasis is placed on the distribution of
responsibility to multiple actors.10 This was expli-
cated in opposition to the more traditional method of
negative responsibility, where finding a single scape-
goat is essential to exonerate the others involved.

Thus in this article, we focus on the moral
responsibilities of persons involved in developing and
providing software to customers, while including also
those individuals participating in later stages of vul-
nerability handling processes. Many of the issues
discussed here are already covered by legal, contrac-
tual or professional responsibilities. As we are not
experts in the field of law nor in theoretical ethics, our
viewpoint is out of necessity pragmatical. Therefore,
we opt to take cover behind the shield of the disclo-
sive ethics mandate and primarily use our common
sense, not moral philosophy, as regards to this
question in our preliminary analysis.

Professional ethics

In an ACM11 report12 on their position on consid-
ering software engineering as a licensed engineering
profession, the ACM concludes that the software
engineering field does not need licensing to be a
profession and that it cannot support licensing efforts
for software engineers, as is promoted and required in
many countries in fields offering services directly to
the public, such as doctors, lawyers, civil engineers,
contractors, day care workers, barbers, and survey-
ors. The state of knowledge and practice in software
engineering is too immature to warrant licensing, and

6 John Ladd. Computers and Moral Responsibility: A
Framework for an Ethical Analysis. In Carol-Gould, edi-

tor, The Information Web: Ethical and Social Implications of
Computer Networking, pp. 207–227. Westview Press,
Boulder, Colorado, 1989.

7 Anton Vedder. Accountability of Internet Access and
Service Providers – Strict Liability Entering Ethics? Ethics
and Information Technology, 3(1): 67–74, 2001.

8 Vedder (2001).
9 Sara Baase. A Gift of Fire: Social, Legal and Ethical

Issues in Computing, p. 342. Prentice Hall, 1997.
10 Ladd (1989).
11 Association for Computing Machinery. http://

www.acm.org.
12 In ‘‘A Summary of the ACM Position on Software

Engineering as a Licensed Engineering Profession’’ the
ACM points out that they believe the problem of reliable

and dependable software, especially in critical applications,
is the most important problem facing the IT profession.
http://www.acm.org/serving/se_policy/.

SOFTWARE VULNERABILITY PROCESSES 95

licensing would not be effective in assuring software
quality and reliability.13

There are numerous rules and guidelines in soft-
ware engineering that state how the profession of
software engineering should be practised with high
moral standards. Organisations such as ACM and
IEEE-CS,14 have started promoting professional ap-
proaches among their members, with the help of
certification, training and also by the deployment of
ethical codes. Several organisations have compiled
their codes of ethics15 which their members should
follow to show at least some concern toward the
ethical aspect of the business and the responsibilities
brought up by these considerations. Ethics related to
software dependability issues are also considered in
the professional codes of ethics. They point out the
moral responsibilities of professional developers in
ensuring that suitable protections are in place to
avoid loss of human lives or property due to faults in
the software.

A short version of the code of ethics16, which all
IEEE members should agree to follow, contains 10
simple rules of ethics. Of these, attention is drawn to
four that are closest to the focus of this article:

‘‘1. to accept responsibility in making engineering
decisions consistent with the safety, health and wel-
fare of the public, and to promptly disclose factors
that might endanger the public or the environment.’’
This clearly points out that both developers and
external researchers are responsible and obligated to
do their best to bring to public attention any faults in
their products and the products of the others that
endanger the public or the environment. The more
critical the environment, the more important this
point becomes.

The responsibility of software engineers to
understand the consequences and to inform others
about what they know, and to keep on studying, are
pointed out in the following two rules. ‘‘5. to improve
the understanding of technology, its appropriate
application, and potential consequences; 6. to main-
tain and improve our technical competence and to

undertake technological tasks for others only if
qualified by training or experience, or after a full
disclosure of pertinent limitations.’’ These two rules
together point out that software engineers should also
be able to make dependable software for critical
applications and to comprehend the impact these
applications may have on human lives. Developers,
and perhaps even vendors, should clearly point out if
they are unable to meet the security and safety
requirements or follow the engineering practices that
should result in good quality, and they should inform
their co-workers and warn their customers of the
possible risks in using the product.

‘‘7. to seek, accept, and offer honest criticism of
technical work, to acknowledge and correct errors,
and to credit properly the contributions of others.’’
This encourages external researchers to find and re-
solve security or safety related flaws in the software of
others, and obliges developers to fix them the best
they can and not shoot the messenger but instead give
credit where it is due.

Some work has been done to combine the dif-
ferent codes of ethics into one specially tailored for
software engineering. This code17 has been accepted
by the IEEE and the ACM as a standard sup-
porting individual software engineers or software
engineering managers, and groups thereof, in their
striving for ethically sound professional practices.
This code is seen to bind anyone claiming to be or
aspiring to be a software engineer. According to the
ACM/IEEE-CS code, the first obligation of the
engineer is always to the public good. The ACM/
IEEE code of ethics is on the principal level quite
similar to the IEEE code previously discussed, but
it is one step further operationalised towards the
practise in software engineering. However, generally
accepted explicit guidelines regarding the reporting
and handling of software vulnerabilities do not yet
exist.

Software vulnerabilities

The proactive means of preventing software security
vulnerabilities from emerging can only be achieved by

13 The history of the joint IEEE Computer Society and

ACM Steering Committee for the establishment of soft-
ware engineering as a profession. http://computer.org/tab/
History.htm:

14 Institute of Electrical and Electronics Engineers –
Computer Society. (A member society of IEEE.) http://
computer.org.

15 Online Ethics Center. Codes of Ethics and Conduct.
http://www.onlineethics.org/codes/.

16 IEEE Code of Ethics. A note distributed to all
members of the IEEE association. http://www.ieee.org/
about/whatis/code.html.

17 Software Engineering Code of Ethics and Professional
Practice. As recommended by the ACM/IEEE-CS Joint

Task Force on Software Engineering Ethics and Profes-
sional Practices (SEEPP). http://www.acm.org/serving/se/
code.htm; Don Gotterbarn, Keith Miller and Simon Rog-

erson. Computer Society and ACM Approve Software
Engineering Code of Ethics. Computer, 32(10): 84–88, 1999.
http://computer.org/computer/code-of-ethics.pdf:

TAKANEN ET AL.96

good software development practises. The state of the
art in development of dependable software is based
on at least four identifiable aspects: qualified engi-
neers, extensive audits, test coverage and quality
assurance.18 These aspects are complementary and
none of them can be ignored. For most vendors,
qualified engineers may be difficult to come by, and
certifications of secure programming skills are scarce.
In the OpenBSD19 project, most critical source code
is thoroughly audited by security-aware developers.
The project is also an example of software develop-
ment where security and quality override a wide set of
features in priority. Although testing can never reach
full test coverage and can never prove that there are
no flaws left, the PROTOS20 project shows how, by
using unexpected but systematic tests, testing can
focus on external threats and dependability by con-
centrating on a wide set of inputs in testing the
external interfaces of the software. Security stan-
dards21 enforce quality in the various phases of the
software life-cycle, exerting an indirect effect on the
development and use of software.

The reactive methods of resolving software secu-
rity vulnerabilities include, e.g., discovery and
reporting processes. Vulnerabilities are discovered
both by developers themselves and by external eval-
uators. There are several approaches with which both
professional and non-professional evaluators can re-
solve or disclose vulnerabilities.22 In addition to di-
rectly contacting the software developers or vendors,
public disclosure mailing lists23 and other channels
are used for providing feedback to the vendors about
vulnerabilities in their software. It is obvious that an
inconsiderate approach to publishing vulnerability
details can expose the users of deployed systems to
unnecessary risks of intrusion, in addition to causing
harmful publicity to the software vendors. Thus,

balancing all these considerations in software vul-
nerability handling processes24 is a matter to be del-
icately handled and likely to bring forth controversy
regardless of the route opted for.

The rapid creation and active deployment of
security fixes25 is critical in maintaining software
system reliability. It can be harmful for the customers
if the software vendor decides to fix an emerged
vulnerability quietly in later versions without
announcing the necessity of patch deployment in
software currently in use. When the vulnerability
details are known only by the vendors and developers
of the software and they do not produce a method of
repair, they are making it impossible to protect
against intrusions by malicious users that find out
about this vulnerability on their own. On the other
hand, whenever a fix is published on the Internet, it
also provides enough information on analysing the
vulnerability details to allow breaking into systems
that have not applied this fix to their systems.26

Currently, public databases27 of past and present
vulnerability exploitation details and exploitation
scripts28 are available for anyone to use for both re-
search and education as well as for questionable
purposes.29

In conventional risk management concerning
information security breaches, the focus of attention
is usually on system administration, maintenance and
use. Risk management of computer networks tradi-
tionally involves the physical, technical and adminis-
trative controls and procedures for reducing risks
cost-effectively. For risk management in software
development, the best solutions would involve train-
ing, tools and engineering processes that improve
quality. Certification processes are one metric on

18 See e.g. Leveson (1995, pp. 158–159).
19 See http://www.openbsd.org:
20 PROTOS – Security Testing of Protocol Implemen-

tations. http://www.ee.oulu.fi/research/ouspg/protos/:
21 Such as ISO/IEC 15408 with software development

aspects, and ISO/IEC 17799 with interest in system main-
tenance and use.

22 Marko Laakso, Ari Takanen and Juha Röning. The
Vulnerability Process: A Tiger Team Approach to Resolv-

ing Vulnerability Cases. In Proceedings of the 11th FIRST
Conference on Computer Security Incident Handling and
Response, Brisbane, 13–18 June 1999.

23 Best-known is Bugtraq. Mailing lists discussions are
archived by e.g. Neohapsis, Inc. http://archives.neohap-
sis.com/:

24 The software vulnerability handling process is typi-

cally seen to mean the interaction of agents and factors
causing an opening of the window of vulnerability in soft-
ware and the process of closing this window. Opening does

not necessarily mean publicity of the vulnerability, as fail-
ures due to the errors can happen without active and
malicious involvement.

25 Also called security patches.
26 Laakso et al. (1999).
27 SecurityFocus.com claims to provide the Internet’s

largest and most comprehensive database of security
knowledge and resources freely available to the public.

http://www.securityfocus.com/:
28 The automated attack programs or scripts are collo-

quially called exploits.
29 Ari Takanen, Marko Laakso, Juhani Eronen, and

Juha Röning. Running Malicious Code by Exploiting

Buffer Overflows: A Survey of Publicly Available Exploits.
In Proceedings of the 9th Annual EICAR Conference,
Brussels, Belgium, 4–7 March 2000.

SOFTWARE VULNERABILITY PROCESSES 97

which to base risk management. A certain quality
factor can be expected from people with a certain
certification or from products that carry certification
from a trusted evaluator.30 In risk avoidance, one way
is to use licence agreements to transfer the risk to the
customer.31 However, evaluation of software quality
may be difficult for customers, and thus the decision
to purchase software, even in a security-critical con-
text, is often made according to the marketed features
and not according to the actual security impact of
using the product. In fact, the actual security impact
of the product may not be known even to the software
marketers or developers themselves.

Legislation tries to interpret the needs of the
modern information society. New laws have been
proposed to prevent reverse-engineering of commer-
cial software, but this can also restrain security
research by limiting the allowed methods.32 Although
consumer protection laws generally apply to soft-
ware, additional laws have been proposed to release
developers from responsibility and liability for dam-
age caused by programming errors.33 In some
countries, there has been discussion on restricting
access to security vulnerability information.34

In information security incidents or intrusions
where the software failures were abused, the respon-
sibility of software developers of both free and
commercial software is rarely discussed in public. In
addition to developers, distributors and integrators of
software or systems, customers and system adminis-
trators are essential parties in software vulnerability
processes, but often without clearly stipulated

responsibilities. Even external evaluators of security,
be they organised tiger-teams or dilettante groups
having different motivations for the disclosure of
discovered vulnerabilities, may choose to act in ways
that others might see as irresponsible35 acts towards
the general public or the software vendor in question.

Vulnerability process – a fictional case-study

In software development, people who usually con-
sider themselves professional developers or pro-
grammers create software for the public with
responsibilities and obligations to the company they
work for, but also to the clients and users of the
software. With the adoption of professional roles,
their responsibilities in the moral sense can be argued
to be enhanced compared to non-professional stan-
ces. In security vulnerability testing, a team of
external evaluators of security, called a tiger-team,
searches for vulnerabilities in either design, imple-
mentation or configuration of the software compo-
nents. If both these major parties claim to be acting
professionally, their actions can be viewed from the
same perspective of professional ethics. These two
groups are not, however, the only ones involved in
software security incidents and vulnerability pro-
cesses. The following case study was invented to point
out the most frequently encountered roles of different
actors in software vulnerability processes, and also to
exemplify the level of complexity often inherent there.

Emil’s house burned down due to a software fault in
the heating system controller. This particular soft-
ware was purchased by his employer, Org Ltd, who
uses it to control the heat in their chemical pro-
cesses, and given to Emil to learn and to practise its
operation at home. The software was purchased
from a company called Dist Inc., who are the
retailers for the developer, Vend Inc. A subcon-
tractor for Vend Inc., HeatSW Ltd, a company
comprised of a team of five fellows, produced the
vulnerable component for use in the process control
software. Fortunately, Break-Team, a professional
tiger-team, had reported the problem to Vend Inc. a
few months ago, but the vendor-provided security
patch was not available at the time of the incident at
Emil’s house. However, a commercial security
product vendor, Snake-Oil Inc., had produced and
marketed a product that was supposed to protect
against any attack against this vulnerability. Emil

30 Ana del Amo Calvo. The Liability of Professional
Experts Like Risk Managers. In F. Galindo and G. Quir-
chmayr, editors, Advances in Electronical Government, Pre-

Proceedings of the Working Conference of the International
Federation of Information Processing WG 8.5 and the Center
for Computers and Law, Zaragoza, Spain, 10–11 February
2000.

31 Ibid.
32 Kerstetter J. A Reprieve for ‘Ethical Hacking’. PC

Week Online. July 20, 1998. http://www.zdnet.com/eweek/
news/0720/20ewto.html; Lemos R. Security Expert Blasts
Shoddy Software. ZDNet News. July 9, 1999. http://

www.zdnet.com/zdnn/stories/news/0,4586,2290399,00.html.
33 Cem Kaner. Software Engineering and UCITA.

Computer & Information Law, 18(2), 1999; IEEE-USA
UCITA Network, http://www.ieeeusa.org/forum/grass
roots/ucita.

34 NTBugtraq mailing list moderator Russ Cooper,
mentions in his email titled ‘Administrivia #31473:
NTBugtraq at the White House’ that ‘classified channels’

are being considered to replace public forums. E-mail on
the NTBugtraq mailing list, April 19, 2000. Mailing list
archive available at http://www.ntbugtraq.com/:

35 Vulnerability disclosure publications and discussion
are collected at http://www.ee.oulu.fi/research/ouspg/sage/
disclosure-tracking.

TAKANEN ET AL.98

had this commercial protection installed at home
according to the company check-list for installing
the software. Still, a young elementary school stu-
dent, Kid, found an exploit created by a person
called Rogue, who had evaluated the security of the
software and published a working exploit against it
on a public disclosure mailing list, and Kid used it
against Emil’s home. The legislation of Govenia
does not cover such a case, but the law enforcement
caught up Kid, who is now under prosecution, but
has no money for covering the damage.

To begin analysing this case study, it is first nec-
essary to figure out the relationships between the
different parties in typical vulnerability cases. Figure
1 shows a simplified diagram of the various parties in
the vulnerability process, introducing a division into
five actor groups: the mediator-control group, the
user group, the provider group, the developer group
and the evaluator group.

In vulnerability handling,36 various new parties
and problem areas enter the scene. An external
evaluator studies the software with the purpose of

discovering software vulnerabilities, and reports the
results to the vendor, who in part notifies the neces-
sary developers about the discoveries. The discoverer
can also directly notify the public of the existence of
the vulnerability, thus performing a ‘‘public disclo-
sure’’. If full details are disclosed, then a ‘‘full dis-
closure’’ takes place. A non-affiliated discoverer of
the vulnerability typically follows the best practices as
seen on the various information channels in the
security community. These usually involve writing a
proof-of-concept demonstration script against the
software vulnerability and reporting the vulnerability
to the relevant software vendors. Depending on the
response, if any, from the vendor, he usually notifies
the public about the potential risk in information
systems. More experienced external evaluators have
their own practises that they follow in the reporting
process. Organisations such as CERT/CC37 and
AusCERT38 are able to assist in the reporting pro-
cess.

When trying to point a finger at the responsible
parties, the obvious starting point, as often seen in
the public media, is the ‘‘malicious hackers’’, i.e., the
attackers, and sometimes the disclosers of the vul-
nerability details. This obvious but oversimplified

Non-affiliated
evaluators / actors

Home users

Customer
organisation

Retailer

Tiger-team

Vendor

Evaluator

UserDeveloper Provider

Free-software
developer

Service provider/
IntegratorSub-contractor

Government
POLITICAL /

LEGISLATIVE
body

Government
EXECUTIVE

body

Government
JURISDICTIONAL

body

Mediator-Control

CERT
(or similar)

NGO
(advocate /

professional /
industry)

Media
(main-

stream)

Insurance
body

Security
vendor

Standards/
certification

body

Education

Figure 1. Major actors in typical software vulnerability processes grouped according to typical functions.

36 Here, by vulnerability handling we mean the part of
the vulnerability process initiating from the discovery of the

vulnerability by any agent involved. Typically vulnerability
handling consists of the discovery/reaction, correction cre-
ation, disclosing and nullifying of the vulnerability.

37 CERT Coordination Center. http://www.cert.org:
38 Australian Computer Emergency Response Team.

http://www.auscert.org.au:

SOFTWARE VULNERABILITY PROCESSES 99

view would stop the analysis at these lone scapegoats.
The responsibilities of the users, other evaluators,
developers and providers should also be examined in
the light of the case study.

However, when starting to unwrap the possible
attribution of responsibility among the different
parties, one soon encounters the problem of different
functions and segments inside organisations or
groups of individuals, called ‘‘actors’’ in Figure 1.
Therefore, we introduce a second model. This model
is described in Figure 2, where three role groups are
defined by a common denominator of functionality.
The roles in a specific role group can be found from
different actor groups, but all roles in a role group are
not necessarily found from a single actor group in our
model. This allocation of certain roles to certain ac-
tors is made from the perspective of responsibility
attribution in software vulnerability processes, and is
neither generalisable nor complete. Furthermore, the
role of management or executives is excluded from
this modelling because of the unfeasibility of going
into details of organisational ethics. Each role is re-
garded as basically autonomous without explicitly
discussing the limitations in hierarchical organisa-
tions. However, if there is a necessity to use an actor
as a responsible entity in our analysis, we will do so
without deliberating the possible decision-making
mechanisms found inside this actor. With these res-
ervations, the main roles relevant to the study are
presented and the unwrapping supported by
these two categorisations of actors and roles can
proceed.

User actor group

Three roles can be distinguished from the user actor
group: end-users, system administrators and pur-
chasers of software. The user actor group includes
customer organisations and the users within those
organisations. In the case study, Emil has an
employment contract with the customer organisation,
Org Ltd., which has purchased software or software
solutions from both the retailer and the security
vendor. The customer organisations also typically
have a group of administrators that install, configure
and maintain the systems, in addition to setting var-
ious guidelines of operation in the organisation. The
user group also includes home users, who are re-
garded as independent actors comparable to cus-
tomer organisations. Home users usually are
responsible for maintaining their own systems. Both
the home users and the customer organisations are
usually bound by the licence agreements agreed upon
with the purchase of the software. In cases of custom
software specially built for the purchaser, these
agreements are often formed when the contract for
developing the software is signed. In the case of
shrink-wrapped39 software, the agreement is typically
presented at the moment of purchase or installation
of the software.

Coordinators
External

evaluators

Security
response

System
administrators

End-Users

Purchasers

Developers

Customer
relations

Testers
Product acceptance and maintenance roles:

found from
 User + Provider actor groups

Vulnerability handling roles: found from
Evaluator + Mediator-Control + Developer + Provider

actor groups

Quality assurance roles: found from
Developer + Provider actor groups

Figure 2. Main roles found from different actor groups distributing responsibilities arising from software vulnerability
processes.

39 Also called commercial off-the-shelf software (COTS).

TAKANEN ET AL.100

Developer and provider actor groups

People doing software development as subcontrac-
tors typically have a contract with their client, the
software vendor, where their business responsibilities
and obligations are defined. For the purposes of this
case study, we will focus on the moral responsibilities
of the vendor packaging or developing the software,
towards their customers. Also, considering that the
vendor can sometimes be seen as the distributor or
retailer, at least in some shrink-wrapped software, we
will assume in this case study that the retailer did not
acquire any legal responsibility for the quality of the
software, but just transferred the agreements between
the vendor and the customer organisation.

From the developer actor group, again three rel-
evant roles can be deduced, forming the quality
assurance role group. Marketing and sales form what
is here called the customer relations role. Customer
relations personnel typically give the facts, based on
the information they receive from within the software
developing company, that the customers base their
purchasing decisions on. The developers, including
the designers and implementors of the software, are
defined as a central role in quality assurance. The role
of testers is accordingly in the assessment of products
handed over from the developers. Both developers
and testers have a conception of the quality of the
software, and are chiefly responsible for ensuring that
the required quality is met with the best possible ef-
fort.

In vulnerability handling the role of security re-
sponse can be found in the developer and provider
actor groups. Security response personnel communi-
cate with the external evaluators and the coordinators
facilitating this exchange of information.

Evaluator actor group

Now, attention can be shifted to the evaluator actor
group, and to its relationships to the user and
developer actor groups. The following actor types of
evaluators can be recognised, with varying levels of
professionalism in their approaches:

External tiger-team: Professional and benign tiger-
teams use legal means to discover faults and to notify
the vendor about the discovered vulnerabilities and
risks in software products. These teams are often
supported by university or government funding.

Security vendor or team: Commercial security
evaluators develop security products, or evaluate and
certify software produced by other vendors.

Non-affiliated evaluators: Sometimes disregarding
licence agreements, some motivated and skilled indi-
viduals look for faults in software. Their motivation

may vary from benign and legitimate interests to an
irresponsible hunt for their 15min of fame. Their
methods of reporting vary accordingly and often in-
clude ready-to-use demonstration scripts as proof of
the vulnerabilities discovered. Non-affiliated evalua-
tors with below-average technical skills, but with
public access and the will to use the tools available
from vulnerability databases and mailing lists, are
colloquially called ‘‘script-kiddies’’.40 To impress
their friends and group members, these youngsters
interested in the security field and hacking culture
often try the available exploit scripts without thinking
of the consequences.

Internal testing teams of software vendors are
regarded as part of the developer actor group for the
purposes of this presentation. These professional
teams are, in all probability, bound by non-disclosure
agreements prohibiting them from any disclosure of
their findings outside their commissioning organisa-
tion.

Professional evaluator teams have sometimes ap-
plied professional codes of ethics and other guidelines
within the group. In cases of non-professional eval-
uators, the risks are extremely high, as the process
and communication are typically uncontrollable and
a published vulnerability can cause surprising finan-
cial losses when caught by the public media. These
evaluators, with sometimes malicious intent, can
disregard or be outside the jurisdiction of modern
legislation against reverse-engineering and thus have
a wider choice of tools available than the professional
evaluators using legitimate testing methods. The
ethical commitment of unprofessional evaluators
may vary, resulting in methods of operation ranging
from considerate and sound practices to outright
malicious actions intended to cause harm to other
parties. If and when a security assessment or a secu-
rity solution is made into a commercial product, the
evaluator faces the same responsibilities towards their
customers as any other commercial company.

Mediator-control actor group

Although several actors can influence vulnerability
handling processes, the relevant actors in the media-
tor-control actor group in particular are the entities
actively participating in the communication process.
Although the focus of organisations such as national
CERTs has traditionally been on incident handling,
they nowadays actively participate in vulnerability

40 Script-kiddies can be seen as evaluators of system

maintenance and security practises, i.e., they typically at-
tack known errors which should have been repaired by the
maintainers.

SOFTWARE VULNERABILITY PROCESSES 101

handling as well. With dedicated resources and
existing connections to several software developing
organisations, including commercial vendors, they
can connect the relevant people in a coordinated and
safe manner, and can help in the assessment of the
related risks and coverage of the problems. All nec-
essary vendors are contacted by means of personal
communication, and most system administrators
follow the mailing list used to report on the risks,
work-arounds or fixes.

Publicly available mailing lists such as Bugtraq
and NTBugtraq, typically involve an active group of
people participating in the moderation and organi-
sation of the lists. A moderator of a public disclosure
mailing list can assist in the process of vulnerability
handling or decide to control the disclosure by
postponing it to a later time. The moderator can also
influence the reporter by discussing about the level of
information given and the professionality of the
reporting approach. Even with active moderation,
these lists can generate from hundreds to thousands
of messages per month, and thus are not something
the big audience, or even all vendors and adminis-
trators, follow.

Thus, the role of the actors in the mediator-con-
trol group is to coordinate the communication
process and information management in the vul-
nerability handling process. If requested, other par-
ties, even external evaluators such as commercial
security vendors, can also take the role of the
coordinator and may use their own dedicated people
as coordinators in reporting the security or safety
risks they notice.

Responsibility attribution to different roles

To clarify the attribution of moral and professional
responsibilities in the five actor groups involved in
software vulnerability processes, three different role
groups were identified. We will focus on the roles
related to actual vulnerability handling, but will also
superficially describe the other two role groups:
quality assurance, and product acceptance and
maintenance.

Disclosure level ethics presentations leave ethical
analysis on a basic, usually common sense level in
order not to push a phenomenon into a narrow pre-
determined category imposed by an elaborate ethical
theory.41 However, in order to disclose the relevant
factors for further, more thorough normative analysis
of responsibility attribution, we have utilised the
three previously introduced conditions for retro-

spective responsibility attribution. These conditions
are (1) the existence of prospective responsibility, (2)
the intentionality condition and (3) the causality
condition.42

We will focus mainly on the various, most often
professional roles in our preliminary analysis of
responsibility attribution in software vulnerability
processes, but will also use the category of actors
where necessary as dictated by common sense.43

Quality assurance roles

In quality assurance, found in the developer and
provider actor groups, we identified the roles of
developers, testers and customer relations.

The customer relations role entails the marketing,
public relations and sales personnel of the afore-
mentioned actor groups. The customer relations
personnel depend on the information provided by the
technical experts of their organisation and possibly
the statements of the previous actors in the marketing
chain. In addition to this, concerning the responsi-
bility aspect, publicly available facts also have to be
taken into consideration. Customer relations per-
sonnel have to seek, receive and convey valid
knowledge of the products, and remain truthful to
their customers in known security aspects while in
their natural pursuit of profit. Here, the effort of the
mediator-control actor group, e.g., in the form of
various standards or the information flows from
different sources, play an increasingly important role.
To summarise, the intentionality condition is an
essential factor. Customer relations personnel can be
seen to be bound by the moral principles dictated by
common sense, even if they did not have formal and
explicit codes of conduct regarding their profession.
The causality condition is often easily demonstrated
as the purchasers of software products rely on the
given information on product security and quality. In
the case of open source and non-profit software, the
role and motivation of customer relations blurs, al-
though even if striving only for fame, the burden of
responsibility remains.

In the case study presented, the main responsi-
bility within the role group of customer relations falls
on the security vendor actor, whose marketing claims
turned out to be without credibility. If any express

41 Brey (2000).

42 Vedder (2001).
43 Guidelines and obligations for providers/developers

and customers are presented in e.g.: W. Robert Collins,
Keith W. Miller, Bethany J. Spielman and Phillip Wherry.

How Good is Good Enough? Communications of the ACM,
37(1): 81–91, 1994; Also commented on by Baase 1997,
pp. 344–346.

TAKANEN ET AL.102

warranties were actually made by the security vendor,
they naturally are the crucial arguments. The original
vendor of the software produced vulnerable bad-
quality software, but if the vendor did not make any
groundless dependability assurances, it may be ar-
gued to be less accountable in comparison with a
security vendor that claimed to provide add-on
security. However, if the original vendor’s customer
relations knew about, or even had a reason to suspect
the existence of vulnerabilities and still proceeded to
market their product without proper disclosed res-
ervations, the moral appraisal obviously changes.

Developers and testers of software have an obvi-
ous moral responsibility to ensure to their best ability
that their products are safe to use.44 Secure pro-
gramming and safety engineering skills are essential
for professionals developing dependable software.
Abnormal situations need to be tested besides the
traditional approach of testing and validating con-
formance to requirements.45 However, as previously
discussed, a risk analysis has to be made considering
the probable use of the product. Does a software
malfunction during its use lead to safety-critical sit-
uations that threaten human lives/health or are the
repercussions limited to economical losses or just to
the suffered nuisance? What level of robustness is
adequate for the use the product or system is in-
tended for, and how carefully should these proper
areas of use be defined by personnel in the roles of
quality assurance? The intentionality condition fails if
the testers and developers of software cannot suffi-
ciently define the areas of usage for their products,
even if the causality condition is in effect and the
moral principles of professional ethics clearly apply.

If in the case study the vulnerable software was
intended to be specifically used in an industrial pro-
cess defined by the quality assurance of the software
vendor, the customer organisation may have a hard
time trying to point out vendor responsibilities in a
malfunction occurring in private home use. Instead,
the customer organisation’s responsibility to its em-
ployee may come into consideration. In this case
study, however, we assume that the vendor had not
strictly specified the product’s area of use, but had
intended it as a malleable, general-use heat control-
ling software component.

The implications of professional ethics place hea-
vy responsibilities on the individual software engineer
or manager of software engineering, who has to try to
balance these ethical requirements with obligations to
the commissioners of his work. Withholding infor-
mation of known security vulnerabilities is clearly

unacceptable. However, if applicable standards are
lacking, deciding when an adequate level of software
robustness has been achieved is more ambiguous. In
the case study, it can be argued that all stages of the
software development process should have met the
qualification recommendations as applied to safety-
critical systems, that is, as if the product were made
for the most challenging usage environment con-
ceivable.

Roles in product acceptance and maintenance

In product acceptance and maintenance, the roles of
the administrator, purchaser and end-user were
identified. These roles are found from the user and
provider actor groups, but in reality can also be
found in other actor groups, as well.

System administrators have the responsibility of
upholding the level of security in their systems.
Maintenance here differs significantly from less mal-
leable products in that with software, vulnerabilities
are constantly surfacing to be reacted upon. How-
ever, all customer organisations or individual home
users may not be able to devote a sufficient, often
excessive, amount of time to track the bad news. The
level of system administration is a major contributing
factor for intrusions, as some organisations repair
their installations rather late, if ever.46

In the presented case study, the customer organi-
sation’s administrators had included the supposedly
adequate protection for the exploited vulnerability in
the company check-list and thus are excused from
responsibility. The only window for responsibility
attribution on them would be a situation where they
were commissioned to constantly monitor the same
public disclosure mailing list where the exploit was
published by Rogue, and either left the protective
measures disclosed by Rogue unimplemented or if
they had the technical capability to independently
protect their systems, left that undone. However, we
assume that Rogue did not include any protective
measure to counter his demonstration script, and the
administrators did not have the skills or resources to
nullify the vulnerability on their own.

Customer organisations’ purchasers and the
home-users in this role have their share of responsi-
bility47 in assessing the suitability of the software to
the function it is used in and in ensuring resources
and guidance for the proper usage and maintenance

44 See e.g. Baase (1997, pp. 346–348).
45 Leveson (1995, pp. 158–159).

46 William A. Arbaugh, William L. Fithen and John
McHugh. Windows of Vulnerability: A Case Study Anal-
ysis. Computer, pp. 52–59, December 2000.

47 See e.g. Collins et al. (1994); and Baase (1997, pp.
344–346).

SOFTWARE VULNERABILITY PROCESSES 103

of the product. In assessing the suitability of the
software product, the purchaser’s difficulties in
ascertaining the security attributes of the product are
obvious. Usually the purchaser is very heavily
dependant upon the information provided by others
and without the possibility of independent security
assessment of the product.

The concept of informed consent used in medical
ethics has been applied to the decisions to purchase
and use software as well.48 Generally it means that
the patient is informed of the probable risks and
benefits involved in a procedure, its possible alter-
natives and is able to make knowledgeable decisions
on the matter. When software purchasing decisions
are made, from the security perspective these condi-
tions cannot be satisfied if commonly understood
information or criteria in assessing the security level
or robustness of the product is lacking.

Vulnerability handling

Here, by vulnerability handling we mean the part of
the vulnerability process initiating from the discovery
of the vulnerability by any agent involved. Various
phases and life-cycles of software flaws and vulnera-
bilities have been formulated.49 For the purposes of
this study, aimed to be a neutral starting point for
further analysis, we divide vulnerability handling into
the phases of (1) discovery/reaction, (2) correction
creation, (3) disclosure and (4) nullification of the
software vulnerability. The phases do not necessarily
succeed each other in a chronological order and are
not all even necessarily present, with the exception of
the discovery/reaction phase. We recognise that the
creation of a ready-to-use script exploiting the vul-
nerability can take place in any of the phases, the
crucial factor being whether and in what manner it is
disclosed or used. Earlier, the roles of external eval-
uators, security response and coordinators were
identified in vulnerability handling. The phase of
nullification also includes roles from the product
acceptance and maintenance role group.

Main moral principles applied in vulnerability handling

There are some relatively widely accepted formal
moral principles and guidelines that can be applied
when considering vulnerability handling by the vari-

ous roles identified. Of course, the clear stipulations
of the IEEE and ACM/IEEE-CS ethical codes con-
cerning the responsibility to find, disclose and coop-
erate in correction of flaws apply, as well as similar
clauses for accepting professional criticism and giving
due credit where it is appropriate. The core principle
of these codes is to promote the well-being and safety
of the public.50 However, these codes do not delib-
erate on the responsible disclosure of information
regarding flaws in the specific conditions of software
vulnerability disclosures when the benefit-risk rela-
tionship of this action is not clearcut.

Two applicable principles in this matter can nev-
ertheless be found from the Organisation for Eco-
nomic Co-operation and Development (OECD)
Guidelines for the security of information systems.
This recommendation introduces the principles of
awareness and democracy, which, according to the
definitions in the guidelines, can be interpreted as
applying to vulnerability handling and processes. The
awareness principle, when at first including an
objective to promulgate information dissemination of
the security of information systems to agents with
legitimate interest, clearly states that this should be
done in a manner which does not compromise secu-
rity. Alleviating this restriction, the democracy prin-
ciple nevertheless concludes that the security interests
of various actors must be counterbalanced by the
principles of a democratic society concerning the flow
and use of information.51

The main content of the principles presented
above can be condensed to the principles of benefi-
cence and non-maleficence. The common sense defi-
nition of beneficence is the providing of good to
others, whereas non-maleficence means the avoidance
of causing harm to others. In the medical setting,
non-maleficence implies that necessarily some
amount of pain has to be inflicted upon the patient to
attain greater good, but the agent’s responsibility is
to minimise this harm inflicted.52 This is readily
applicable to software vulnerability handling, where
inevitably because of practical limitations, some
window of opportunity for malicious activity will
manifest itself regardless of the method of vulnera-
bility handling opted for. The intensity by which

48 Collins et al. (1994).
49 Laakso et al. (1999) and Arbaugh et al. (2000) See also

e.g. Steve Christey and Chris Wysopal. ‘‘Responsible Vul-
nerability Disclosure Process’’, a currently withdrawn IETF
draft dated February 2002.

50 See e.g. Gotterbarn et al. (1999).
51 Organisation for Economic Co-operation and Devel-

opment. Guidelines for the security of information sys-

tems. November 1992. http://www1.oecd.org/dsti/sti/it
secur=prod=e secur:htm.

52 See e.g. Tanya Fusco Johnson. Ethical Issues: In

Whose Best Interest? In Tanya Fusco Johnson, editor,
Handbook on Ethical Issues in Aging, pp. 17–18. Green-
wood Press, Westport, Connecticut London, 1999.

TAKANEN ET AL.104

these two principles are applicable to agents in vul-
nerability handling depends on, among other factors,
whether they consider themselves as professional or
not. For unprofessional agents the demands set by
common sense can be argued to be essentially similar
to professional ones, but less intense.

Discovery/reaction phase

One role that could be considered to share responsi-
bility for software security incidents is formed by
external evaluators in the case of not practicing a
professional approach, i.e., not adhering to profes-
sional ethics and accepted practises in the disclosure
of the vulnerability, and more so in cases of demon-
strating the vulnerability in a hostile manner. The
worst example of reacting to discovered vulnerabili-
ties is taking advantage of them without any disclo-
sure for evaluation by other related parties.

Although software vulnerabilities are sometimes
found during the normal usage of the product, more
often deliberate testing is the method leading to the
discovery. In testing activities, methods such as re-
verse-engineering that do not always have a clear
legislative status should be avoided, and used only
when the legal status has been ascertained or as a last
resort measure for compelling reasons. External vul-
nerability analysis of commercial software can also be
done by using functional53 testing methods, i.e.,
without knowing or reverse-engineering the internal
structure of the software.

Reporting of a vulnerability can quickly follow its
discovery, but sometimes a lengthy verification peri-
od is needed to show that the vulnerability is valid
and that all technical facts are correct before
approaching the developer of the system or software.
A well prepared bug report can increase the chance of
a prompt response.

Vendor policies on handling vulnerability reports
cover issues such as the acknowledgement timeframe
and methodology. Having a single point of contact
for vulnerability reports helps in controlling and
handling the reporting process so that all reporters
receive a reply in a timely manner. If a vulnerability
appears to be low-risk to the system in question, the
nature of the response sent to the reporter can make a
difference in his reaction to the possible delays in the
repair process.

Various coordinators in the software vulnerability
handling process promote various guidelines for
reporting vulnerabilities to the developers. Disclosure
policies of mailing-lists and organisations specify the
used timeframe, e.g., the grace period that the vendor is

given for preparing the corrective measures and cus-
tomer notifications or advisories. The availability of
contacts and resources is necessary if an organisation
takes the responsibility of coordinating the handling of
a vulnerability. Networks of coordinating organisa-
tions can handle a vulnerability covering several
reporters and vendors located in different countries.

Correction creation phase

Discovered vulnerabilities should be fixed in a coor-
dinated and healthy manner without unnecessary
publicity and consequent risk of criminal activity.
Although this phase mostly involves the developers of
software, sometimes urgent attention is required from
the evaluators and coordinators.

A lengthy process is sometimes necessary to de-
velop a good means of correcting the vulnerability,
and the main responsibility for the external evalua-
tors is in verifying that the final correction closes the
vulnerability. This sometimes requires urgent action
if the developer does not reveal the schedule for the
evaluator to prepare for.

The more open the developer is towards both the
evaluator and the coordinator in the actual correction
creation phase, the better the cooperation typically
can be. Adequate quality assurance methods can
decrease the probability of similar errors existing
elsewhere in the same product or re-emerging in the
future versions. Explaining these reasons to the other
involved parties can again increase the chance of
successful cooperation.

When a vulnerability case involves more than one
company, either several developers, or a combination
of providers and developers, the communication
process often requires coordination and mediation. A
neutral party is often also necessary when several
countries are involved, perhaps even with govern-
ment or military involvement or interest in the vul-
nerabilities.

Disclosure phase

The window of vulnerability typically starts from the
public or limited disclosure.54 Minimising the window
of opportunity for malicious intrusions, while at the
same time effecting as wide a security patch-up of the
discovered vulnerability as possible, requires system-
atic approaches. Different models of vulnerability
disclosure have been tried out in order to hold the
exploitability in check.

53 Also called black-box testing methods.

54 Although it can be argued to start from the creation of
the fault behind it, as potential mishaps do not always re-
quire malicious activity.

SOFTWARE VULNERABILITY PROCESSES 105

Unconstructive publicity can end up in loss and
damage to the actors in the developer, provider and
user groups, thus also causing the evaluators an
unnecessary risk of liability for damages. Publishing
the vulnerability details, when the vendor leaves no
other option by consistently ignoring or downplaying
the vulnerability, may be necessary as a last resort to
promote public interest, which means considering the
health, safety and welfare of the public.55 In the case
study, the external tiger-team appeared to act pro-
fessionally in informing the vendor of the vulnera-
bility and in giving the vendor the time it needed to
react to the situation, rather than immediately seek-
ing publicity or a rash way out of the situation.

Not all parties in the evaluator-tester group have
internalised considerate methods in disclosing secu-
rity vulnerabilities, but instead disclose them perhaps
spontaneously, or according to their more selfish
motives.

In the case study the most obvious culprits were
the unprofessional evaluators; the script-kiddie and
the publisher of the vulnerability details. They, in the
ethical sense, carry the weight of responsibility of
their actions in proportion to their understanding of
the results. The actions of the publisher of the vul-
nerability details and attack scripts are somewhat
defended, even in public mailing lists, by the fact that
without the publicity of the security hole, the vul-
nerability would have been left untouched, unre-
paired, and furthermore left to spread even wider to
other software systems. However, notifying the ven-
dor in advance, allowing them some time to prepare a
fix, is promoted in the full disclosure policies avail-
able.56 In spite of this, a wide consensus as to what
amounts to a responsible disclosure policy or
enforceable guidelines is yet to be attained between
different actor groups.

For the security response role of the actors in the
developer and provider actor groups, the main tasks
in the disclosure phase include, naturally, the dis-
closing of relevant information through their own
channels and possibly using mainstream media as
well. Delivering the security advisories and the
available corrections to customers as effectively as
possible would be a central goal. Additionally, the
security response personnel should offer support and
guidance to their customers.

In the case study, the software vendor had not
issued a security advisory containing any interim

workarounds alleviating the exploitability of the
vulnerability, even when several months had passed
since the tiger-team had reported the problem. If they
had the technical capability to find or knew about the
interim workarounds, but decided not to disclose
them before their actual security patch was ready and
tested, it could be argued that they share their part of
the moral responsibility for the security incident.
However, as mentioned before, the publication of any
corrective measure to mitigate a vulnerability carries
with it the risk of drawing malicious interest and
evaluation in order to exploit the vulnerability. Even
if this corrective measure did thoroughly protect the
systems against this vulnerability, there are systems
where, for one reason or another, the corrective
measure is not taken into use.

The role of security response, in both the devel-
oper and provider actor groups, and the role of
coordinators of vulnerability handling, typically an
organisation such as CERT/CC or a moderator of a
mailing-list, is to control the communication process.
Failure to interact with the reporters often results in
uncontrollable vulnerability handling, confused or
angry customers and unnecessary windows of
opportunity for malicious actions. As the Figure 3
shows, it is possible to attempt to limit the commu-
nication around the evaluator actors by using the
developer and mediator-control actor groups’ chan-
nels to reach the actors in the provider and user
groups.

Nullification phase

In the nullification phase the main task falls to the
role of system administration of the relevant actors in
the user and provider actor groups. In cases where
security updates for the software product would have
been available, it has been argued that the possible
security incidents were due to bad practices of secu-
rity by the system administrators. Some obligations
and responsibility may filter down to the role of end-
user. If the end-users clearly violate the correct pro-
cedures in software usage, they can be partially
responsible for the security violations.

Databases of past vulnerabilities57 provide means
for collecting the details of past vulnerabilities and
learning from them. This provides incentive and
possibilities for the quality assurance of developer
and provider actor groups, but also to evaluators and
nonaffiliated actors with various motives.

55 See Gotterbarn et al. (1999).
56 See e.g. Full Disclosure Policy (RFPolicy) v2.0. http://

www.wiretrip.net/rfp/policy.html by Rain Forest Puppy;
The CERT Coordination Center Vulnerability Disclosure
Policy. http://www.cert.org/faqvuldisclosurepolicy.html.

57 See e.g. SecurityFocus http://www.securityfocus.com
and the Mitre http://www.mitre.org.

TAKANEN ET AL.106

Realities of software vulnerability processes

The evaluators’ reporting of discovered vulnerabili-
ties to the public appears to have little effect in gen-
eral. The typical vendor approach is to quickly fix the
exact notified vulnerability and not the entire poor
quality of the software module, thus leaving other
vulnerabilities in the software or even reintroducing
the problems unfixed in later versions. Improvement
of the general quality of software is slow. This may be
due to the number of non-professional developers in
the field. Even people who have been in software
development for decades sometimes miss the whole
area of robust software and the dangers that non-
robust software brings.58

The vendor is responsible, and hopefully some-
times liable, to the whole public, in addition to cli-
ents, for bad quality software. However, the current
trends in legislation59 may in effect make an excep-
tion in the common (Western) practise of vendor/
developer liability when applied to the software
industry. These new legislative drafts would in
practise move the whole responsibility of software
malfunction, including security incidents, to the li-
cence-bound customer. Furthermore, disclosing flaws
in software could be restricted only to those cases,
where the software vendor gives permission to do so.
Vendors would not be required (by law) to disclose

even the known flaws in their software. These last two
propositions would be in clear violation of the soft-
ware engineering code of ethics.60

From the vendor’s perspective, there is a clear
rationality behind these aspirations, which possibly
have one of their main justifications in ‘‘computer
malleability’’, a concept introduced by James
Moor.61 The multitudes of operating environments
and possible modifications of software products
dwarf the variability of more conventional products,
making it harder to foresee the proper quality
requirements for software.62

If the liability for possible malfunctions in soft-
ware is transferred to customers, software vendors
can release unpolished software to be tested in the
field. Nevertheless, when considering society as a
whole, this obviously is not acceptable. Developers
and vendors of software should be, within reasonable
limits, held also legally responsible for the quality of
their products and for losses their clients suffer be-
cause of their software. In cases of widely deployed
software, the moral responsibility is towards the
whole society. Additionally, vendors and developers
can be held responsible for not acting professionally
in repairing the problems they become aware of in
their software.

Professional security evaluators of software also
have a very thin line that they tread on in order to
maintain professional ethical integrity. For example,
the coverage of vulnerability testing of software may
be biased, in effect providing negative publicity to

Non-affiliated
evaluators / actors

Home users

Customer
organisation

Retailer

Tiger-team

Vendor

Evaluator

UserDeveloper Provider

Free-software
developer

Service provider /
IntegratorSub-contractor

Government
POLITICAL /

LEGISLATIVE
body

Government
EXECUTIVE

body

Government
JURISDICTIONAL

body

CERT
(or similar)

NGO
(advocate /

professional /
industry)

Media
(main-

stream)

Standards /
certification

body

Security
vendor

LEGEND:
 Information flow / Co-operation

Insurance
body

Mediator-Control

Education

Figure 3. Tiger-team actor’s (external evaluator role) triangle co-operation method with the software vendor (security
response role) and the CERT organisation (coordinator role) in vulnerability handling.

58 Leveson (1995, pp. 156, 233–234).
59 Kaner (1999).
60 ALERT: a danger to the Public and a danger to the

development of Safe Quality Software in new legislation. A

white paper from the Software Engineering Ethics Institute
(SEERI) to software professionals. http://www.see-
ri.etsu.edu/WhitePaper.shtm:

61 James Moor. What is Computer Ethics. Metaphilos-

ophy, 16(4): 266–275, 1985.
62 See e.g. Baase (1997, p. 347).

SOFTWARE VULNERABILITY PROCESSES 107

some software vendors but leaving other vulnerable
products by different vendors untouched. This bias-
ing can even be deliberate, as can of course be the
timing of various disclosures. Professional security
evaluators/vendors may also be tempted to withhold
information of discovered vulnerabilities at their
disposal, so as to retain their competitive edge in
relation to rivaling companies. The good of the
external security evaluator is not necessarily exactly
the same as the good of the public, especially when
operating on commercial prerogatives.

The possible role of neutral third-party organisa-
tions as coordinators and intermediaries in vulnera-
bility handling has been discussed and has sometimes
been taken into practise. Including a reliable inter-
national organisation as an overseer of information
flows in a process, especially when dealing with public
channels and media, may lessen the software vendors’
apprehensions toward external security evaluators.
The roles of various other mediator-control actors
are also discussed regarding the whole continuum of
software vulnerability processes. One neutral party
anticipated to have a strongly increasing role are the
insurance companies covering the risks of customer
organisations using software applications.63 Often
being the partial bearers of economical losses inflicted
in software security incidents, the insurance compa-
nies would have a natural interest in keeping these
incidents at bay.

Conclusions and future work

In this article the main features of a fictional software
security vulnerability process were discussed, from
which some aspects were clarified using professional
ethical codes, some widely accepted principles for
responsibility attribution and foremost of all, com-
mon sense as reference points. The presented case
study was not constructed to represent a typical
software vulnerability process, but rather to exem-
plify the complexity often inherent there and to
introduce the commonly involved agents. However,
the main actors and roles were then defined in a way
to reflect their typical functions and connections in
software vulnerability processes. It is apparent that
these processes and the compromises inherent in the
current level of software security are not well known
to the public at large. It is hoped that this disclosive
ethics presentation would prompt a second stage in
which more specific normative evaluations of soft-
ware security issues are conducted.

In the fictional case study presented, five distinc-
tive actor groups were identified: developer, provider,
user, evaluator and mediator-control. From these
actors three role groups were identified and further
analysis was focused on the roles responsible for the
actual handling of the discovered software vulnera-
bility. It was noted that the crucial aspects in software
vulnerability handling were the approach taken by
the external evaluators in the dissemination of vul-
nerability details, the manner in which the vendor
acknowledges and reacts to this information and the
inclusion of a neutral third party as a facilitator and
coordinator in this process. The overall impact is felt
in the user actor group, where the role of system
administrators is to react to reasonably well formu-
lated instructions resulting from the vulnerability
handling process. In software quality assurance,
security maintenance of products and the veracity of
information concerning the product offered to pur-
chasers were identified as major aspects to be con-
sidered. In all these activities the ethical codes of
professional software engineers apply, if the agents
under scrutiny claim to take a professional stance.
Also the principles included in the Guidelines for the
security of information systems adopted by the
OECD member countries are applicable in this area.
However, the practical concretisation of these rec-
ommendations seems to be unrealised in software
vulnerability processes.

In developing software products for use where
there is a safety issue or even a risk of losing human
lives, there traditionally have been high standards
and strict control of the quality of the services and
products.64 On the other hand, in the field of software
engineering with little experience with safety issues,
the quality of software has been noted to be poor
from the security perspective. The current situation
shows that generically used software engineering
processes and quality assurance methods are still
immature as far as the security factor is concerned,
and professional ethics do not yet give explicit
guidelines for the handling of software vulnerabili-
ties. Security and safety problems with software are
far too often seen as accidents, without demands for
accountability for the losses due to bad quality soft-
ware.

In software engineering, professional obligations
are still not based on accepted standards. Many times
the responsibility to find out sound practises in soft-
ware vulnerability handling processes seems to fall on
the individual, the ethically committed software
engineer or manager, and groups thereof. At the
societal level, software vendor/developer organisa-

63 See e.g. del Amo Calvo, (2000). 64 See e.g. Leveson (1995).

TAKANEN ET AL.108

tions do not yet seem to have an effective counterpart
of equal size and strength forcing them to adopt
transparent, generally acceptable practices, especially
if legislation bypasses their liabilities. The situation in
software development seems too often to be similar to
that in vulnerability handling. In the absence of
official or organisational guidelines the professionals
must refer to their sense of moral responsibility to
ensure sufficient dependability and quality of soft-
ware. Demands for better dependability of software
have also been increasingly voiced by significant
customer entities. However, the irregularities in the
approaches adopted by external evaluators of soft-
ware are also problematic from the vendor/developer
point of view. Regulative and standardisation activ-
ities in these areas can safely be predicted to be on the
rise, according to the normal maturing of novel
technologies and their integration into society.65

The risks involved in the ever-growing software
industry, and the security compromises they pose for
the individual or society, are not yet disclosed to or
understood by the greater public. Nor do these risks
seem to have quite the same popular appeal as more
traditional objects of attention, such as environmental
threats caused by other industries. One subject that
was not thoroughly discussed, and which often draws
the concern of the security community, is the threat
that a software application gains too wide a popula-
tion in society. The great majority of the security
community agrees that a lack of diversity can cause
much distress, and the security threats it brings are
enormous. Because of its overt permeation and
implicated major repercussions, a vulnerable appli-
cation does not even have to be used in critical envi-
ronments to pose a major threat to infrastructure.

The general public relies on and trusts in the
products that traditional software engineering pro-
duces. Is the trust placed on software engineers blind
and without any questioning? The real problem is
that today the responsibilities of software engineers
as professionals in the ethical dimension are yet not
publicly recognised and enforced, when compared to
professions such as lawyers or various vocations in
health care. At the same time, enabling technology is
making these other professions increasingly depen-
dent on the integrity of software engineers. Still, the
responsibility of the software industry to society at
large is not scrutinised in the same magnitude or
manner as is the case with many other industries or
segments of society.

How the ethical problems in software security can
be solved is worth some profound research effort on
the application (and possibly theoretical) level as

defined in Brey’s concept of disclosive computer
ethics methodology. We have adapted and created
some terms for the purposes of this pragmatical
study, but they are not intended as authoritative
definitions. The various responsibilities and profes-
sional obligations of agents in various roles involved
in software vulnerability processes should be argued
for and specified in more detail. Approaches to
effectively improving the quality of security-critical
software and widely distributed software packages
can also be formulated and promulgated, taking into
account the overall impact software vulnerabilities
have on the infrastructure of modern society. Finally,
these considerations and the agreements formed upon
them should be enforced in standardisation, certifi-
cation programmes and legislation.

Acknowledgements

The authors thank the staffs of the Secure Program-
ming Group at the University of Oulu (OUSPG) and
Codenomicon Ltd. for their extensive help and par-
ticipation. We also offer our gratitude to the Aus-
CERT and CERT/CC for their patient support in
resolving the vulnerability cases that led to the
development of this article. Special thanks to Lic.-
Tech. Rauli Kaksonen, Prof. Gerald Quirchmayr,
Prof. Jorma Kajava and Prof. Mikko Siponen for
their supportive comments on this issue. This re-
search is part of the PROTOS project.

References

A. del Amo Calvo. The Liability of Professional Experts

Like Risk Managers. In F. Galindo and G. Quirchmayr,
editors, Advances in Electronical Government, Pre-Pro-
ceedings of the Working Conference of the International

Federation of Information Processing WG 8.5 and the
Center for Computers and Law, Zaragoza, Spain, 10–11,
February 2000.

W.A. Arbaugh, W.L. Fithen and J. McHugh. Windows of
Vulnerability: A Case Study Analysis. Computer, pp. 52–
59, December 2000.

S. Baase. A Gift of Fire: Social, Legal and Ethical Issues in

Computing. Prentice-Hall Inc., 1997.
P. Brey. Method in Computer Ethics: Towards a Multi-
level Interdisciplinary Approach. Ethics and Information

Technology, 2(2): 125–129, 2000.
W.R. Collins, K.W. Miller, B.J. Spielman and P. Wherry.
How Good is Good Enough? Communications of the

ACM, 37(1): 81–91, 1994.
D. Gotterbarn, K. Miller and S. Rogerson. Computer
Society and ACM Approve Software Engineering Code

of Ethics. Computer, 32(10): 84–88, 1999.
T.F. Johnson. Ethical Issues: In Whose Best Interest. In
T. F. Johnson, editor, Handbook on Ethical Issues in65 See e.g. Baase (1997, pp. 140–141, 345, 347).

SOFTWARE VULNERABILITY PROCESSES 109

Aging, pp. 17–18, Greenwood Press, Westport, Connect-
icut London, 1999.

C. Kaner. Software Engineering and UCITA. Computer &
Information Law, 18(2), 1999.

M. Laakso, A. Takanen and J. Röning. The Vulnerability
Process: A Tiger team Approach to Resolving Vulnera-

bility Cases. In Proceedings of the 11th FIRST Conference
on Computer Security Incident Handling and Response,
Brisbane, 13–18 June 1999.

J. Ladd. Computers and Moral Responsibility: A Frame-
work for an Ethical Analysis. In C. Gould, editor, The
Information Web: Ethical and Social Implications of

Computer Networking, pp. 207–227, Westview Press,
Boulder, Colorado, 1989.

N.G. Leveson. Safeware: System Safety and Computers.
Addison-Wesley Publishing Company, 1995.

J. Moor. What is Computer Ethics. Metaphilosophy, 16(4):
266–275, 1985.

P.G. Neumann. Computer-Related Risks. ACM Press/
Addison-Wesley Publishing Company, 1995.

A. Takanen, M. Laakso, J. Eronen and J. Röning. Running
Malicious Code by Exploiting Buffer Overflows: A
Survey of Publicly Available Exploits. In Proceedings of

the 9th Annual EICAR Conference, Brussels, Belgium, 4–
7 March, 2000.

A. Vedder. Accountability of Internet Access and Service

Providers – Strict Liability Entering Ethics? Ethics and
Information Technology, 3(1): 67–74, 2001.

TAKANEN ET AL.110

