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Abstract
At the onset of quantum mechanics, it was argued that the new theory would entail 
a rejection of classical logic. The main arguments to support this claim come from 
the non-commutativity of quantum observables, which allegedly would generate a 
non-distributive lattice of propositions, and from quantum superpositions, which 
would entail new rules for quantum disjunctions. While the quantum logic program 
is not as popular as it once was, a crucial question remains unsettled: what is the 
relationship between the logical structures of classical and quantum mechanics? In 
this essay we answer this question by showing that the original arguments promot-
ing quantum logic contain serious flaws, and that quantum theory does satisfy the 
classical distributivity law once the full meaning of quantum propositions is prop-
erly taken into account. Moreover, we show that quantum mechanics can generate a 
distributive lattice of propositions, which, unlike the one of quantum logic, includes 
statements about expectation values which are of undoubtable physical interest. 
Lastly, we show that the lattice of statistical propositions in classical mechanics fol-
lows the same structure, yielding an analogue non-commutative sublattice of classi-
cal propositions. This fact entails that the purported difference between classical and 
quantum logic stems from a misconstructed parallel between the two theories.
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1 Introduction

As soon as Quantum Mechanics (QM) achieved a definite and coherent mathemati-
cal formulation, several physicists and philosophers claimed that its formal structure 
does not conform to the laws of classical propositional calculus.1 The first modifi-
cations of Classical Logic (CL) were advanced in the thirties in order to faithfully 
represent the physical content of quantum theory. For instance, in 1931 the Polish 
philosopher Zygmunt Zawirski proposed to apply Łukasiewicz’s three-valued logic 
to QM, starting from considerations about the wave-particle duality and Heisen-
berg’s uncertainty principle. In virtue of the latter, moreover, the logical empiricists 
Moritz Schlick and Philipp Frank claimed that the conjunction of two or more state-
ments may have no meaning in quantum theory, concluding that the classical con-
junction is not always valid in the context of quantum physics, as recalled in Carnap 
(1966). In their view, a typical example of invalid conjunction is one attributing a 
definite value for both position and momentum to a single quantum particle at a 
given time t. Furthermore, in 1933 Fritz Zwicky suggested that QM rejects the law 
of excluded-middle.2 However, it is generally recognized that the founding text of 
Quantum Logic (QL) is Birkhoff and von Neumann’s essay “The Logic of Quan-
tum Mechanics” (Birkhoff & von Neumann, 1936), where the authors provided the 
standard account of the propositional calculus obeyed by quantum propositions.3

A few years after the publication of this paper, the research in quantum logic saw 
a notable development in both the scientific and philosophical communities, open-
ing new research programs searching for the correct logical structures to understand 
and describe the physics of QM (cf. Reichenbach, 1944; Mackey, 1957; Finkelstein, 
1963; Kochen & Specker, 1965; Jauch & Piron, 1969; Dalla Chiara & Giuntini, 
2002; Dalla Chiara et al., 2004; Pitowsky, 2006; Dalla Chiara et al., 2018; Svozil, 
2020; Holik, 2021), and intense metaphysical debates regarding the nature of logic 
itself and its empirical status (cf. notably Quine, 1951; Putnam, 1968; Dummett, 
1976; Bell & Hallett, 1982; Weingartner, 2004; Bacciagaluppi, 2009).

The belief according to which QM entails a new logic stood the test of time, and 
it is still alive to the present day. For example, Dalla Chiara et al. (2018) claim that 
“[t]he logic of classical physical objects is naturally based on a two-valued seman-
tics. Such a dichotomic situation breaks down in quantum theory” (p. 4), implying 
that the latter entails a revision of classical propositional calculus. Such a view is 
shared by Wilce (2021), who says: “[m]athematically, quantum mechanics can be 
regarded as a non-classical probability calculus resting upon a non-classical prop-
ositional logic”. Similarly, explaining the difference between the logic of classical 

1 For an introduction and a clear discussion of quantum logic the reader may refer to cf. Dalla Chiara 
and Giuntini (2002), Dalla Chiara et al. (2004), de Ronde et al. (2016), Wilce (2021).
2 For historical details on quantum logic see Jammer (1974).
3 It is worth noting that von Neumann in his treatise Mathematische Grundlagen der Quantenmechanik 
published in 1932 anticipated that from the algebraic structure of quantum theory it would have been 
possible to formulate a new propositional calculus. These ideas would be fully expressed in his succes-
sive collaboration with Garrett Birkhoff.
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mechanics and the logic obeyed by quantum propositions, Fortin et al. (2019) write 
that

[i]n classical and quantum mechanics, the physical properties of a system are 
endowed with a lattice structure. These structures are different in the classical 
and quantum case, and they determine the logical structure of the physical sys-
tem (Fortin et al., 2019, pp. 363–364).

More precisely the authors say:

The distributive inequalities are the main difference between classical and 
quantum logic. In the classical lattice, all properties satisfy the distributive 
equalities, but in the quantum lattice, only distributive inequalities hold, in 
general (ibid.).

Even more explicitly, presenting the standard formulation of quantum theory and its 
peculiar features, Stefanovich states that

the true logical relationships between results of measurements are different 
from the classical laws of Aristotle and Boole. The usual classical logic needs 
to be replaced by the so-called quantum logic (Stefanovich, 2019, p. 2).

While the quantum logic programme is still being actively pursued by a sizable 
community, and despite the many interesting applications in the fields of quantum 
information, computation and cryptography that are being investigated to the pre-
sent day, QL is no longer viewed as a solution to the foundational problems affect-
ing quantum theory.4 Nevertheless, although it may be reasonable for a physicist 
to simply discard the approach over practical considerations, such as the lack of a 
desired result, on philosophical grounds this move would beg important questions, 
as for instance: what is the relationship between the logical structures of classical 
and quantum mechanics? How are they different and how are they similar? What 
should we think about the core insights that led to the development of QL? Were 
they substantially correct, or should they be rejected? We think that providing a cor-
rect answer to these issues will lead (1) to a deeper understanding of the structural 
relations existing between classical logic and quantum mechanics—which unfortu-
nately are not yet precisely understood—and (2) to a clarification of important con-
fusions concerning the motivations behind QL.5

Referring to this, one of us recently faced the question of whether quantum phys-
ics implies a revision of classical logic (cf. Oldofredi, 2020). Alternatively stated, it 
was asked if classical logic must be inevitably abandoned in the quantum realm, or 

4 This conclusion is now accepted among experts; for details see e.g. Bacciagaluppi (2009) and Dalla 
Chiara and Giuntini (2002). Referring to this, the latter authors stated explicitly that “quantum logics are 
not to be regarded as a kind of “clue”, capable of solving the main physical and epistemological difficul-
ties of QT [quantum theory]. This was perhaps an illusion of some pioneering workers in quantum logic” 
(Dalla Chiara & Giuntini, 2002, p. 225).
5 In the present essay we will be concerned only with propositional calculus in the context of non-rel-
ativistic QM. First-order and higher-order logics will not be discussed here, nor the logic of relativistic 
quantum theories.
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if there are quantum theories compatible with classical propositional calculus. Ana-
lyzing Bohmian mechanics, a well-known interpretation of QM, it has been shown 
that quantum physics does not necessarily involve a departure from classical logic. 
More precisely, it has been argued that in this interpretation of QM not only the 
logical connectives retain their classical meanings—in particular the negation and 
the disjunction do follow classical rules—but also the distributivity law holds. This 
fact is a consequence of the particle ontology of the theory and its explanation of 
quantum measurements.

In this paper we will be concerned with a similar issue, since we ask whether 
standard quantum mechanics itself necessarily involves a new logical structure radi-
cally different with respect to classical propositional calculus. In what follows we 
will answer this question in the negative.6 More precisely, this essay has a two-fold 
aim: in the first place, we analyze the main motivations and justifications for the 
introduction of quantum logic, claiming that such arguments do not really entail the 
failure of CL in the quantum context because they contain serious flaws. In the sec-
ond place, we show that the mathematical structure on which QM is built already 
provides us with a distributive lattice of quantum propositions, contrary to the 
received view in QL. Such a distributive lattice of quantum statements, moreover, 
allows us to take into account assertions concerning expectation values, which are 
generally excluded in the standard approach to quantum logic but are nonetheless 
experimentally relevant. Finally, we argue that classical probabilistic theory is also 
equipped with an analogue non-distributive lattice. All these aspects, to our knowl-
edge, are not sufficiently discussed in literature; thus, the present paper can help to 
shed new light on the relation between logic and quantum mechanics.

The essay is structured as follows: in Sect. 2 we review the main arguments that 
have been advanced in the literature to introduce a quantum logical calculus; here 
we also provide a brief outline of the standard approach to QL (readers familiar with 
Birkhoff and von Neumann’s proposal can skip this part). Section 3 explains why the 
main examples used to show the failure of classical logic in QM contain important 
flaws and ambiguities; moreover, we argue that the classical distributive law can be 
maintained in quantum mechanics, once such ambiguities are removed. In Sect. 4, 
contrary to the received view in QL, we show that quantum theory already possesses 
a distributive lattice of propositions in the form of the Borel algebra, which includes 
not only the lattice of standard quantum logic, but also important sentences such 
as those concerning expectations values. We also show that classical probabilistic 
theory possesses a formally analogue structure. In Sect. 5 we discuss the main philo-
sophical implications of the preceding sections and conclude the paper.

6 It is worth noting that in what follows we are not going to discuss whether it is useful or possible to 
describe quantum phenomena with a non-classical type of logic.
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2  The Standard Approach to Quantum Logic

Given that a significant part of the arguments in favor of QL stem from a claimed 
unsuitability of classical logic in the context of quantum mechanics, let us say a 
few words about classical logic, classical mechanics and their purported relation-
ship. It is a well known result that classical propositional logic is equivalent to 
a Boolean algebra where propositions (atomic and complex) have truth values 
“true” and “false” (or ⊤ and ⊥ ), and the main operations among them are con-
junction “ ∧ ”, disjunction “ ∨ ” and negation “ ¬ ”, the only unary operation. From 
these logical connectives one can introduce secondary operations, as for instance 
the material implication “ ⟶ ”, the exclusive or “ ⊕ ” and logical equivalence 
“ ⟷ ”. Furthermore, it is important for our discussion to underline that the laws 
of propositional logic include commutativity, associativity, identity and distribu-
tivity with respect to ∧ and ∨ . It is also well established that the algebraic struc-
ture underlying classical mechanics is commutative, distributive and associative. 
The standard view in QL is that classical logic is applicable to classical mechan-
ics because of its commutative algebraic structure.

The idea is that the logical operations of conjunction, disjunction and negation 
correspond in the context of classical mechanics respectively to multiplication, 
addition and complementation among the observables of the theory. This has an 
interesting physical significance, since these observables associated to magni-
tudes of physical systems can be added and multiplied together—i.e. one can sum 
and multiply measurement results: “since the observables [of CM] form a com-
mutative Poisson algebra, addition and multiplication of observables reflect the 
action of adding and multiplying results of different measurements” (cf. David, 
2015, p. 77). Both propositional logic and classical mechanics, thus, generate a 
complemented Boolean lattice; from this fact it follows that the observable alge-
bra of CM “is isomorphic to a Boolean algebra of propositions with (∧,∨,¬) ” 
(David, 2015, p. 79). To this regard, Beltrametti claims that

Boolean algebras are algebraic models of classical logic (more specifically 
of classical propositional calculus) with the algebraic operations of meet 
( ∧ ) and join ( ∨ ) corresponding to the logical connectives “and”, “or”, and 
the unary relation of orthocomplementation corresponding to the logical 
negation. The rules and tautologies of classical logic have their counterpart 
in equations and identities of Boolean algebras (Beltrametti, 2004, p. 341).

Therefore, it is possible to formally characterize the state of a physical system via 
logical propositions which can assume the truth values “true” or “false”—depending 
whether such statements describe a true or false state of affairs concerning the sys-
tem under consideration (cf. Jaeger, 2009, p. 61)—and to perform logical operations 
among propositions via the connectives (∧,∨,¬) . It is worth noting that in the con-
text of CM it is always determined whether a system instantiates a given property or 
not; alternatively stated, every logical proposition about physical systems is either 
true or false, and hence in CM the principle of semantic bivalence holds (for more 
details cf. Bub, 2007, p. 642, Dalla Chiara & Giuntini, 2002, p. 130).
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Once the previous stance is taken, one necessarily concludes that classical propo-
sitional calculus is not appropriate to represent the logic obeyed by quantum propo-
sitions, since quantum theory does not share the same algebraic structure of classical 
mechanics. Referring to this, Dalla Chiara and Giuntini (2002) claim that distribu-
tivity, a fundamental property of classical logic, fails in quantum logic for two main 
reasons:

• the non-commutativity of quantum observables,
• the peculiar behavior of the quantum disjunction—another major deviation from 

classical logic—which may be true even though neither of the members is true in 
virtue of the linearity of the Schrödinger Equation (SE).

Let us then have a closer look at these motivations for the failure of the distributivity 
law, and more generally of CL, in the quantum domain.

Contrary to the case of classical mechanics, QM relies on a non-commutative 
algebraic structure7: quantum observables generally do not commute, meaning that 
for any pair of operators A, B we have [A,B] = AB − BA ≠ 0 . From a physical per-
spective this fact entails that if one performs a measurement of A on a quantum sys-
tem followed by a measurement of B, in general one will obtain different results 
inverting the order of these observations. Moreover, in virtue of the non-commu-
tative algebra of quantum theory, measuring an operator C = A + B is not typically 
equivalent to measuring A and B independently and then adding the respective 
results, since A, B will be in general incompatible (cf. David, 2015, p. 77). This fea-
ture of QM constitutes the formal basis to prove the Heisenberg uncertainty relation, 
a theorem of quantum theory which reflects the operational inability to simultane-
ously prepare/measure the values of incompatible operators with arbitrary precision. 
Such a result, in turn, is usually interpreted ontologically in the sense that quan-
tum systems do not instantiate definite properties in non-measurement situations (cf. 
Sakurai, 1994).

In addition, as we will explain in the remainder of this section, the failure of dis-
tributivity in quantum logic is due to another particular characteristic of this new 
propositional calculus, namely the behavior of the quantum disjunction, which is 
different w.r.t. its classical counterpart in virtue of the presence of quantum superpo-
sitions. Indeed, another remarkable difference between QM and CM is that quantum 
systems can be in a superposition of states as a consequence of the linearity of the 
Schrödinger equation—the fundamental dynamical law of quantum theory—which 
for a single particle reads:

(1)iℏ
��

�t
=
(
−

ℏ2

2m
∇2

k
+ V

)
� = H� ,

7 For details on the mathematical structure of QM and its physical content the reader may refer e.g. to 
Sakurai (1994), and Griffiths (2014). In this essay, it is assumed that the reader has some familiarity with 
the standard formalism of QM.
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where H represents the Hamiltonian operator, defined as the sum of kinetic and 
potential energy of the system at hand. More specifically, this algebraic property of 
(1) entails that if two wave functions8 �1,�2 are both possible solutions of the same 
Schödinger equation, then their linear combination (superposition)

is still a solution of the same SE—|�|2, |�|2 (with �, � ∈ ℂ ) represent the probabili-
ties to find the system in �1,�2 respectively. Notably, the new superposed state �s 
is also a consistent representation of the system. Referring to this, de Ronde et al. 
(2016) explicitly say that in QL

differently from the case in classical semantics, a quantum disjunction may be 
true even if neither of its members is true. This reflects, for example, the case 
in which we are dealing with a state such as that of a spin 1/2 system which is 
in a linear combination of states up and down.

Let us use this exact case to review both alleged problems, the peculiar nature of 
the quantum disjunction and the lack of distributivity in quantum logic, with a sim-
ple example taken from Dalla Chiara and Giuntini (2002).

Let us consider a spin-1/2 particle, such as an electron. From QM we know that 
there are only two possible spin states in which a particle can be found along each 
axis after a spin measurement, namely either in the up or in the down state. Fur-
thermore, since spin operators along different axes are incompatible and do not 
commute—i.e. [Sx, Sy] ≠ 0, [Sx, Sz] ≠ 0, [Sy, Sz] ≠ 0—they represent incompatible 
observables that cannot be simultaneously measured. Let us then consider the fol-
lowing scenario: an electron is prepared with spin up along the x direction and sub-
sequently the spin along the y axis is measured. Let the propositions p, q and r be 
defined as follows:

p: “the electron has x-spin up”,
q: “the electron has y-spin up”,
r: “the electron has y-spin down”.

As we said, there are only two states in which a particle can be found along a given 
axis. Therefore the proposition q ∨ r “must be true” (Dalla Chiara & Giuntini, 
2002, pp. 133–134). However, because the different directions are incompatible, if p 
is true then both q and r must be false. The result is, as noted before, that the quan-
tum disjunction is true even if neither of its members is true.

This behavior in turn breaks the law of distributivity which would state:

Since we assume that p is true and we know that the disjunction (q ∨ r) is also true, 
we deduce that p ∧ (q ∨ r) = ⊤ ; however, (p ∧ q) and (p ∧ r) are both false in virtue 

�s = ��1 + ��2

(2)p ∧ (q ∨ r) ⟷ (p ∧ q) ∨ (p ∧ r).

8 In QM the wave function of a system provides the maximal information available about it.
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of the incompatibility between the spin operators among different axes. This fact 
implies that the right hand side of the distributive law asserts a false statement, i.e. 
(p ∧ q) ∨ (p ∧ r) = ⊥ . Consequently, we have

Therefore the distributive law fails in the context of quantum theory.9
These types of problems were highlighted by Birkhoff and von Neumann, who 

took them as evidence for the failure of classical logic in the context of quantum the-
ory. The principal aim of their essay on quantum logic was to “discover what logical 
structures one may hope to find in physical theories which, like quantum mechanics, 
do not conform to classical logic” (Birkhoff & von Neumann, 1936, p. 823). The 
expression quantum logic in this paper must be clarified, since it refers to a quantum 
propositional calculus in the form of a “calculus of linear subspaces with respect to 
set products, linear sums, and orthogonal complements” which “resembles the usual 
calculus of propositions with respect to and, or, and not” (ibid.), where the logical 
propositions are associated to measurements, tests on quantum systems.10

Their analysis begins by defining quantum logical propositions as experimental 
propositions, i.e. statements affirming that a certain observable A (or a set of observ-
ables) measured on a quantum system s has a given value ai (or a sequence of val-
ues). More precisely, the authors stress that both in classical and quantum mechanics 
observations of physical systems are given by the readings of the experimental out-
comes ( x1,… , xn ) of compatible measurements ( �1,… ,�n ). The values ( x1,… , xn ) 
are elements of what the authors called the ( x1,… , xn)-space, i.e. the “observation-
space” of the system in question, whose elements are all the possible combinations 
of results of the compatible measurements ( �1,… ,�n ). Hence, the actual values 
( x1,… , xn ) form a subset of such a space. Birkhoff and von Neumann, then, defined 
the experimental propositions concerning a physical system as the subsets of the 
observation space associated with it.

Secondly, the authors underlined that in classical and quantum mechanics the 
states of physical systems are mathematically represented by points in their state 
spaces—phase space for the classical case, and Hilbert space H for the quantum 
case—which provide the maximal information concerning the system. A point in 
phase space corresponds to the specification of the position and momentum vari-
ables of a certain classical system, whereas in QM the points of H correspond to 
wave functions. The authors, then, find a connection between subsets of the obser-
vation-space of a system and subsets of its Hilbert space, specifying that quantum 
experimental propositions are mathematically represented by a closed linear sub-
space of H ; this step is crucial in order to obtain the quantum propositional cal-
culus. Alternatively, we can say that quantum mechanical operators correspond to 

(3)p ∧ (q ∨ r) = ⊤ ⟷ (p ∧ q) ∨ (p ∧ r) = ⊥.

9 In the context of quantum logic, it is usually believed that distributivity must be replaced by a weaker 
law: (p ∧ q) ∨ (p ∧ r) ⟶ (p ∧ (q ∨ r)).
10 Cf. Dalla Chiara & Giuntini (2002) and Dalla  Chiara et  al. (2004) for a systematic introduction to 
various forms of quantum logic, and to Engesser et al. (2009) for historical and philosophical discussions 
on the topic.
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propositions with “yes/no” (“true/false”) outcomes in a logical system11 as under-
lined by Svozil:

Any closed linear subspace of—or, equivalently, any projection operator on—a 
Hilbert space corresponds to an elementary proposition. The elementary true–
false proposition can in English be spelled out explicitly as

“The physical system has a property corresponding to the associated closed 
linear subspace” (Svozil, 1999, p. 1).

Thus, since in quantum mechanics physical systems do not have well-defined values 
for their properties before the measurement of a given operator (contrary to their 
classical counterparts), or better that quantum observations do not reveal pre-exist-
ing values, we have to stress that such quantum propositions refer always to meas-
urements or to preparation procedures. Hence, the sentence “the particle s has x-spin 
up” means either that we have measured the observable Sx and we have found the 
value +ℏ∕2 associated with the state “x-spin-up”, or equivalently that we prepared 
s in the x-spin-up state. Thus, one cannot simply say, as in classical mechanics, that 
a certain system has a certain property without having prepared such a system in a 
given state or having measured it.12

Now that we have clarified what quantum propositions are, let us introduce Birk-
hoff and von Neumann’s quantum logic. In order to properly define a propositional 
calculus for QM, one must define the logical operators for conjunction, disjunction 
and negation and the notion of logical implication. Following Birkhoff and von Neu-
mann (1936), the procedure is rather simple: 

1. The negation of a proposition p is defined by the authors as follows: “since all 
operators of quantum mechanics are Hermitian, the mathematical representative 
of the negative of any experimental proposition is the orthogonal complement 
of the mathematical representative of the proposition itself” (Birkhoff & von 
Neumann, 1936, pp. 826–827). The orthogonal complement P⟂ of the subspace 
P is the set whose elements are all the vectors orthogonal to the elements of P. 
Such an orthogonal complement satisfies the following property: given a subset 
P ⊂ H and a pure state � , �(P) = 1 iff �(P⟂) = 0 and �(P) = 0 iff �(P⟂) = 1 . 
As Dalla Chiara and Giuntini underline, “ � assigns to an event probability 1 (0, 
respectively) iff � assigns to the orthocomplement of P [notation adapted] prob-
ability 0 (1, respectively). As a consequence, one is dealing with an operation 
that inverts the two extreme probability-values, which naturally correspond to the 
truth-values truth and falsity (similarly to the classical truth-table of negation)” 
(Dalla Chiara & Giuntini, 2002, p. 132).

11 Cf. also David (2015, p. 78), where we read that “An orthogonal projector P onto a linear subspace 
P ⊂ H is indeed the operator associated to an observable that can take only the values 1 (and always 1 
if the state � ∈ P is in the subspace P) or 0 (and always 0 if the state � ∈ P⟂ belongs to the orthogonal 
subspace to P). Thus we can consider that measuring the observable P is equivalent to performing a test 
on the system, or to checking the validity of a logical proposition p on the system”.
12 More on this below.
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2. Concerning the conjunction, Birkhoff and von Neumann note that one can retain 
the very same set-theoretical interpretation of the classical conjunction in QL, 
since the intersection of two closed subspaces P,Q ⊂ H is still a closed subspace. 
Thus, one maintains the usual meaning for the conjunction: the pure state � veri-
fies P ∩ Q iff � verifies both P and Q. Thus, quantum logic does not introduce a 
new logical operator for the conjunction.

3. Contrary to the previous case, the logical operator for disjunction cannot be 
represented by the set-theoretic union, since the set-theoretic union of the two 
subspaces P, Q will not be in general a subspace; thus, it is not an experimental 
proposition. Therefore, in QL one introduces the quantum logical disjunction as 
the closed span of the subspaces P, Q, which is an experimental proposition. Such 
a statement corresponds to the “smallest closed subspace containing both P and 
Q” (Bacciagaluppi, 2009, p. 55).

4. As far as logical implication is concerned, Birkhoff and von Neumann (1936) 
claim that given two experimental propositions p and q about a certain physical 
system, “p implies q” means that “whenever one can predict p with certainty, one 
can predict also q with certainty” (p. 827) and this is equivalent to stating that “the 
mathematical representative of p is a subset of the mathematical representative 
of q” (ibid.). This fact is particularly important since the authors showed that “it 
is algebraically reasonable to try to correlate physical qualities with subsets of 
phase-space” and thus, “physical qualities attributable to any physical system 
form a partially ordered system” (Birkhoff & von Neumann, 1936, p. 828, nota-
tion adapted).

We have thus reviewed the standard arguments to support the failure of classical 
logic in the context of quantum mechanics, and we have reviewed the basic math-
ematical structure used in quantum logic.

3  Quantum Disjunction and Distributivity Law

In this section we will review the examples given in the previous one and explain 
that the failure of distributivity stems from the ambiguity of the quantum logical 
propositions and, once that is clarified, standard classical rules can be applied also 
in the quantum context. More precisely, we are going to argue that (i) it is not neces-
sarily the case that a quantum disjunction can be true when neither of its members 
is13—i.e. when both disjuncts have undetermined truth values as in the case dis-
cussed above in which we considered a system in a linear combination of y-spin 
states—and (ii) that (2) can be retained in QM, since the arguments seen above—
usually meant to show its failure—are flawed.

13 Clearly, a quantum disjunction is false when both disjuncts are false; however, the interesting case for 
our discussion is the one in which quantum propositions have undetermined truth values.
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3.1  The Quantum Disjunction

As noted in the previous section, in classical mechanics one generally consid-
ers physical systems as objects having well-defined values for inherent, dynamical 
and relational properties which do not depend on any observation—meaning that 
measuring a magnitude on a classical particle will reveal a pre-existing value of 
the observed quantity. Thus, statements about the ontic state of classical systems 
before or after a measurement can be conflated without any dangerous metaphysical 
consequence.14

However, in the context of QM this move is not allowed: the effect of a measure-
ment on the state of a quantum system, however one may choose to interpret it, can-
not be disregarded. A statement about a system before the performance of a certain 
measurement—i.e. about its preparation15—is different from a statement regarding 
the same object when the measurement has been actually carried out, i.e. about the 
obtained measurement outcome. Indeed, it is only through repeated observations on 
identically prepared systems that we can infer anything about the state of the sys-
tem before the measurement. Thus, propositions like “the electron has y-spin up”, 
“the velocity of the particle is v”, “the position of the particle is x” are inherently 
ambiguous as they do not spell out whether they are concerned with preparations 
or measurement outcomes. Once such vagueness is taken into account and clarified, 
the purported failure of classical logic disappears.

In order to support this claim, let us redefine the propositions encountered in the 
previous example as follows:

pi : “before the measurement, the electron x-spin is up”,
po : “after the measurement, the electron x-spin is up”,
qi : “before the measurement, the electron y-spin is up”,
qo : “after the measurement, the electron y-spin is up”,
ri : “before the measurement, the electron y-spin is down”,
ro : “after the measurement, the electron y-spin is down”.

Given the setup of the physical situation at hand, after the measurement of Sy either 
qo or ro must be true, which means qo ∨ ro = ⊤ . This reflects the simple fact that 
after a measurement of spin along the y axis the state of the quantum particle must 
be one of the two indicated in either qo or ro . Nonetheless, it is worth noting that qi 

14 Alternatively stated, in classical mechanics it is usually claimed that the sentence “The value of the 
quantity y for the system s is x” can be considered equivalent to the statement “After a measurement M of 
the quantity y on the system s, the value x is obtained”. This equivalence is due to the fact that measure-
ments in the classical context do not alter the observed system, or in less idealized scenarios, that the dis-
turbance caused by the interaction between observed system and measuring device is negligible. A more 
elaborate treatment of measurements in classical mechanics goes beyond the scope of the present paper.
15 In operational quantum theory the preparations are a set of instructions that an agent has to follow in 
order to prepare a quantum system in a certain state. We are aware that preparations can be considered 
special kinds of measurements. For the sake of the argument, however, in what follows we take prepara-
tions to be the instructions to arrange a physical system in a given state before the measurement of a 
certain quantity is actually performed.
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and ri are not the same statements as qo and ro—i.e. qi and ri are not equivalent to qo 
and ro—therefore, it is not necessarily true that qo ∨ ro = qi ∨ ri . This unwarranted 
equivalence is what causes the problem. To make evident why it is so, let us add a 
third step to our example.

After the measurement of Sy , in the case we obtained y-spin down we will rotate 
the direction of spin by 90 degrees using the precession generated by a magnetic 
field, so that x-spin will be up, as we can see from Fig. 1 below. However, in the 
other case, when y-spin up is obtained, we leave the direction of spin unchanged.

Consider now the statements:

pf  : “after the third step, the electron x-spin is up”,
qf  : “after the third step, the electron y-spin is up”,
rf  : “after the third step, the electron y-spin is down”,

that concern the state of the electron at the later time, after the possible rotation of 
spin. By construction, the particle will either have x-spin up or y-spin up, either pf  
or qf  must be true and therefore pf ∨ qf = ⊤.16 But again, this relationship is valid 
only after the third step, which means that po ∨ qo is not necessarily true because 
these latter statements are evaluated at different (earlier) times.

This situation is formally identical to the previous one: before we had that 
qo ∨ ro ≠ qi ∨ ri , now we have pf ∨ qf ≠ po ∨ qo . It would be improper to say that an 
electron has always either x-spin up or y-spin up just because it is so after the third 
step. Similarly, it would be improper to claim that the electron has always either 
y-spin up or down just because it is so after the measurement of spin along the y 
axis. Neither the disjunction, nor its atomic components tell us anything about an 
inherent property associated with the observable Sy possessed by a quantum particle 
independently of any measurement of Sy.

On the other hand, we can calculate the truth value of qi ∨ ri directly and show 
that it is false. The difficulty here is that before the measurement of Sy only x-spin is 
defined, so how are we going to compute statements about the value of y-spin? The 
solution is simple: while the value of an observable is not always defined, its expec-
tation value always is. The idea is then to translate qi and ri into propositions about 
expectation values, which we already know how to handle, and apply the standard 
rules. Consider the following statements:

q′
i
 : “before the measurement, the expectation value for y-spin is 1

2
ℏ”,

r′
i
 : “before the measurement, the expectation value for y-spin is − 1

2
ℏ”.

If �i is the (potentially) mixed state before the measurement, the expectation value 
for y-spin is given by Tr(�iSy) =

1

2
ℏ⟨�+

y
��i��+

y
⟩ − 1

2
ℏ⟨�−

y
��i��−

y
⟩ . Therefore q′

i
 is 

true if and only if Tr(�iSy) =
1

2
ℏ . Because �i is positive definite, this can only happen 

if ⟨�+
y
��i��+

y
⟩ = 1 and ⟨�−

y
��i��−

y
⟩ = 0 , which means �i = ��+

y
⟩⟨�+

y
� . This entails 

that the expectation value for y-spin is 1
2
ℏ if and only if the electron was prepared 

16 In fact, note that qf  is true if and only if qo is true, and, similarly, pf  is true if and only if ro is true.
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in a pure state of y-spin up. In other words, because the spin of the electron along 
any axis is bounded by ± 1

2
ℏ , the only way that q′

i
 is true is if qi is true. We have that 

q′
i
 and r′

i
 are respectively equivalent to qi and ri . Consequently qi ∨ ri = q�

i
∨ r�

i
 . Note 

that q�
i
∨ r�

i
 is the proposition “before the measurement, the expectation value for 

y-spin is ± 1

2
ℏ ”. Now, before the measurement of Sy we know that the electron x-spin 

is up. While the y-spin value is not fully defined—the state is not an eigenstate of Sy
—the expectation value is fully defined and it is zero. Zero is different from ± 1

2
ℏ 

and therefore qi ∨ ri = ⊥ . In fact, since any (non-trivial) superposition of y-spin up 
and down will result in an expectation value strictly between − 1

2
ℏ and 1

2
ℏ , qi ∨ ri will 

be true if and only if either qi or ri is true. Therefore it is not the case that the quan-
tum disjunction can be true even if none of the elements is true. The overall point is 
that the incompatibility of the observables does indeed introduce a problem because 
it is not clear how to evaluate propositions that mix different variables. The use of 
equivalent propositions over expectation values helps us solve the ambiguities.

While a full discussion goes beyond the scope of this work, we should mention 
that it is rather odd to claim that one of the reasons QM fails to follow classical logic 
is the linearity of the SE given that linear systems abound in classical mechanics as 
well. All wave equations are linear which include both the SE and classical electro-
magnetism. The Liouville equation, the classical analogue to the SE that governs the 
evolution of probability distributions under classical Hamiltonian mechanics, is also 
linear. One can create superpositions of classical electromagnetic fields or classical 
probability distributions in the same way one does of wave functions, and this does 
not seem to imply an invalidation of classical logic.

3.2  Keeping Distributivity in Quantum Mechanics

Several authors have already argued in different ways that it is possible to retain 
distributivity in quantum mechanics. For instance, Park & Margenau (1968) dis-
puted the identification between Hermitian operators and quantum observables and 

Fig. 1  Graphic representation of the discussed example. Step 1 describes the preparation of the electron 
in the x-spin up state; Step 2 represents the measurement of Sy at a later time; finally in Step 3 we rotate 
the direction of spin by 90 degrees if at Step 2 the particle is found in the y-spin down state. We leave the 
direction of spin unchanged otherwise
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provided a new interpretation of quantum measurement theory rejecting the notion 
of incompatible observables—and thereby incompatible measurements—which, as 
we have seen, constitutes the basis to show the failure of the distributivity law in the 
quantum realm. Remarkably, also Bohr argued that classical logic should be main-
tained in quantum theory as a consequence of the complementarity principle:

The aim of the idea of complementarity was to allow of keeping the usual logi-
cal forms while procuring the extension necessary for including the new situ-
ation relative to the problem of observation in atomic physics (Bohr quoted in 
Faye & Jaksland (2021), p. 115).

Another interesting quote reported in Faye and Jaksland (2021) clearly shows that 
the Danish physicist strongly opposed the idea of replacing classical propositional 
calculus with QL:

The question has been raised whether recourse to multivalued logics is needed 
for a more appropriate representation of the situation. From the preceding 
argumentation it will appear, however, that all departures from common lan-
guage and ordinary logic are entirely avoided by reserving the word ‘phenom-
enon’ solely for reference to unambiguously communicable information, in 
the account of which the word ‘measurement’ is used in its plain meaning of 
standardized comparison (Bohr quoted in Faye & Jaksland, 2021, p. 115).

Although Bohr did not provide formal arguments against the introduction of quan-
tum logic, his views express the idea according to which macroscopic measurement 
results must be described with ordinary language, therefore, they must be sub-
jected to the rules of classical logic—in his view the intrinsic novelties of quantum 
mechanics have to be found in the contextual and complementary nature of quantum 
phenomena on the one hand, and the entanglement between quantum systems and 
macroscopic devices which in measurement situations form an indissoluble unity 
on the other. Hence, given that quantum propositions concern only measurement 
results, Bohr concluded that they should be governed by the laws of classical propo-
sitional calculus.

To this regard, Heelan (1970) provided a formalization of Bohr’s arguments 
based on the complementarity principle and showed that the statements about a sin-
gle quantum mechanical event, i.e. a measurement of a certain observable given a 
precise experimental context, do follow a classical propositional calculus.17 More 
precisely, Heelan claims that QM introduces a distinction between events, corre-
sponding to the actual performance of a certain measurement, and physical contexts, 
i.e. experimental settings determining the necessary and sufficient conditions for the 
realization of a particular measurement outcome. In his view, then, one has to intro-
duce two different languages: an event-language useful to formally describe a par-
ticular observation of a certain quantum observable and a context-language, which 
is a meta-language necessary in order to properly speak about how a certain event 

17 We thank one anonymous reviewer for having pointed out Heelan’s work to us.
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can possibly occur.18 If we consider only propositions involving and relating incom-
patible contexts, Heelan says, then we will generate a lattice of propositions which 
is not distributive, however, if we take into account single event-languages—each of 
which is coupled with a given context-language—the logic of such individual quan-
tum events can be classical. This captures Bohr’s idea according to which the prin-
ciple of complementarity arises from the context-dependent character of quantum 
mechanical events.

Although we partially agree with Heelan’s view in saying that propositions about 
individual quantum measurements can generate a distributive lattice, we want to 
generalize such a claim. In fact, we show—with simpler arguments and indepen-
dently of Bohr’s interpretation of quantum theory—that taking into account the 
temporal order of individual quantum measurements one can relate even statements 
about incompatible observations into a distributive lattice. In addition, we show that 
ignoring the temporal order of measurements may lead to violations of the distribu-
tivity law also in classical mechanics; thus, it is our aim to argue that once the cor-
rect interpretation of quantum propositions is taken into account the lattice gener-
ated by such statements is distributive.

In order to derive our desired result, let us now turn our attention to distributiv-
ity and try to rewrite (3) by using the refined propositions that explicitly include the 
temporal dependence. The proposition p always referred to preparation, therefore it 
maps to pi in all cases. The disjunction was argued to be true on the basis of what 
happened after the measurement of Sy , therefore on the left side of the relationship 
we should use qo and ro . On the right side, instead, it was argued that p ∧ q was false 
because of the incompatibility between the spin operators among different axis. This 
means we are considering statements at equal time with pi , and therefore we should 
use qi and ri . We have

But this is hardly a failure of distributivity, since the statements on the left side are 
not the same as the statements on the right side. Let us fix that.

Before we saw that if pi is true, the expectation for y-spin is zero, and therefore 
q�
i
∨ r�

i
= qi ∨ ri = ⊥ . Therefore

On the other hand, consider pi ∧ qo which states that we find y-spin up after the 
measurement and x-spin up before. This is not false, and in fact it will be true in 50% 
of the cases according to the Born rule. Similarly, pi ∧ ro will be true in the remain-
ing 50%. Therefore we have

(4)pi ∧ (qo ∨ ro) = ⊤ ⟷ (pi ∧ qi) ∨ (pi ∧ ri) = ⊥.

(5)pi ∧ (qi ∨ ri) = ⊥ ⟷ (pi ∧ qi) ∨ (pi ∧ ri) = ⊥.

18 Heelan exemplifies such a distinction as follows: “If the event, for example, is a particle-location 
event, the event-language is position-language, and the physical context is a standardized instrumental 
set-up plus whatever other physical conditions are necessary and sufficient for the measurement of a 
given range of possible particle-position events” (Heelan, 1970, p. 96).



1522 A. Oldofredi et al.

1 3

In either case, the distributivity law is satisfied.
To sum up, (2) fails in the quantum domain because we considered proposi-

tions evaluated at different times, before and after the measurement, in the two 
sides of the biconditional. If we remove the ambiguity and make the temporal 
dependence explicit, the distributivity law is recovered. The lack of commutativ-
ity of the observables in quantum mechanics therefore does not change the rules 
of logic. It imposes that the lattice of propositions at different times depends on 
the process, in particular on the choice of measurement. That is, if at time t a 
particular observable is either prepared or measured, all statements about incom-
patible observables will be impossible and therefore they will be false. Quantum 
measurements do have an impact on the lattice of statements, unlike classical 
measurements, but that impact does not change the rules of logic.

The idea that the same statement may or may not be possible at different 
moments in time is not particular to quantum mechanics. We can, in fact, con-
struct a scenario in classical mechanics where propositions have the same before/
after logical relationships. Suppose we have a ball sitting at position p over a 
hatch (see Fig. 2). Once the hatch opens, the ball drops, bounces around, until it 
rests at either position q or r with equal chance.

Let us consider the following statements:

pi : “Before the hatch is opened, the position of the ball is p”,
qi : “Before the hatch is opened, the position of the ball is q”,
ri : “Before the hatch is opened, the position of the ball is r”.

It is straightforward to see that these are three incompatible assertions: since the 
ball can have only one possible determinate position in space before the hatch 
is opened, it cannot be localized in two different locations, p and q or p and r. 
Therefore the statements obey (5). After the hatch is opened, the ball will either 
settle in q or r. Consider, then, the sentences:

po : “After the hatch is opened, the position of the ball is p”,
qo : “After the hatch is opened, the position of the ball is q”,
ro : “After the hatch is opened, the position of the ball is r”.

Since the ball must be in one of the two lower positions after it dropped, the 
disjunction (qo ∨ ro) ≡ ⊤ . Therefore the statements obey (6). To no surprise, the 
distributive law is satisfied and therefore classical logic applies.

We can, however, evaluate q and r at a different time w.r.t. p, as it is done 
in the quantum scenario considered in Sect. 2. In that case, we obtain the same 
relationship as in (4). If we omit the indices, that is, we are vague about the tem-
poral evaluation, we get the same failure of distributivity as in (3). Naturally, one 
would not say that distributivity fails in the classical context, but rather that we 
have to evaluate propositions taking into account the same temporal instant on 
both sides of (2).

(6)pi ∧ (qo ∨ ro) = ⊤ ⟷ (pi ∧ qo) ∨ (pi ∧ ro) = ⊤.
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In conclusion, contrary to the received view in quantum logic, we have shown 
that the distributivity law is not violated in the quantum context once the correct 
temporal order of quantum propositions—and consequently their actual meaning—
is considered.

4  On the Common Logical Structure between Quantum and Classical 
Mechanics

After having critically assessed the general motivations to introduce quantum logic 
as a consequence of the physical content of QM, in this section we present our main 
argument according to which it is possible to assign a distributive lattice to quantum 
propositions. Remarkably, in what follows we will see that the non-distributivity of 
the quantum logic lattice originates neither from non-commuting observables nor 
from superpositions of quantum mechanics: it is a property of the lattice of sub-
spaces of any vector space, and of the lattice of subgroups of any group more in 
general (cf. Davey & Priestley, 2002). In this regard, indeed, we also show that 
taking into account the space of classical probability distributions one can apply a 
non-distributive lattice to classical propositions. This fact is due to the similar struc-
tures of the state space of quantum mechanics and the space of classical probability 
distributions.

In what follows, then, it will be argued that both theories—quantum and classi-
cal—may be assigned two lattices of propositions: a distributive one that follows 
the laws of classical logic, and a non-distributive one obeying the rules of quan-
tum logic. Contrary to the widespread opinion, therefore, we will claim not only 
that quantum physics does not necessarily entail a revision of classical propositional 
calculus, but also that it is actually possible to show that quantum propositions can 
form a distributive lattice. Furthermore, in agreement with the example of the viola-
tion of the distributivity law in the classical context seen above, in the remainder of 

Fig. 2  Graphic representa-
tion of the discussed example. 
Initially a ball is in position p 
over a hatch. After the hatch 
opens, the ball drops and falls to 
either position q or r with equal 
chance
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the section we will argue also that the propositions of classical mechanics may obey 
a non-classical type of logic.

Before we proceed, it is worth noting that the classical space we will be using is 
not phase-space itself, but the space of probability distributions over phase-space, 
which is a real Hilbert space and thus has a similar structure to its quantum coun-
terpart. It should be stressed that probabilistic theories are important even in classi-
cal mechanics. Due to the nature of experimental verification, also in the context of 
classical mechanics there are always going to be uncertainties in the preparation and 
measurements, and repeated observations will directly lead to statistical constructs. 
However, we want to emphasize that this paper aims primarily at showing that QM 
can generate a distributive lattice of propositions. Here we want to enter neither into 
debates concerning the ontology of quantum mechanics, nor into discussions about 
the similarities between the commitments of QM and those of classical mechanics. 
In this essay we simply point out a formal similarity between the above mentioned 
mathematical structures that has implications for the logic of both theories.

From a mathematical perspective, the distributive lattice will be provided in 
both the classical and the quantum case by a Borel algebra, which is the smallest �
-algebra on a set X equipped with a topological structure that contains the topology; 
the non-distributive lattice will be provided by the set of closed subgroups ordered 
by inclusion. We will claim that the non-distributive lattice is a strict subset of the 
distributive one; this result entails that everything that can be described in quan-
tum logic can also be described in classical logic. Moreover, the distributive lattice 
will include propositions concerning the expectation value of observables that are 
of high scientific interest, since in an experimental context by “measurement” one 
typically refers to the statistical collection of many “single takes”. On the contrary, 
it is well-known that standard quantum logic deals only with single-take measure-
ments, remaining silent w.r.t. propositions involving statistical statements. Hence, 
measurements of cross sections, the most typical type of measurement in the context 
of particle physics, are not part of the quantum lattice, and neither are measurements 
of the probabilities themselves. Therefore, showing that one may apply a distributive 
lattice to quantum propositions can be seen as an important result in order to extend 
the set of meaningful logical propositions of quantum mechanics.

4.1  The Distributive Lattice of Quantum Mechanics

As anticipated above, in this section our arguments are fundamentally based on the 
notion of �-algebra, which is a significant structure from a foundational perspective, 
given that physically relevant mathematical branches like measure theory (cf. Cohn, 
2013) and probability theory (cf. Grimmett & Stirzaker, 2001) are built on top of it. 
Let us then review some of its essential features.

In order to begin our discussion, let us consider in the first place a set X: in the 
quantum case it will correspond to the set of all possible quantum states; similarly, in 
the classical case it will correspond to the set of all possible probability distributions 
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over phase space.19 By definition, a �-algebra is a collection of subsets of X closed 
under countable union, countable intersection and complement with respect to X; 
the closure condition requires that performing those operations on the sets contained 
in a �-algebra will return another set in the same �-algebra. Interestingly, these sets 
can be understood to represent statements concerning the objects described by X, i.e. 
quantum states and classical probability distributions.20 Namely, if U ⊆ X , the state-
ment “x is in U” tells us that the state x must be one of those delimited by U. Then, 
by virtue of the equivalence between sets and statements, it will be more convenient 
for us to conceive �-algebras as collections of propositions about X instead of sets. 
Referring to this, since the �-algebra is closed under countable union, countable 
intersection and complement with respect to X, the corresponding statements will be 
closed under countable conjunction, countable disjunction and negation. Hence, the 
�-algebra generates a Boolean algebra of statements.21

In the second place, it is crucial to underline that every topological space—as 
for instance the complex Hilbert space of quantum mechanics and the real Hilbert 
space of classical probability distributions considered in this essay—comes already 
equipped with a �-algebra called a Borel algebra. A topology, in fact, is also a col-
lection of sets—called open sets—and the Borel algebra is defined to be the small-
est �-algebra that contains all the open sets.22 Complete normed spaces, such as the 
mentioned Hilbert spaces, have a canonical way to construct a topology and, there-
fore, a �-algebra. Let us see how this procedure works in the easier case of a stand-
ard three-dimensional Euclidean space. Given two points x and y, we can write the 
square of distance �2 = |y − x|2 as the square of the norm of the vector between the 
two points. The statement “the position is within � meters of x” corresponds to the 
set U = {y | |y − x|2 < 𝜖2} of all the points whose distance from x is less than � . 
These are exactly the open sets that generate the topology, and the Borel algebra will 
be the smallest �-algebra that contains these sets.23 This works analogously for all 
normed spaces. A Hilbert space, in particular, comes with an inner product which 
also defines a norm. We can define a distance �2 = �� − ��2 = ⟨� − �,� − �⟩ 
between two states, and the statement “the state of the system is within � of � ” 
corresponds to the set U = {𝜙 | |𝜓 − 𝜙|2 < 𝜖2} . As we have already stated, the 
space of classical probability distributions is also a Hilbert space where each point 
corresponds to the square root of the density.24 In this case we have a distance 

24 The choice of the square root of the density rather than the density itself is merely a technical choice.

19 We should stress, however, that �-algebras are defined independently of what the elements of X actu-
ally are. For a simpler example, X could correspond to the set of the real numbers for a continuous quan-
tity.
20 In the quantum case this is exemplified also in Sect. 2.
21 Note that the interpretation used here is exactly the same used in probability theory. In fact, a prob-
ability space is defined by three elements: a sample space Ω which represents the set of all possible out-
comes; a �-algebra over Ω which represents all events, all propositions; and a measure that assigns a 
probability to each event.
22 Here the topology is important for us only as a means to construct the Borel algebra.
23 We can now see precisely that by generating a lattice of statements we mean starting with a set of 
propositions that are experimentally accessible (i.e. the basis of the topology) and closing under negation 
(i.e. complement) and countable disjunction (i.e. union).
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�2⟩ and we can proceed in the same 

exact way. In all normed spaces, the topology, and therefore the �-algebra, is con-
structed from sets of the form “the object is within � of x”.

It is a simple result that the Borel algebra thus constructed contains all proposi-
tions of quantum logic, and we state it in the following proposition:

Proposition 1 Let H be a Hilbert space. Let Σ be the Borel �-algebra induced by its 
inner product. Let L(H) be the lattice of closed subspaces of H . Then L(H) ⊂ Σ.

Proof. Let p ∈ L(H) be a closed sub-space of H . Then p is a closed set, the com-
plement of an open set, and therefore a Borel set: p ∈ Σ . Let v ∈ H be a vector in 
the Hilbert space and consider the singleton U = {v} . This is not a closed sub-space 
and therefore U ∉ L(H) . As the topology of a Hilbert space is Hausdorff, all single-
tons are closed and therefore U ∈ Σ.25 This means L(H) ⊂ Σ . This concludes the 
proof.

The above proposition contains our first crucial conclusion. As we stated in 
Sect. 2, in quantum logic the propositions correspond to closed subspaces, which are 
closed sets and, thus, are Borel sets. All the propositions of quantum logic are con-
sequently readily found in the Borel algebra of the Hilbert space. The Borel algebra, 
in turn, is a Boolean algebra that follows classical logic, and contains all the state-
ments of quantum logic.26 This construction also applies identically for the classical 
cases, where we will also be able to talk about the set of all closed subspaces.

While all of this may seem suspect to some readers, we would like to stress that 
these are very standard constructions. Alternatively stated, all of what has been men-
tioned so far are the standard mathematical techniques used to study these spaces 
and can be found in any textbook (cf. Rudin, 1973; Vasudeva, 2017). Here we are 
bringing out the full physical significance of these mathematical constructs, which 
is too often overlooked. Understanding the link between the mathematical structures 
and the physics they represent is crucial to clearing out possible misunderstandings.

Now that we have briefly seen the definitions and basic constructions, we can 
gain more insights into these structures and what they represent. First, let us under-
stand why the lattice of subspaces (i.e. quantum logic) fails to be a Boolean algebra. 
Stone’s representation theorem tells us that any Boolean algebra can be expressed 
as an algebra of sets using the standard set operations (i.e. intersection, union and 
complement) (cf. Davey & Priestley, 2002). For the lattice of subspaces, note that 
the disjunction p ∨ q does not correspond to the set union of the subspaces, but the 
span. In fact, the union of subspaces is not part of the lattice. This is why the lattice, 

25 To give more context, the set U = {v} can be written as U = {w | |w − v|2 = 0} the set of all elements 
with zero distance from v. This can be understood as the limit (i.e. countable intersection) of a sequence 
of propositions “the object is within � of v” where � tends to zero.
26 Obviously, the inclusion map from the lattice of closed subspaces is not an order isomorphism as the 
join and complement are not preserved. However, these are still expressible as subspace closure and sub-
space complement.
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even if it is a complemented 0 − 1 lattice, fails to be a Boolean algebra: it does not 
use the standard set operations.

Clearly, �-algebras are Boolean algebras because they are exactly an algebra of 
sets with standard set operations. As we said before, the Borel algebra will contain 
the lattice of subspaces as well as all the set operations between them, including the 
union. In a way, the lattice of subspaces is not Boolean because it does not contain 
enough sets, which are instead contained in the Borel algebra.

At this point, one may ask: do these extra sets correspond to physically mean-
ingful propositions? To answer this question, let us first demonstrate the following 
proposition.

Proposition 2 Let H be a Hilbert space and ⟨ , ⟩ be its inner product. Let A be a 
self-adjoint bounded linear operator. Let FA ∶ H → ℝ be the map defined by 
FA(�) = ⟨� ,A�⟩ . Let U ⊆ ℝ be a Borel set. Then F−1

A
(U) is a Borel set.

Proof. Let A be a self-adjoint bounded linear operator. Recall that a linear opera-
tor is continuous if and only if it is bounded. Therefore A is continuous. Note that 
FA is the composition of A with the inner product. Recall that the inner product is a 
continuous function. Since FA is the composition of continuous functions it is also 
continuous. Recall that all continuous functions are also Borel measurable, therefore 
FA is Borel measurable. Let U ⊆ ℝ be a Borel set. Since FA is Borel measurable, the 
reverse image F−1

A
(U) is also a Borel set. This concludes the proof.

Since ⟨� ,A�⟩ expresses the expected value for operator A, the proposition shows 
that the Borel algebra can express statements about the expectation value of observ-
ables,27 such as “the expected position ⟨x⟩ of the particle is between x0 and x1 .” This 
would correspond to the Borel set {� ∈ H � ⟨� ,A�⟩ ∈ (x0, x1)}.28 Consider, for 
example, “the expectation of z-spin is zero”. This would correspond to the set V ⊆ H 
that includes all states, and only the states, for which the expection of Sz is zero. By 
Proposition 2, V is a Borel set. In fact, the set U = 0 is a Borel set of ℝ and therefore 
V = F−1

Sz
(U) is a Borel set of H . However, V is not a closed subspace. The set V is 

not the full set H since, for example, the state with z-spin up is not in the set. How-
ever, x-spin up and x-spin down will be in the set V, and their span is the full space 
H . Therefore V is not a closed subspace. Our proposition, despite being physically 
interesting, does not correspond to a closed subspace but does correspond to a Borel 
set.29

27 Technically, position and momentum are not bounded operators. However, one can argue that meas-
ured position and momentum are indeed bounded as the acceptance of a detector is always limited. Note 
that all operators for which the spectral theorem applies can be written as the limit of a sequence of 
bounded operators.
28 In most cases, one assumes states to be normalized, which is what we have done here for simplicity. 
Renormalization would lead to the set {� ∈ H � ⟨� ,A�⟩∕⟨� ,�⟩ ∈ (x0, x1)} , which is still a Borel set 
since renormalization is a continuous function over its domain H ⧵ {0}.
29 Note that we are not claiming that all Borel sets can be constructed in this way or that all Borel sets 
correspond to physically interesting propositions. First of all, it is not true: {�} and {e���} are different 
Borel sets, yet they are not physically distinguishable since a difference in absolute phase is not physi-
cally relevant. This can be fixed by considering the Borel sets of the projective space. Second, to really 
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The idea is that closed linear subspaces correspond to single-shot measurements. 
While these form an interesting subset of possible measurements, they are fairly lim-
ited in what they can tell us about the incoming system. For example, measuring 
z-spin up tells us very little about spin before the measurement: only that it couldn’t 
be z-spin down. To make any inference on the incoming state we need to gather sta-
tistics. In fact, no cross section measurement, our main tool in exploring the stand-
ard model, is single-shot. Being that quantum mechanics is a statistical theory, most 
physically interesting statements are statistical in nature, and that is why we need to 
include the Borel sets in our lattice of statements.30

Another distinction is important. Borel sets allow us to express statements such 
as “the expected position ⟨x⟩ of the particle is exactly x0 ”. This is not equivalent to 
the statement “the particle is in the eigenstate of position corresponding to x0 ” This 
latter proposition will be true only if the whole function is at x0 . That is, if x0 is the 
support of the wave function. The former is much less stringent: the wave function 
can even be distributed over an infinite range (e.g. a Gaussian wave packet) just as 
long as the average is x0 . This means that we can have statements like “the expected 
position ⟨x⟩ of the particle is exactly x0”∧ “the expected momentum ⟨p⟩ of the parti-
cle is exactly p0 ” without having contradictions (e.g. a Gaussian wave packet can be 
centered on any value of position and momentum).

We can go one step further. Note that all statements that characterize the position 
and momentum of the center of mass form a sub-algebra of the Borel algebra. Recall 
that the Ehrenfest theorem states that m d

dt
⟨x⟩ = ⟨p⟩ and d

dt
⟨p⟩ = −⟨V(x)⟩ . If the 

potential for a quantum particle can be considered constant over the wave function 
(i.e. ⟨V(x)⟩ = V(⟨x⟩) ), the motion of the center of mass will reduce to the case of a 
point-particle. The Borel algebra contains as a sub-algebra the statements we need 
for (at least one form of) the classical limit. And this is a purely classical sub-alge-
bra, because the average position and average momentum can both be well defined. 
Moreover, note that this is not dissimilar to what happens in classical mechanics 
when, for example, we study planetary motion using only the position and momen-
tum of the center of mass. The algebra of statements for the position and momentum 
of the center of mass can be independently described and studied. In this regard, the 
logical structure of the Borel algebra of quantum mechanics works in the same way.

Footnote 29 (continued)
examine the physicality of all Borel sets we need a “general theory of experimental logic”, of the type 
provided by Kelly (1996) or Carcassi and Aidala (2021), which would go well beyond the present dis-
cussion. With appropriate caveats (e.g. the Hilbert space must be separable), one can say that the Borel 
sets correspond to propositions that can be associated to an experimental test (what Carcassi and Aidala 
(2021) call “theoretical statements”) which may or may not terminate in any or all cases. We leave this 
discussion for another work.
30 Since probabilities are assigned to Borel sets and only Borel sets, the Borel algebra will contain all 
physically interesting statements. Further expansions (e.g. to the power set) would only include unphysi-
cal statements.
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4.2  The Non‑distributive Lattice of Classical Mechanics

Now that we have argued that quantum mechanics can be given an algebra that looks 
more like the one of classical mechanics, let us show that we can (at least formally) 
give classical mechanics an algebra that looks like the one of quantum logic. Given 
that quantum mechanics is inherently a probabilistic theory, let us compare it to a 
classical probabilistic theory. Thus, let us consider the space of all possible prob-
ability distributions �(x, p) over phase-space. As already stated, we can formalize 
this as a Hilbert space, where a vector � corresponds to 

√
�(x, p) . This will be a 

real vector space, and we are only going to consider operators that can be expressed 
as a multiplicative function f(x, p). Note that ⟨��F�⟩ = ∫ f (x, p)�(x, p)dxdp as one 
would expect.31 We can now take the algebra of subspaces and, as in the quantum 
case, it will be non-distributive: the disjunction of two subspaces will not be the set 
union, but the span.

To really understand the source of the non-distributivity, let us study the sim-
plest possible example. Let us assume that there are only two possible classical 
states of a certain physical system s, 1 and 2. A state is identified by a two-val-
ued distribution [�1, �2] , where �1 is the probability to find the object in state 1 and 
�2 is the probability to find the object in state 2. We denote with [k,  0] the sub-
space spanned by the first state only. This corresponds to the statement “the sys-
tem s is certainly in state 1” since the probability for state 2 is zero. Conversely, 
[0, k] corresponds to the statement “the system s is certainly in state 2”. The dis-
junction [k, 0] ∨ [0, k] will correspond to the subspace spanned by both, which 
is the whole space [k,  j] where we can assign different non-zero probability to 
either case. We can also take the subspace [k, k], the subspace spanned by vectors 
that have equal components in 1 and 2, which corresponds to the statement “the 
system is equally likely to be in either state 1 or 2”. Note that [k,  0], [0,  k] and 
[k, k] are all pairwise disjoint: no pairs have a vector in common apart from zero. 
Therefore their conjunctions [k, 0] ∧ [0, k] = [0, k] ∧ [k, k] = [k, k] ∧ [k, 0] = [0, 0] 
are zero dimensional. On the other hand, [k,  k] is a subspace of the whole 
space [k,  j] and therefore [k, k] ∧ [k, j] = [k, k] . Putting it all together, we 
have [k, k] ∧ ([k, 0] ∨ [0, k]) = [k, k] ∧ [k, j] = [k, k] . But we also have 
([k, k] ∧ [k, 0]) ∨ ([k, k] ∧ [0, k]) = [0, 0] ∨ [0, 0] = [0, 0] . Therefore the lattice is not 
distributive.

Note that during the discussion there was no mention as to whether k and j were 
real numbers, complex numbers or quaternions. The argument is formally the same 
in all cases. Therefore the lack of distributivity has nothing to do with the complex-
ity of the Hilbert space or non-commuting observables. It’s a property of the lattice 
of subspaces of any vector space and, more generally, of the lattice of subgroups of 
any group. Indeed, as a further example, consider the group of boost transforma-
tions in relativity theory. The boosts along one direction form a subgroup. If we 
take the subgroups of boost along x and y respectively, the smallest subgroup that 

31 To be clear, we are not arguing that this construction is the most appropriate or useful. Simply that it 
can be done.



1530 A. Oldofredi et al.

1 3

contain both, the disjunction, is the subgroup of all boosts along any direction in the 
x-y plane. As before, the disjunction is the span, hence the resulting set is different 
from the union, and the union of all boosts along the x-axis and the y-axis is not a 
subgroup and therefore not contained in the lattice. Thus, this has the same non-
distributive structure as quantum logic.

We want to stress once again that we are not claiming that the lattice of subspaces 
of quantum logic is not of interest, or that it is of equal interest in both classical 
and quantum mechanics. Here we have pointed out that the argument that quantum 
mechanics implies a radical departure from classical logic is untenable, given that 
both theories are built on similar algebraic structures. We conclude that such claims, 
still believed to this day, should be substantially weakened, in the light of the argu-
ments that we proposed in this section.

5  Concluding Remarks

In this essay we considered the question of whether QM entails a rejection of clas-
sical logic. After having reviewed the main arguments usually given in literature 
to support such a claim, and having introduced the standard approach to quantum 
logic, we showed not only that the classical distributivity law can be maintained in 
the context of quantum theory, but also that the alleged peculiar behavior of quan-
tum disjunctions—generally ascribed to the existence of superpositions—is easily 
explained once the meaning of quantum propositions is unambiguously defined.

More precisely, in this essay we argued that in order to understand the actual 
meaning of quantum propositions it is important to take into account whether they 
refer to preparations or measurements. Indeed, it is the temporal ambiguity present 
in the example discussed in Sect. 2 that led to the wrong conclusion according to 
which the distributive law is refuted by the physical content of standard quantum 
mechanics. Contrary to this claim, we argued that making explicit the temporal 
dependence of logical propositions is sufficient to recover (2) in the quantum con-
text. In addition, this result entails that the non-commutativity of quantum observa-
bles does not play any role in refuting or rejecting the distributivity law, meaning 
that this peculiar algebraic property of quantum operators does not change the rules 
of logic, dissolving one of the most important myths of QL. Similarly, we explained 
that the existence of superpositions does not entail per se that quantum disjunctions 
are true even in the case in which neither of its members is.

Furthermore, in Sect. 4 it has been shown that taking into account the relevant and 
fundamental algebraic structures on which quantum mechanics is built, i.e. the Borel 
algebra, it is possible to demonstrate that quantum theory can generate a distributive 
lattice. Moreover, we argued that considering the space of probability distributions 
over phase space one can assign a non-distributive lattice to classical propositions. 
These facts indicate that neither the complexity of the Hilbert space characterizing 
quantum theory nor the non-commutativity of quantum observables entails any revi-
sion of the rules of classical logic in the quantum domain. Referring to this, going 
back to the very mathematical foundations of both classical and quantum theories, 
we saw that the Borel algebra, which is a Boolean algebra, characterizes the formal 
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edifice on which both theories are built, and guarantees that both frameworks can 
be given a distributive lattice of logical propositions, showing as a consequence a 
remarkable similarity. The non-distributivity of quantum lattices originates from the 
simple algebraic fact that they do not employ standard set operations. However, this 
feature is a property of the lattice of subspaces of any vector space, and of the lattice 
of subgroups of any group more generally. Hence, we can safely conclude that the 
mathematical structures on which quantum theory rest do not entail a rejection of 
classical logic.

Finally, let us conclude by saying that once we understand the similarity between 
the theories, we are in a much better position to understand their differences, which 
naturally exist. For example, quantum mechanics can only be expressed as a proba-
bilistic theory and therefore always requires a structure that in classical mechanics 
is not mandatory. In quantum mechanics, all subspaces of dimension one represent 
a pure state while in classical mechanics this is not the case. If we take two intervals 
Ux and Up in position and momentum, and form the statement “the state is wholly in 
Ux and Up ”, meaning that the vector components are zero outside of those regions, in 
the classical case we always find at least one �(x, p) that satisfies the bounds, while 
in quantum mechanics, if the bounds violate the uncertainty principle, no suitable 
�(x) can be found. The point at stake in this paper—which is often not adequately 
recognized—is that the differences are in the content of the logical structure of these 
theories, i.e. on the particular relationships that exist among the logical statements, 
and not on the type of structure.
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