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Abstract
A contra-classical logic is a logic that, over the same language as that of classical 
logic, validates arguments that are not classically valid. In this paper I investigate 
whether there is a single, non-trivial logic that exhibits many features of already 
known contra-classical logics. I show that Mortensen’s three-valued connexive logic 
M3V is one such logic and, furthermore, that following the example in building 
M3V, that is, putting a suitable conditional on top of the {∼,∧,∨}-fragment of LP, 
one can get a logic exhibiting even more contra-classical features.

1  Introduction

Until very recently, most of the more well-known non-classical logics—construc-
tive logics, relevance logics, paraconsistent logics, and so on—were subclassical. 
Contra-classical logics are logics with valid arguments that are invalid in classical 
logic over the same underlying language.1 Examples of such contra-classical logics 
are Aristotelian syllogistic—as it validates Subalternation, Darapti or Camestros—
or connexive logics, which validate Aristotle’s, that is, ∼(A →∼A) and ∼(∼A → A) , 
and Boethius’ Theses, that is, (A → B) →∼(A →∼B) and (A →∼B) →∼(A → B).

No contra-classical logics are subclassical, even if they can be built upon some 
subclassical logics. Wansing (2005) obtained the connexive logic C by modifying 
the falsity condition for the conditional in Nelson’s logic N4, with the feature that 
the converses of Boethius’ Theses also hold. Then Omori (2016) used the same idea, 
changing the falsity condition for the conditional on top of LP to get another con-
nexive logic, dLP. After that, he has shown (cf. Omori Unpublished typescript) that 
a number of well-known and new paraconsistent and relevant logics can be obtained 
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also by changing appropriately the falsity condition for some connectives while 
leaving the FDE-like truth and falsity conditions for the remaining ones, in most 
cases even negation, fixed.2 More recently, Wansing and Unterhuber (2019) modi-
fied the falsity condition of Chellas’ basic conditional logic CK and they obtained 
a (weakly) connexive logic. Even more recently, Omori and Wansing (2019) have 
put forward a systematization of connexive logics based on certain controlled modi-
fications in the conditional’s truth and falsity conditions, showing that, in general, 
changing the truth condition has led only to weak connexivity (Boethius’ Theses 
hold only in rule form, if at all), whereas changing the falsity condition has led to 
hyper-connexivity (i.e. not only do Boethius’ Theses hold, but also their converses).

Let me call that general approach to non-classical logic ‘the Bochum Plan’, in 
analogy with the Australian, American and Scottish plans for relevance. But the 
analogy can only go so far, because the scope of the Bochum Plan is far broader 
than paraconsistency and relevance, as the connexive logics obtained show. In fact, 
Omori and Wansing (2018) have generalized that idea of modifying a falsity condi-
tion to get other contra-classical logics, not only connexive logics in the ballpark 
of Wansing’s C and Omori’s dLP. Roughly, the recipe they followed for crafting a 
contra-classical logic from a given logic L is as follows:

•	 Provide a (model-theoretic) semantics for L, in the FDE-like style;
•	 take at least one connective, leave its truth condition fixed and change its falsity 

condition by making it almost the falsity condition of some other connective in 
L;

•	 leave the truth and falsity conditions for the remaining connectives fixed.

What counts as “almost the falsity condition of another connective” is decidedly 
vague. However, I hope it is clear in the examples below, where the falsity condi-
tions are the usual ones for other connectives. Other, more familiar non-classical 
logics, can be obtained by making less radical changes.3

One striking and to some extent unexpected outcome obtained by modifying 
the falsity condition of the conditional á la Wansing is that the logics obtained 
are not only connexive but also contradictory (or negation-inconsistent) because 
they validate formulas of the forms X and ∼X . Thus, the modifications in the fal-
sity condition for the conditional might induce the presence of different brands of 
contra-classicality into a single logic. This is important because the different sorts 
of contra-classicality are, in general, logically independent. For example, connexive 
logics in the early contemporary era—for example, those in Angell (1962), McCall 

3  In Omori (2017) there is a particularly nice example that not any modification in the evaluation condi-
tions, not even a large number of them, produces contra-classical logics. For example, if one tweaks the 
falsity conditions of all of ∼ , ∧ , ∨ and → in FDE in certain ways, one ends up with Sette’s P1 , which is 
not contra-classical, but subclassical (paraconsistent) at the atomic level and classical for molecular for-
mulas. See Estrada-González (2020a) for a more thorough discussion of the Bochum Plan and its scope.

2  There are plenty presentations of Belnap and Dunn’s FDE and of González-Asenjo’s/Priest’s logic LP; 
the reader can choose their favorite ones but the relational ones as found since Dunn (1976) and Priest 
(1980), respectively, would be particularly helpful.
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(1966), Pizzi (1977, 1991) and Priest (1999)—were not contradictory.4 Or consider 
Abelian logics, logics that validate

and which are contradictory but not connexive.5 And even if Abelian logics also 
combined two sorts of contra-classicality—contradictoriness and relativity—, 
Meyer and Martin’s logic SI∼I in Meyer and Martin (2019) also validates both of 
Identity and Centering without validating Meyer–Slaney Relativity.

Let C1,..., Cn be the sets of defining properties of each certain n kinds of contra-
classicality. For the most part, I will assume that, for any Cj and Ck such that j ≠ k , 
Cj ⊈ Ck . This is primarily because of the following two reasons. First, there remains 
a (limit) case of contra-classicality in the form of triviality and, should we assign an 
index Ci to triviality, we would immediately have that for some Cj , Cj ⊆ Ci . Also, 
when studying the better-known kinds of contra-classical logics (viz. connexive, 
Abelian, negation-inconsistent), an underlying implicit assumption is that they must 
be non-trivial to be of philosophical interest. Thus, in keeping with this implicit 
assumption, the expectation is that there be multi-contra-classical logics that incor-
porate as many non-standard validities as possible while staying non-trivial. A logic 
L, which for simplicity will be understood as a collection of valid arguments, is then 
multi-contra-classical if it satisfies three or more of the Cn’s, none of which corre-
sponds to triviality in this paper.

The question I am interested in here is, then, how far one could go into multi-
contra-classicality, beyond connexivity and contradictoriness, by changing the con-
ditional alone.6 I start by studying a logic exhibiting such multi-contra-classicality 
already offered in the connexive literature: Mortensen’s three-valued connexive 
logic, from Mortensen (1984). It is not only connexive and contradictory, its two 
more well-known properties, but also has important overlaps with Abelian logic and 
it validates ∼(A → B) . Then, I will show that a logic exhibiting even more contra-
classical features than Mortensen’s logic can be obtained by a simple application of 
the Bochum Plan: take LP and keep all of it fixed except the falsity condition for 
the conditional; change it to the falsity condition of conjunction and voilà!, a logic 
exhibiting more than the usual number of contra-classical features arises. Because 
one is able to obtain Mortensen’s conditional by an application of the Bochum Plan, 
it belongs to a family of modified conditionals put on top of the implicationless 

(A → A) Identity

(A → A) ↔∼(A → A) Centering

((A → B) → B) → A Meyer–Slaney Relativity

4  Furthermore, they were obtained in a way that can be described as a modification of the truth condition 
for the conditional, not the falsity condition.
5  Basic references on Abelian logics include Casari (1989, 1997) and Meyer and Slaney (1989, 2002).
6  In Francez (2020), another route to multi-contra-classicality—called ‘poly-connexivity’—is presented. 
That route, however, is more intricate—it is achieved by modifying the falsity condition of more than one 
connective—and the resulting logic matches no contra-classical logic in the previous literature. It can be 
useful in modelling certain phenomena like intonational stress, though. See Francez (Unpublished type-
script) for more information.
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fragment of LP. A couple of members of this family are going to be discussed in 
some detail too.

The plan for the rest of the paper is as follows. In Sect. 2, I present Mortensen’s 
three-valued connexive logic, M3V, at tutorial speed. In Sect. 3, I compare the M3V 
conditional with other two conditionals typically added on top of the {∼,∧,∨}-frag-
ment of LP (or of a logic including such fragment). In passing, I make some original 
comments on what can one learn from those conditionals about hyper-connexivity 
and Kapsner strength, the latter a property suggested as a stronger demand logics 
should satisfy to better capture the core intuitions behind the notion of connexivity. 
Then, in Sect. 4 I present one further variation for the conditional, not yet studied in 
the literature, which yields even more contra-classical features than M3V, and dis-
cuss its philosophical significance beyond the already interesting feature of exhibit-
ing multi-contra-classicality.

Two final disclaimers are in order. Most of the logics, and especially the con-
ditionals, studied here, have already well-known applications to ordinary language 
issues, and I mention some of them here and there. Nonetheless, my study is almost 
purely formal (which does not make it less philosophical!); applications of the 
notions introduced here are left for another occasion. Second, the paper abounds 
with names of connectives, principles and logics. Keeping track of them might be 
a bit tiring, but this is unavoidable to some extent: part of the import of the present 
investigation is to make explicit connections between several topics hitherto devel-
oped independently.

2 � Mortensen’s Three‑Valued Connexive Logic

The logic M3V was introduced, although not with that name, in Mortensen (1984) 
(the name was given in McCall (2012), presumably to mean “Mortensen’s 3-val-
ued connexive logic”). The following truth tables, with V

���
= {2, 1, 0} and 

D+ = {2, 1} , characterize M3V: 

A B ∼ A A ∧ B A ∨ B A → B

2 2 0 2 2 1
2 1 0 1 2 0
2 0 0 0 2 0
1 2 1 1 2 1
1 1 1 1 1 1
1 0 1 0 1 0
0 2 2 0 2 1
0 1 2 0 1 1
0 0 2 0 0 1

A biconditional can be defined as usual, that is, as (A → B) ∧ (B → A) . It must be 
noted that Mortensen’s satisfiability conditions for the conditional are structurally 
the same as the ones used by Anderson and Belnap in Anderson and Belnap (1975) 
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to show the consistency of the logic E and, in particular, to show how to block the 
paradox of necessity, i.e. to avoid validating formulas of the form X → (Y → Z) , 
where X is a contingent truth and (Y → Z) is a logical truth.7

The three-valued nature of Mortensen’s logic, along with the number of ele-
ments in D+ and the evaluation conditions for negation motivate the representation 
of Mortensen’s 2, 1, 0 as three subsets of the set of classical values {1, 0} , namely 
{1} , {1, 0} and {0} , respectively, leaving the remaining subset ∅ aside as in the two-
valued relational semantics for LP: 

A B ∼A A ∧ B A ∨ B A → B

{1} {1} {0} {1} {1} {1, 0}

{1} {1, 0} {0} {1, 0} {1} {0}

{1} {0} {0} {0} {1} {0}

{1, 0} {1} {1, 0} {1, 0} {1} {1, 0}

{1, 0} {1, 0} {1, 0} {1, 0} {1, 0} {1, 0}

{1, 0} {0} {1, 0} {0} {1, 0} {0}

{0} {1} {1} {0} {1} {1, 0}

{0} {1, 0} {1} {0} {1, 0} {1, 0}

{0} {0} {1} {0} {0} {1, 0}

Applying the mechanical procedure described in Omori and Sano (2015) for turn-
ing truth tables employing three of the four truth values of FDE into Dunn condi-
tions (i.e., pairs of positive and negative conditions in terms of containing or not 
containing the classical values 0 or 1), we define a relation � , which takes formulas 
as its domain and the set of truth values {1, 0} as its codomain.

Then, the positive condition describes the cases in which 1 ∈ �(X) , and the nega-
tive condition describes the cases in which 0 ∈ �(X) . From the truth tables above we 
can infer that the conditions for the implication-free fragment of the language are 
standard, and that the clauses for → are as follows:

•	 1 ∈ �(A → B) if a and only if 1 ∉ A , or 0 ∉ B , or both 0 ∈ A and 1 ∈ B

•	 0 ∈ �(A → B) if and only if [ 1 ∈ �(A) or 0 ∈ �(A) ] and [ 1 ∈ �(B) or 0 ∈ �(B)]

Finally, logical validity in M3V is understood in the usual, forwards truth-preserva-
tion way:

•	 Γ ⊧
���

A if and only if, for all � , if 1 ∈ �(B) for all B ∈ Γ then 1 ∈ �(A)

We are now in a position to point out some of M3V’s main features. First, we can 
easily see that M3V validates unrestricted Detachment, i.e.

7  A logic containing M3V was developed around the same time by Peña to cope with comparatives, 
gradables and vagueness. See Peña (1995) for a summary of his results and Paoli (2006) for a more 
friendly exposition of them.
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unlike LP, which validates only restricted Detachment, i.e.

It is well-known that M3V is connexive, i.e.

and

and that it is contradictory, i.e. there is pair of M3V-theorems such that one is the 
negation of the other, for example, (A∧ ∼A) → A and ∼((A∧ ∼A) → A).

One of the most overlooked features of M3V is that, in it, the falsity condition for 
the conditional is but a sophisticated way of expressing

which implies that

for any A and B.
Now, it is easy to see, with a simple substitution in the consequent, that 

∼(A →∼B) is valid in M3V too. Because of this, I say that M3V is ultra-Abelard-
ian. Claudio Pizzi has urged the connexive logic community not to multiply the 
principles with names of ancient philosophers. However, that plays a role in keeping 
a healthy logical memory. Peter Abelard held that conditionals express natures and 
that natures are characterized positively. For example, he believed that it would not 
be part of a human’s nature to not be a stone, although being an animal would be. 
(For details see Martin 2004.) Thus, for him, no conditional of the form A →∼B , 
where A is necessarily positive—that is, its main connective is not a negation—and 
∼B is not a subformula of A, is true on pain of contradiction. Omitting the con-
straints on A and ∼B would lead to ultra-Abelardianism.

Let me say that a logic L is hyper-connexive if for some of the Boethius’ Theses, 
its converse holds as well. Although the converses were known and held by Boethius 
himself, they deserve another name precisely because of Wansing’s efforts in stress-
ing of the philosophical import of the falsity condition for the conditional, i.e. the 
circumstances under which a proposition of the form ∼(A → B) is true8:

A,A → B ⊧
���

B

If ⊧ A and ⊧ A → B then ⊧ B

⊧
���

∼(A →∼A) Aristotle’s Thesis

⊧
���

∼(∼A → A) Variant of Aristotle’s Thesis

⊧
���

(A → B) →∼(A →∼B) Boethius’ Thesis

⊧
���

(A →∼B) →∼(A → B) Variant of Boethius’ Thesis

⊭
���

(A → B) → (B → A) Non-symmetry of implication

0 ∈ �(A → B)

⊧
���

∼(A → B)

8  Boethius’ (or Wansing’s) Theses strengthened into biconditional form is labelled ‘full commutation of 
the conditional with negation’ in Egré et al. (2021).
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Given the validity of Detachment and ∼(A → B) (and Uniform Substitution), neither 
Wansing’s Thesis nor its variant are valid in M3V, on pain of conditional triviality, 
i.e. the validity of any conditional. (For a countermodel to both the thesis and its 
variant, let �(A) = �(B) = {1}.)

Almost obvious given the validity of ∼(A → B) , but even more overlooked, is 
the fact that M3V shares valid axiom schemas with many standard Abelian logics, 
namely the Centering axiom schemas:

Nonetheless, it does not validate the Meyer–Slaney relativity axiom (schema), char-
acteristic of purely implicative Abelian logics:

(For a countermodel, let �(A) = {0} and �(B) = {1}.)
The validity of ∼(A → A) demands moreover a comparison with Meyer and Mar-

tin’s SI∼I.9 It is axiomatized as follows (names of the axioms are taken, as usual, 
from the combinatory logic literature):

Axioms

B. (C → D) → ((A → C) → (A → D))

B
′ . (A → C) → ((C → D) → (A → D))

I. A → A

∼ I . ∼(A → A)

Rules

(BX) If ⊧
��∼� C → D then ⊧

��∼� (A → C) → (A → D)

(B′

X ) If ⊧
��∼� A → C then ⊧

��∼� (C → D) → (A → D)

(BXY) If ⊧
��∼� C → D then, if ⊧

��∼� A → C then ⊧
��∼� A → D

However, in a sense, M3V destroys the underlying idea behind SI∼I. Meyer and 
Martin wanted to provide a logic for Aristotle’s syllogistic, which was not reflex-
ive. In their logic SI∼I, A → A was treated as a borderline case, both a fallacy and 
a validity, hence the validity of both A → A and ∼(A → A) . But transitivity, in its 
different manifestations, like B and B′ , was not such a borderline case. Validating 
their negations, as M3V does, could be interpreted as formalizing the idea that the 

∼(A → B) → (A →∼B) Wansing’s Thesis

∼(A →∼B) → (A → B) Variant of Wansing’s Thesis

⊧
���

∼(A → A)

⊧
���

∼(A → A) ↔ (A → A)

⊭
���

((A → B) → B) → A

9  They do not call it in that way, though. However, as they call ‘S’ the logic consisting of strict Detach-
ment plus the axiom schemas B and B’ below, I simply indicated what further axiom schemas are added 
to the basis S.
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validity of transitivity is a borderline case too, something that Meyer and Martin 
would surely reject.

3 � M3V and Some Three‑Valued Conditionals

Comparing the M3V conditional with some non-contraposible conditionals will 
lead us to a better understanding of M3V. The three-valued conditional defined by 
the following clauses

1 ∈ �(A → B) if and only if 1 ∉ �(A) or 1 ∈ �(B)

0 ∈ �(A → B) if and only if 1 ∉ �(A) or 0 ∈ �(B)

is a conditional, first introduced in Olkhovikov (2016) and then introduced indepen-
dently in Cantwell (2008) and Omori (2016). Here it is its truth table, symbolized 
with ‘ A →OCO B ’, for more visibility: 

A →
OCO

B {1} {1, 0} {0}

{1} {1} {1, 0} {0}

{1, 0} {1} {1, 0} {0}

{0} {1, 0} {1, 0} {1, 0}

Mortensen’s conditional is just the contraposible conditional built upon the OCO 
conditional, i.e. (A →OCO B) ∧ (∼B →OCO∼A) , as it can be easily verified.10 For def-
initeness, let me call ‘CN’ the logic resulting from adding the OCO conditional to 
the {∼,∧,∨}-fragment of LP.11

Consider now the conditional as defined in RM3:12 

1 ∈ �(A → B) if and only if 0 ∈ �(A) or [ 1 ∈ �(B) and 0 ∉ �(B)

0 ∈ �(A → B) if and only if 1 ∈ �(A) and 0 ∈ �(B)

As in the previous case, this conditional can also be turned into a conditional with 
contra-classical features by changing its falsity condition to the Wansing falsity con-
dition. Then, the pair

1 ∈ �(A → B) if a and only if 1 ∉ A , or 0 ∉ B , or [ 0 ∈ A and 1 ∈ B]

10  Note that one can define the OCO conditional from the Mortensen conditional as follows: 
((A → B) ∨ B)∧ ∼(A → (∼(A → B) ∧ (B∧ ∼B))) . This observation can be found in the proof for Proposi-
tion 4.8 in Omori and Wansing (2020).
11  Because it is equivalent to Cantwell’s logic CN, even if his motivations and way of presenting it con-
ceptually were very different from this one.
12  The truth table for the RM3 conditional, from which these Dunn conditions can be obtained, can be 
found in Priest (2008, p. 125). For the more technical details see Anderson and Belnap (1975, p. 470).
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0 ∈ �(A → B) if and only if 0 ∉ �(A) or 0 ∈ �(B)

defines the conditional introduced by in Belikov and Leginov (2019). The resulting 
truth table for A →BL B is as follows: 

A →
BL

B {1} {1, 0} {0}

{1} {1} {0} {0}

{1, 0} {1} {1, 0} {0}

{0} {1, 0} {1, 0} {1, 0}

Again, Mortensen’s conditional is just the contraposible conditional built upon 
the BL conditional, i.e. (A →BL B) ∧ (∼B →BL∼A) , as it can be easily verified. For 
definiteness, let me call ‘dRM3’ the logic resulting from adding the BL conditional 
to the implicationless fragment of RM3.

However, note that when either the OCO or the BL conditionals are, so to 
speak, the official conditional in the logic, the validity of ultra-Abelardianism and 
the Centering axiom schemes are lost, even if connexivity and contradictoriness 
are retained and hyper-connexivity is gained. An easy inspection of the evaluation 
conditions reveals that what tells M3V apart from CN and dRM3 is that, in M3V, 
0 ∈ �(A → B) even when �(A) = �(B) = {1} , which is what warrants the validity 
of ∼(A → B) and provides the counterexamples to hyper-connexivity. On the other 
hand, what makes them similar is, first, that �(A → B) = {0} when 1 ∈ �(A) and 
�(B) = {0} ; second, that 0 ∈ �(A → B) when �(A) = {0} . This latter fact –together 
with the LP negation, of course– is what brings connexivity in such a straightfor-
ward manner.13

Kapsner has insisted that in order to meet the intuitive connexive requirements, 
it is not sufficient to validate Aristotle’s and Boethius’ Theses, but to guarantee that 
both A →∼A and ∼A → A are unsatisfiable, and that for all interpretations, either 
A → B or A →∼B is unsatisfiable. (See for example Kapsner 2012, 2019, 2020.) 
That a formula X is unsatisfiable means that there is no interpretation under which it 
is true. Classically, this is equivalent to say that X is false under all interpretations. 
These two ways of being unsatisfiable can come apart in non-classical contexts, 
though, and so there is at least two ways of cashing Kapsner’s requirements out.14

Following Omori and Wansing (2020), let me say that a logic L is truth-relative 
Kapsner-strong if and only if, for no valuation � , 

(tKSa)	� 1 ∈ �(A →∼A) and 1 ∈ �(∼A → A) , and

13  But making a conditional false when the antecedent is false is not a necessary condition to obtain con-
nexivity, though. For example, McCall’s CC1 from McCall (1966) is not like that. The price to pay for 
that, however, is using classical negation and making the conditional look very biconditional-ish.
14  This is not so uncommon. We can examine the notion of a theorem as an example. For a sentence to 
be a theorem, one can demand that it be true under every interpretation, or that it not be false under any 
interpretation. For a discussion on this difference in a connexive setting, see Estrada-González (2020b).
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(tKSb)	� 1 ∈ �(A → B) and 1 ∈ �(A →∼B).

 It was under this understanding of Kapsner-strength that CN, M3V and other logics 
were evaluated in Estrada-González and Ramírez-Cámara (2016), and the result was 
that none of the contradictory logics was Kapsner-strong. However, let me say that a 
logic L is falsity-relative Kapsner-strong if and only if, for any valuation � , 

(fKSa)	� 0 ∈ �(A →∼A) and 0 ∈ �(∼A → A) , and
(fKSb)	� 1 ∈ �(A → B) iff 0 ∈ �(A →∼B) , and 0 ∈ �(A → B) iff 1 ∈ �(A →∼B).

When Kapsner-strength is understood in the latter way, M3V, CN and dRM3 are 
Kapsner-strong.15

4 � A Multi‑contra‑classical Variant of LP

We have seen that M3V is a logic that encompasses many contra-classical fea-
tures in a single framework. It only took adding the three-valued E conditional to 
the {∼,∧,∨}-fragment of LP to get that. We saw other non-trivial contra-classical 
logics—that is, logics that are both connexive and contradictory—extending the 
{∼,∧,∨}-fragment of LP with a conditional connective; in some cases, this meant 
changing the falsity condition of other well-known conditionals.

A natural question at this point is whether there is a non-trivial extension of the 
{∼,∧,∨}-fragment of LP which validates even more kinds of contra-classicality. For 
example, whether it can validate the characteristic axiom schemas of the following 
kinds of logics:

•	 Relativity logics: ((A → B) → B) → A Meyer–Slaney Relativity
•	 Lovelight logics: Schemas of the form Λ(RT )

	   where RT is any theorem of a relativity logic and, assuming that the language 
includes not only a conditional but also negation, conjunction and disjunction, 
Λ(−) is defined as follows: 

15  In Omori and Wansing (2020), the authors observe that M3V is Kapsner-strong if satisfiability is 
understood as negative satisfiability, i.e. a formula A is negatively satisfiable iff there is an interpretation 
in which it is not false. Note that (fKSa) above requires the (negative) unsatisfiability of A →∼A and the 
(negative) unsatisfiability of ∼A → A.
  I must confess that I feel some uneasiness about defining Kapsner-strength negatively, perhaps because 
in that case there would be theorems that are nonetheless (falsity-relative) unsatisfiable, producing some 
cheap contradictions. I feel a similar dissatisfaction when a logical truth is defined not as a formula that 
is true under all interpretations but as one that it is never false: what was being defined was logical truth, 
not logical non-falsity. I am ready to separate the notions of logical truth and theorem, but not to conflate 
logical truth and logical non-falsity.
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•	 Super-contracting logics: (A → (A → B)) → B Super-absorption

Some remarks regarding these kinds of logics are in order. First, the mainstream 
approach to relativity logics has been adding the Relativity axiom schema to a basic 
purely implicative logic and then enriching the resulting logic. Nonetheless, the ear-
liest study of a relativity logic in Meredith and Prior (1968) used, together with Sub-
stitution and Detachment, the single axiom

Second, one can take Meyer and Slaney’s idea that the Relativity axiom schema is a 
generalized version of the arrow version of Double Negation Elimination and then 
obtain relativity logics from relativizing a certain collection N of basic principles 
concerning negation.16

Third, whether the Meyer–Slaney relativization will lead to contra-classicality or 
not will unsurprisingly depend on the principles about negation one starts with. Sup-
pose that one starts with A → A and A∨ ∼A , such that the latter is the only Ni . Then 
one ends up with A → A and A ∨ (A → B) , both of which are classically valid.

Finally, if a relativity logic is required to be based on BCI logic, as it is suggested 
since Meyer and Slaney (2002), then Assertion is provable and hence super-con-
tracting logics would be a special case of lovelight ones.17

Λ(p) = p

Λ(∼A) =∼Λ(A)

Λ(A©B) = (Λ(A)©Λ(B)), for © ∈ {∧,∨}

Λ(A → B) = (Λ(B) → Λ(A))

(A → B) → (((C → B) → A) → C Meredith’s Axiom

16  Consider for example, as in Schechter (2005, Chapter 20), the four arrow versions of Contraposition 
and also the arrow versions of Double Negation Introduction and Elimination as our N and then relativ-
ize them. That is, take each of

and then apply the Meyer–Slaney relativization, defined as follows:
  �(N

i
) = N

i
[A → X∕ ∼A] , for all strict subformulas A of N

i
 and a unique X not a subformula of N

i
.

  The result of which is three purely implicative theorems classically valid plus three contra-classical the-
ses:

(N1) (A →∼B) → (B →∼A) Contraposition 1

(N2) A →∼∼A Double Negation introduction

(N3) (A → B) → (∼B →∼A) Contraposition 2

(N4) ∼∼A → A Double Negation elimination

(N5) (∼A → B) → (∼B → A) Contraposition 3

(N6) (∼B →∼A) → (A → B) Contraposition 4

(RN1) (A → (B → C)) → (B → (A → C)) Permutation

(RN2) A → ((A → C) → C) Assertion

(RN3) (A → B) → ((B → C) → (A → C)) Suffixing

(RN4) ((A → B) → B) → A Meyer–Slaney Relativity

(RN5) ((A → C) → B) → ((B → C) → A Meredith’s Permutation

(RN6) ((B → C) → (A → C)) → (A → B) Suffix cancellation

17  A good starting point regarding BCI logic and, in general, contemporary uses of combinatory logic, is 
Humberstone (2011, Ch. 2).
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Let me return to the question whether there is a way to expand the {∼,∧,∨}-frag-
ment of LP to get more kinds of contra-classicality—for example, those just men-
tioned—into a single logic. The answer is affirmative. Actually, it only takes modi-
fying the falsity condition of the LP conditional as follows:

In terms of the Bochum Plan, this move amounts to substituting the falsity condition 
of the conditional with the falsity condition of conjunction. Here it is the truth table 
for more visibility: 

A →
O
B {1} {1, 0} {0}

{1} {1} {1, 0} {0}

{1, 0} {1, 0} {1, 0} {1, 0}

{0} {1, 0} {1, 0} {1, 0}

Let me call ‘mccLP’ the logic resulting from adding the O conditional to the 
{∼,∧,∨}-fragment of LP.18 Like its LP-like relatives in the previous sections, 
mccLP is contradictory—as witnesses, take (A∧ ∼A) → A and ∼((A∧ ∼A) → A) —, 
and although it is (falsity-relative) Kapsner strong, it is not properly hyper-connex-
ive, because it fails the Non-symmetry of Implication.19

Validating this many contra-classical theses surely comes with a cost. Indeed, the 
failure of Non-symmetry of Implication might be seen as one of them. Moreover, 
the following features of the O conditional might suggest that we are no longer deal-
ing with a connective recognizable as a conditional:20

•	 ⊧
�����

(A →O B) →O (A ∧ B)

•	 A,A →O B ⊭
�����

B , including the strict version, when both premises and con-
clusions are theorems. For a counterexample, consider the schema 

0 ∈ �(A →O B) iff 0 ∈ �(A) or 0 ∈ �(B)

((((A →O∼A) →O∼A)) →O (A →O∼A) →O∼A)) →O (A →O∼A)

18  The name ‘mccLP’ stands for ‘multi-contra-classical LP’. The O conditional is named after Hitoshi 
Omori; he suggested in conversation this particular modification of the negative clause. This connective 
has a twin, defined with the same truth and falsity conditions but over the {∼,∧,∨}-fragment of K3 , and 
rediscovered many times during the twentieth-century. See Egré et al. (2021) for both historical and logi-
cal discussion, and Estrada-González and Ramírez Cámara (2020) for further discussion of the appar-
ently odd properties of that connective, which resembles a lot the discussion below about the conditional-
ity of the O conditional.
19  The only countermodel that could do the job would be �(A) = {0} and �(B) = {1} , but that gives 
�(A → B) = {1, 0} , which makes �((A → B) → (B → A)) = {1, 0} as well.
20  This happens because the O conditional satisfies the conditions to face the trilemma in Egré et  al. 
(2021): if �(A → B) ≠ {0} when �(B) = {0} and 1 ∈ �(A) or neither 1 ∈ �(A) nor 0 ∈ �(A) , then such 
a conditional is symmetric, or it fails Detachment, or it fails Identity, regardless of the notion of logical 
consequence chosen to evaluate it.
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 which is a logical truth in mccLP; moreover, its antecedent is but an instance of 
Identity, which is a logical truth in the logic too, but the consequent is not.

•	 Now, given Dwyer’s Theorem,21 the invalidity of strict Detachment implies that 
some of the rules (BX), ( B′ X) and (BXY) must be invalid in mccLP as well, 
indicating that the conditional is not fully transitive. In fact, only (BXY) is inva-
lid in mccLP. For a counterexample to (BXY), consider 

 and 

 These two are logical truths in mccLP, however, A →O (A →O∼A)) is not. 
Moreover, 

Let me briefly explain why I do not think that these are insurmountable problems. 
First, equivalence between two formulas X and Y comes in many degrees: one has

•	 the validity of a biconditional, X ↔ Y  , most likely defined as (X → Y) ∧ (Y → X)

;
•	 inter-derivability, i.e. X ⊣⊢ Y;
•	 generalized equivalence, i.e. 1 ∈ �(X) iff 1 ∈ �(Y) , and 0 ∈ �(X) iff 0 ∈ �(Y) , for 

all �;
•	 strict equivalence, that is, �(X) = �(Y) , for all �.

Thus, even if one has ⊧
�����

(A → B) ↔ (A ∧ B) , ones does not have any of inter-
derivability (since A → B ⊭

�����
A ∧ B ), generalized or strict equivalence: simply 

consider the case when �(A) = {1, 0} and �(B) = {0} . Hence, contrary to the appear-
ances, and in spite of having many conjunctive-like features, the O conditional does 
not collapse into a conjunction.

One can be alarmed because of the validity of a certain form of Simplification: 
(A →O B) →O A and (A →O B) →O B . Nonetheless, one should give reasons for 
thinking of the arrow as a conjunction in the antecedent but as a conditional when 
it is the main connective. If one does not apply that double standard here and thinks 
that A →O B is uniformly a conjunction, it validates something not very conjunc-
tion-like (let me use ‘ ⊗ ’ as a generic conjunction): (A⊗ B)⊗ A and (A⊗ B)⊗ B . 
(Several forms of transitivity, to be discussed below, do not make sense for a con-
junction, either.)

So much for the danger of ending with a more conjunction-like connective. Let 
me give now some reasons to think that we are still in the presence of a conditional. 
First, the failure of Detachment, even in the strict form, might appear as a serious 

((A →O∼A) →O A) →O (A →O∼A)

A →O ((A →O∼A) →O A)

A →O B,B →O C ⊭
�����

A →O C

21  A logic L validating the axiom schemas B and B′ validates the rules (BX), ( B′ X) and (BXY) if and 
only if it validates (strict) Detachment. See Martin (1978, Appendix A) for a proof.
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drawback for some people. Nonetheless, Beall has stressed several times (see for 
example Beall 2011, 2015) that even if Detachment is invalid for the conditional 
in LP, it is default valid in the sense that A,A → B ⊧

��
B ∨ (A∧ ∼A) holds, that is, 

either Detachment holds or the antecedent is a formula evaluated as {1, 0} , which 
arguably is not the case in most situations. The second disjunct internalizes in the 
conclusion the structure of truth values into the object language: Detachment does 
not hold when the antecedent is both true and false, linguistically expressed as 
A∧ ∼A . Thus, either Detachment holds for A and A → B , or A is both true and false, 
i.e. A∧ ∼A . Detachment is default valid exactly in the same way in mccLP, that is, 
A,A →O B ⊧

�����
B ∨ (A∧ ∼A).

Second, in the very formulation of the final worry already comes the answer. 
Even if transitivity of the O conditional is lost in some forms, it is kept in others, for 
example in the validity of (BX) and (B′X). Additionally, the arrow forms of (BX), 
(B′ X) and (BXY) hold. But perhaps more importantly, Beall’s strategy to recover 
Detachment as default valid in LP can be borrowed to recover (BXY) and plain 
Transitivity, since their invalidity is due to the contradictoriness of the middle term. 
Thus,

If ⊧
�����

C → D then, if ⊧
�����

A → C then ⊧
�����

(A → D) ∨ (C∧ ∼C)

Third: as it has already been advanced since Footnote 16, mccLP is the same 
logic as the one named DF/TT in Egré et al. (2021), in the sense that they validate 
exactly the same set of valid arguments. The authors did not notice all its contra-
classical potential, though—besides connexivity, they just discussed the validity of 
(A →O B) →O A . Moreover, it is a bit mistaken identifying the O conditional with 
the “De Finetti” conditional: the latter is undetermined, has neither truth value, when 
the antecedent is not true, whereas the former is overdetermined, has both truth val-
ues, when the antecedent is not simply true. To cope with logical consequence in a 
sensible manner, the “De Finetti” conditional needs to be paired with preservation of 
non-falsity, whereas the O conditional can be paired with the usual preservation of 
truth. Although those differences do not alter the set of arguments validated, it does 
affect the presentation and proper understanding of all the features of the logic, not 
reducible to the arguments validated.

This leads me to discuss the issue of the philosophical import of mccLP more 
generally and beyond the philosophy of logic. As I have already said, that so many 
contra-classical features can coexist in a single logic is already worth mentioning. 
Nonetheless, this might not be seen as a good feature, though, for the different con-
tra-classical features might differ in degree of plausibility. For example, (hyper-)
connexivity—and, surprisingly, contradictoriness– seems better motivated than, say, 
lovelight features, or the simplification of conditionals.22

I agree with the above remark. Nonetheless, when facing weird yet new or under-
studied logics, my working assumption is that, if the logic is non-trivial and it 

A →O B,B →O C ⊧
�����

(A →O C) ∨ (B∧ ∼B)

22  I want to thank an anonymous referee for urging me to discuss this point.
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contains a bunch of other recognizable principles about the usual connectives, it is 
very unlikely to get certain principles—contra-classical theses in this case—vali-
dated just by chance. Then my working methodology in those cases is that a crea-
tive, more charitable stare towards the formalism is needed; not everything should 
be left to the founding parents nor everything should be judged empty or meaning-
less without having tried really hard to get something from the apparent dryness. Of 
course, sometimes this would be an exercise of trying to get blood from a stone—
and not everyone should be devoted to do that—, but sometimes the stone might in 
fact be a lithops. I still do not know whether mccLP is a creature more attractive 
than a lithops, but I am almost sure that it is not a stone.

The above is not flashy rhetoric. DF/TT in Egré et  al. (2021) has been exten-
sively studied as a logic suitable for suppositional reasoning, that is, as a logic where 
conditionals are read as expressing conditional degrees of belief. Thus, mccLP at 
least opens the door for studying suppositional reasoning from the point of view of 
inconsistent degrees of belief. But the possible applications are not exhausted there. 
A →O B belongs to two ancient and venerable traditions:

•	 that of non-vacuously true conditionals, conditionals that are not true (only) 
when their antecedent is not true;23

•	 that of comparative conditionals, where ‘ A → B ’ is read ‘B is comparable to A 
(according to some parameter)’.24

That the conditional is related to these two issues opens further avenues of investiga-
tion. Moreover, highlighting the multi-contra-classicality of mccLP points towards 
a common feature of conditional negation, categorial grammar and constructive fal-
sification—which deliver hyper-connexivity—comparative conditionals—the main 
application of relativity logics—, suppositional reasoning—which delivers simpli-
fication of the conditional—and subjunctive conditionals—one of the contemporary 
homes of connexivity; see Angell (1962, 2016)—. This is not to say that all these 
phenomena can be handled at once with mccLP, but merely that they might have 
important common features that deserves further exploration.

To conclude this section, let me mention one more conditional in this family. 
From certain remarks in Peña (1995) one can consider an extreme case of a com-
parative conditional that can be read “B is at least as true as A, provided they have 
different values and A is not false”: 

A →
P
B {1} {1, 0} {0}

{1} {1, 0} {1, 0} {0}

{1, 0} {1, 0} {1, 0} {1, 0}

23  See for example Egré and Cozic (2016, Section 7) and Douven (2016, Chapter 2) for general discus-
sions of the topic and further references. Note that the Mortensen, OCO and Belikov and Leginov’s con-
ditionals are restricted cases of this; they are not true (only) when the antecedent is false (only).
24  See for example Casari (1989) and Peña (1995), the useful comparison of those two views in Paoli 
(2006) and the already mentioned application in Paoli (1999).
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A →
P
B {1} {1, 0} {0}

{0} {0} {1, 0} {1, 0}

Put on top of the {∼,∧,∨}-fragment of LP, A →P B delivers almost the same as 
A →O B , with a big difference: it is ultra-Abelardian, i.e. (A →P ∼ B) becomes 
valid, as in M3V.

Note that this invites comparative readings of the previous conditionals as 
follows:

A →OCO B : “B is at least as true as A, provided A is not false”;
A →BL B : “B is at least as true as A, provided both B and A are not false”;

Note that the provisos may play the same role as suppositions in suppositional con-
ditionals, and that the different conditionals express different reactions to the unsat-
isfaction of the provisos or the suppositions. Again, this resembles the situation of 
conditionals with just true antecedents. Nonetheless, a more precise and systematic 
study of both the non-vacuously true conditionals in the context of contra-classical 
logics, and of the contra-classical logics following Peña’s ideas on comparative con-
ditionals, is left for further work.

5 � Conclusion

I started with the question whether there is a way to expand the {∼,∧,∨}-fragment 
of LP to get more kinds of contra-classicality, not only connexivity and contradicto-
riness, into a single logic. The answer is affirmative. Mortensen’s three valued con-
nexive logic M3V, which can be described as putting the three-valued E conditional 
on top of the aforementioned fragment, was an early example of that.

After discussing many properties of M3V, especially in comparison with other 
connexive and contra-classical logics, I introduced a logic exhibiting even more 
contra-classical features than M3V. It can be obtained by a simple application of the 
Bochum Plan: take LP, keep all of it fixed except the falsity condition for the con-
ditional and change it to the falsity condition of conjunction, giving raise to a logic 
dubbed ‘mccLP’.

The present study leaves open at least the following research avenues:

•	 The treatment of multi-contra-classicality in a more general setting, for example, 
on top of FDE rather than LP;

•	 an integrated study of the different topics that usually motivate certain contra-
classical logics and whose formal counterparts coexist in mccLP, namely, sup-
positional reasoning, conditional negation or comparative conditionals;

•	 a more systematic study of non-vacuously true conditionals in the context of con-
tra-classical logics.
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