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Abstract

Representationalist accounts of mental content face the threat of the homunculus
fallacy. In collapsing the distinction between the conscious state and the conscious
subject, self-representational accounts of consciousness possess the means to deal
with this objection. We analyze a particular sort of self-representational theory, built
on the work of John von Neumann on self-reproduction, using tools from mathematical
logic. We provide an explicit theory of the emergence of referential beliefs by means
of modal fixed points, grounded in intrinsic properties yielding the subjective aspects
of experience. Furthermore, we study complications introduced by allowing for the
modification of such symbolic content by environmental influences.

1 Introduction

A naive view of mental content is provided by a literal reading of Locke’s allegory
of the mind as a camera obscura (Locke 1690)—a darkened room, into which light
from the outside shines through a small aperture, producing an image on the opposing
wall. This image could be considered a representation of the outside world: a picture
of an apple on a table, say, could be used to formulate a plan to grab the apple to
eat it. In this way, a certain goal—acquiring nourishment—combined with beliefs
either explicit in the representation—there is an apple on the table—or implicit in the
cognitive structure of the agent—apples are nourishing—is exemplified in the taking
of a certain action—grabbing for the apple.

This account, though simple, will guide us in the following. But first, we need to
take heed of an obvious paradox contained within: in appealing to the image on the wall
being used to formulate a plan, we have implicitly introduced a user—but have not
taken account of how such a user could make use of this representation. As described,
the representation itself is supposed to be the vehicle by which the content of the
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external world enters the mind; how we would make use of an external representation—
such as a map, or indeed an image projected onto a wall—is then by means of an
internal one. But how does the implicit user of this internal representation make use
of it, in turn? If we suppose that the mechanism is iterated, we have succumbed to
the homunculus fallacy—explaining a capacity in terms of itself, the explanation is
circular and void of content. Williford (2006) calls this the ‘first regress’.

One way out of this dilemma is to collapse the representation and the repre-
sentation’s user into one—that is, have a conscious state be subject to its own
representational capacities. This introduces, however, the ‘second regress’ (Williford
2006): a conscious state, in self-representing, would have to represent all of its rep-
resentational properties—and thus, its property of representing itself, or representing
its property of representing itself, and so on.

To address this sort of difficulty, in (Szangolies 2015, 2018, 2020) the notion of
von Neumann Mind was introduced and developed. On a related note, in the setting
of biosemiotics, studying the emergence of meaningful information from molecular
substrates, von Neumann’s construction is also appealed to by Pattee (1969), and
developed in a large body of work collected in (Pattee and Raczaszek-Leonardi 2012).
Waters (2012) investigates the applicability of this framework to the study of human
language. Additionally, the idea that von Neumann’s construction could have a role to
play in the emergence of the mind is briefly alluded to in (Hofstadter 2007, chap. 20).

In brief, the intent is to adapt the work of von Neumann (1966) to eliminate prob-
lematic self-reference from the problem of reproduction to address the difficulties of
representation. Reproduction faces its own homunculus regress: a naive theory of how
an organism might self-reproduce has it containing a smaller version of itself—this is
the doctrine known as preformationism. Its obvious defect is that either, the offspring
will then be unable to reproduce itself—or else, must come equipped with tiny internal
copies all its own, and so on: the ‘second regress’ looms.

Von Neumann saw a solution of this dilemma, by replacing the copy with a blueprint,
and dividing the action of reproduction into a semantic and a syntactic part—the
blueprint is used to construct a daughter agent, which is then fitted with a copy of it.
In Sect. 2, the model will be introduced in greater detail, and the proposal for how to
apply it to exorcise the homunculus from mental content presented. Furthermore, as a
test case, the application to the implementation of a computation in a physical system,
discussed in (Szangolies 2020), is presented in outline.

While the model as developed so far has a certain promise in eliminating the self-
referential circularity of the homunculus, it has not, as of yet, been explicitly articulated
how, precisely, von Neumann replicators ultimately can come to refer to, or be about,
matters of fact beyond themselves. This lacuna is to be addressed here, in Sect. 3, by
means of the notion of modal fixed points—self-referential formulas that are provably
equivalent to formulas with the self-reference eliminated. Before presenting this solu-
tion, however, we must grapple with the problems introduced by Lob’s theorem (L6b
1955)—that, stated informally, no proof system can trust its proofs in general, unless
an actual proof has been found.

In Sect. 4, an analogy due to Seager (2016), connecting structural or relational
properties to axioms of a formal system, and intrinsic properties with its model, in
the sense of mathematical logic, is presented, to argue that the access to intrinsic
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properties offered by the self-referential nature of the von Neumann process yields
the capacities necessary to ground the infinite regress, which thus provide the means
by which reference is instantiated.

On this basis, we will study how the influence of environmental stimuli affects
representations in the form of adaptations to successive generations of replicators.
There, we will meet the homunculus regress in a new guise, and elucidate how the
proposal of subjective experience as awareness of intrinsic properties from (Szangolies
2020) can provide a way of bottoming out, without introducing the need for an ever-
increasing tower of formal systems of greater deductive power as in (Yudkowsky and
Herreshoff 2013).

Finally, we review the proposal and give some outline for future development in
Sect. 5.

2 Von Neumann Minds: Self-reading Symbols

We start with a brief exposition of von Neumann’s design for a self-reproducing
automaton (von Neumann 1966). Von Neumann’s original setting was that of cellu-
lar automata (CA), but the formalism is independent of this setting. It is important,
however, to note that an automaton in this sense can be thought of as, essentially,
a concretely instantiated pattern: a pattern of cells in various states, in the CA-case,
a pattern of certain physical components (think transistors, sensors, actuators, and
the like), or even a pattern of electrochemical excitations in neural tissue—the latter
being the kind of implementation implicitly lurking in the background of the present
considerations.

The key notion is that of a universal constructor: a particular automaton ¢/ that,
if given a suitable description (‘theory’) 7y of another automaton X', acts such as to
construct an instance of X’

U+Ty ~ X

By convention, only newly added elements will be indicated to the right of the ~»-
symbol (read: ‘constructs’). This should not be taken to indicate that the elements to
the left are necessarily consumed in the process—although they may be, for instance,
in a scenario where an automaton replaces itself with a superior successor-version.

Von Neumann’s conception of the universal constructor owes a debt to Turing’s
notion of the universal (computing) machine (Turing 1937), a device capable of imple-
menting arbitrary computations upon being given a finite ‘recipe’ (i. e., a program)
for doing so. Both then share this characteristic of carrying out arbitrary tasks within
a given domain (construction vs. computation) from a finite specification of this task.
However, the universal constructor differs in an important respect: its input, the device
itself, and its output are all elements of the same domain—cellular automaton patterns,
or physical objects—whereas the universal computer is typically considered to imple-
ment syntactical operations on vehicles carrying symbolic content. As we will see
later on, this poses a problem for the question of which computation a physical system
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implements, leading to worries of triviality for computational theories of the mind
(Putnam 1988; Searle 1992).

Adjoined to the constructor U is a duplicator D, capable of duplicating any descrip-
tion:

D+Ty~ Ty

Finally, we introduce a supervisor S, which governs the action of ¢/ and D, acti-
vating first one, then the other, such that any description 7y will be both translated
into an actual pattern, and copied:

U+D+S+ Ty~ X+ Ty

If we now consider the von Neumann automaton N = U/ + D + S, and supply it
with its own description 7s, we obtain

N+ Ty~ N+ Ty,

that is, the self-replication of the pattern R = N + Tj.

Via the separation of the replicative action into the steps of construction and
copying—the semantic and syntactic evaluation of the description 7y—, the
homunculus is therefore banished from the problem of reproduction.

The proposal of (Szangolies 2015, 2018) then was to translate this solution into
the mental realm—that is, to put the replicator into an agent’s brain, where it acts
as a representation of the environment, and governs its behavior appropriately. This
needs two further notions: the evolvability of von Neumann’s design, and the ability
to self-inspect, and base actions upon the results of this self-inspection.

The first of these is achieved by noting that we can modify the description of
a replicator before the reproduction step, leading to the construction of a slightly
adapted replicator:

N+ Ty~ N+ Ty,

The construction of adapted/altered versions of a replicator simply takes heed of
the fact that we sometimes, certain indications to the contrary notwithstanding, do
change our minds—that is, that the successor mind-state (i. e. replicator pattern) to
the current one differs from it in salient ways.

We might, for example, consider the addition of an arbitrary pattern £ to the descrip-
tion in the ‘parent’ generation,

I — TN = TusD+S+€,

leading to its expression in successive generations:
N+Ty ~U+D+S+E+Tyipis+e
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This then introduces a kind of heritable ‘mutation’ of the overall automaton. This
mutation, we stipulate, contains information about the environment, say as impressed
upon the agent’s brain-state via whatever sensory modalities—but note that I will
take a wide view of the term ‘environment’, including, for example, such things as
past experiences and other ‘external’ influences that might impinge on a mental state,
including for instance affective states of an organism brought on by certain emotions.
It is then this that makes the von Neumann replicator into a mental representation.

Additionally, changes to the tape 7ps —> 7~ might lead to the construction of
a changed—and perhaps, improved in some respect—successor automaton R’, with
abilities exceeding that of R.

However, what is needed further is the capacity to act on the basis of what is being
represented—the capacity, in other words, to use itself as a representation. This enters
into the picture due to the fact that the universal constructor, as von Neumann envi-
siones it, likewise has access to a universal computational device. In consequence, it is
able to prove arbitrary theorems, and, since it has access to its own formal description—
its ‘code’, so to speak—it is able to prove arbitrary theorems about itself.

In particular, it is able to prove theorems regarding which actions will enable it to
best achieve a certain goal G, given the information about its own state—and thereby,
as encapsulated by the environmentally-induced pattern £, its knowledge of the world
outside. More explicitly, G refers to a certain state of the world, in which the aim of
the agent has been achieved; its goal is then to bring about that state. The aim, then, is
to show that the replicator could prove that, given £, G = “obtaining nutrition” may
be achieved by executing a certain kind of grabbing motion, followed by a biting-into
of the grabbed item, which would license the conclusion that the replicator—or more
accurately, the agent whose mind-state is given by the replicator—believes that the
grabbed-and-bitten item is something nutritious located at such-and-such a position
in the world—say, an apple on the table.

In the general case, the carrying out of an action, we stipulate, is facilitated by the
production of a certain ‘action pattern’ A (which may or may not itself be a replicator,
or subset of one). In the scenario where we think of the patterns as physical automata,
this might be the building of a special sort of tool—perhaps, for instance, to more
efficiently acquire certain raw materials needed in construction. Thinking about the
patterns as representing some agent’s brain state, an action pattern might cause the
agent to carry out a certain action—say, by setting up the right pattern of excitations
in the motor cortex, or some equivalent. Reproduction is then a special case of action
where the action pattern A is the original replicator, R, or some modified version R’.

Making this fully explicit will, however, introduce some additional complications,
which we need to develop some further methods to address.

It is important to note that the proposal as outlined here differs in some respects
from the original one put forward in (Szangolies 2015, 2018). Many of these changes
are superficial, having little impact on the model’s core, but some are more substantial.
To better orient the reader, we will endeavour to make these differences more explicit.

The core component of the von Neumann Mind is its attempted solution of the
homunculus regress plaguing representationalist accounts of intentionality by means
of providing a self-representing structure collapsing the distinction between a repre-
sentation and its user. This can be achieved in different ways; however, the differences
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between these are ultimately of little impact on the formal structure of the model to
be studied here. Von Neumann originally proposed a structure strictly separated into
an active and a passive part—an automaton and the tape containing its description.

Later proposals have chosen different realizations; notably, the original implemen-
tation in (Szangolies 2015) was based on a proposal due to Laing (1977), which initially
does not contain an explicit description of the entire automaton, but merely that of an
analyzer, which can create descriptions of arbitrary patterns. However, this difference
does not alter the overall structure of the model, as in both cases, replication takes
place by separating the process into duplication (of the tape) and construction.

More substantially, the present work aims to give a novel account of how represen-
tations are connected to their representational contents. The von Neumann replicator
represents, first and foremost, itself; it thus becomes a question how to ‘redirect’ the
representational link to become outward-facing, to anchor representation in the outside
world. Originally, this was proposed to work via a ‘meaning-as-action’-theory closely
connected to the success semantics of Whyte (1990): the object of a representation is
that towards which the actions it causes an agent to perform are directed.

But the von Neumann Mind does not entail a commitment to such a theory of
meaning. Rather, we develop, in Sect. 4, a novel proposal. This will take heed of an
innovation introduced into the model in (Szangolies 2020): where originally, phenom-
enal qualities played no role for the von Neumann Mind, there, it was proposed that
the self-referential structure of the von Neumann construction could furnish access
to its own intrinsic (as opposed to structural) properties. These, then, can be used to
ground representations. Developing this suggestions into a full-fledged theory will be
our main focus here.

2.1 Quines and Replicators

Von Neumann’s replicator design bears a close resemblance to what is called a quine
in computing—that is, a program whose sole output consists of its own source-code.
The name ‘quine’ was coined by Hofstadter (1979) in reference to Quine’s paradox
(Quine 1976), which notes that the sentence

“yields falsehood when preceded by its quotation” yields falsehood when pre-
ceded by its quotation

cannot be assigned a consistent truth value.

The similarity lies in the establishment of self-reference by means of quotation,
mirroring that of the Godel sentence, where a quotation scheme in the form of a Gddel
numbering is used to establish self-reference.

An example for a simple quine is given in Listing 1.
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function Quinel {
$start = "@'"
$end = "'Q"

# Separation character
$sep = [char]59

$tape = @'
function Quinel {
$start = "@'"
$end = "'e

# Separation character
$sep = [char]59

$tape = ;

# Construct the first lines up to $tape = ...
$tape.Split($sep) [0] + $start | Write-Host

# Copy the tape
$tape | Write-Host

#Construct the final lines

$end + $tape.Split($sep) [1] | Write-Host
}
'Q

# Construct the first lines up to $tape = ...
$tape.Split($sep) [0] + $start | Write-Host

# Copy the tape
$tape | Write-Host

#Construct the final lines
$end + $tape.Split($sep) [1] | Write-Host
}

This is written in the scripting language PowerShell, which is present on every mod-
ern computer running the Windows operating system. The script provides a function
named ‘Quinel’; calling this function will then simply output the function’s code.

The process by which this ‘self-reproduction’ is achieved closely parallels the case
of the von Neumann replicator: first, the lines at the beginning of the function are
read off from the ‘tape’ stored in the variable $tape, up to the separator ‘;’, and the
symbol @, indicating the start of a multiline string (the tape) is inserted. Then, the
tape is copied as-is, and afterwards, the string closing symbol ’ @ is inserted, followed
by the transcription of the rest of the lines of code. The output of the program is shown
in Fig. 1.

One reason for including this example is to make vivid the point that it is not N (i.
e. the code of the program except for what is stored within $tape) that is replicated,
but the full R = N + Tjr.

In the same vein, one could imagine a more elaborate example of such a program,
that uses the quining method to access its own code; doing so, it can then proceed
to prove arbitrary theorems about itself, if it contains the requisite theorem-proving
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E¥ Windows PowerShell - (] X

function Quinel {
$start ’

# Separation
$sep = [char)

$tape = ;

# Construct the t lines up to $tape —
$tape.Split(Sse + $start | Write-Host

# Copy the tape
$tape | Write-H

#Construct the
$end + $tape.Sp $sep)[1) | Write-Host

t lines up to $tape
@] + $start | Write-Host

#Construct the al lines
$sep)[1] | Write-Hos

Fig. 1 Output produced by calling the Quinel-function

machinery. These will pertain to its own properties—and again, to properties of the
complete assembly, not merely to the data present on its tape, for instance. A simple
example of such code is given in Appendix A.

Using this method of ‘quining’ (to be well-distinguished from ‘quining’ as used
by [Dennett 1988]), this program performs two actions on its own code—or more
accurately, the code of a resulting offspring. Rather than merely printing its own code
to the screen, this version stores it in the variable $quine, thus creating a virtual copy
of itself—complete with tape—it can then examine at leisure. Then, the length of the
content of the variable—and thereby, of the total program—is output to the screen.

Furthermore, the program carries out a check, to see whether its code contains the
character “?’. If it does, it will write to the screen that a copy will be produced, and
return the content of the variable Squine; otherwise, nothing is returned, and the
program writes ‘This program will not produce a copy of itself.” The program has thus
access to its own properties, and its own behavior.

The other reason for giving this example is perhaps the more important one, which is
to highlight the difference between such self-reproducing programs and von Neumann
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replicators: while the code above relies on a suitable execution environment to produce
a copy, and is, otherwise, an inert string of symbols, the von Neumann replicator is
itself an active agent, acting on itself and its surroundings to produce a copy of itself. In
a quine, the ‘constructor’ is essentially provided by the execution environment, while
it is a proper part of a von Neumann replicator.

This also harkens back to the distinction between a universal Turing machine and
von Neumann’s universal constructor, where the former acts on a domain of symbols,
while itself being an (idealized) physical apparatus, while the latter is an element of
the same domain it acts on.

A word of caution is in order, however. We must not overinterpret the self-
proclamations of such a quine. After all, just because we can get a program to write
‘Socrates is mortal’, it does not follow that there is an agent who believes that Socrates
is mortal anywhere to be found. The production of signs is not the production of
meanings; a program with access to its own source code does not thereby acquire
knowledge of its own self.

2.2 Implementing a Computation: A Test Case

After the preceding interlude, let us illustrate the model so far by means of an example
taken from (Szangolies 2020): the question of which computation a certain device
implements. In everyday usage, this does not seem a particularly interesting question:
if I push the requisite sequence of buttons on my calculator—*2’, ‘+°, ‘3’, ‘="—and
am presented with a certain display—‘5’—in response, I will take this as sufficient
indication that the calculator has computed the sum of the numbers 2 and 3, correctly
yielding 5.

But matters are not nearly always so clear-cut. In fact, a long line of so-called
triviality arguments (Godfrey-Smith 2009) allege the conclusion that there may be no
fact of the matter regarding what a given system computes, or even whether it computes
at all. The two most famous examples of this sort of argument are due to Searle (1992),
who argued that there is sufficient complexity in the microphysical dynamics of his
office wall for it to be considered to implement the Wordstar-program, and Putnam
(1988), who gave an explicit formal mapping of the sequence of states a stone in the
sun traverses to those of an arbitrary finite state automaton.

In the same vein, in (Szangolies 2020), an argument is presented to the effect
that any given system at most fixes the structure of the computation it implements,
which, however, does not suffice to fully individuate that computation. Computation,
it is argued there, is in fact an instance of modeling, and just as the same system
can be a model for different objects, so too can the same system implement different
computations.

Consider thus a box presenting, on its front, four switches, and three lamps. The
lamps come on in a certain pattern once the switches have been set (we may consider
a ‘go’ button, or a time delay, to differentiate between initial and final states of the
system). We can write the total state of the box, at each instance of time, as a septuple
of the form (s11, s12, $21, $22, [1, [2, [3), where s;; refers to the state of one of the four
switches, taking the values 1 (‘switch up’) and |, (‘switch down’), while /; denotes the
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Table 1 State-transition table

for the box Sin Stin
(.4 4.1.0,0.0) 4. 4.4.1. 0,0 @)
(.4.4.10 0. 0) (4.4.1.1 0. @.0)
(.41 00 0 4.4.1.1. 0.0 @
(.. 11000 (4.1.1.1,@,0,0)
4. n4.1.0,0.0) (AN N Ne)
4.n4.10,0.0) (4.1 0.0 @)
4d.n11.0.0.0) 4,111, @.0,0)
Gt e G4rn110.e.0)
(RN N N ) 411,00 @)
1. 4.1.10.0.0) t™1.4.1.@,0,0)
(R N N ) (R ANeN N )
(RN N N ) ™11 10, e.0)
™l e e.0) 1, e,0,0)
(OO N N ) [N NN N )
(RN N N ) [ RNON Ne)
(OO N N ) 110,00

state of one of the three lamps, being either O (‘light on’) or @ (‘light off”). Hence,
an example of such a state would be (1, |, |, 1, ®, O, O).

We can then proceed to enumerate the state transition table, supposing that we start
off in some reference state, like (, |, {, |, ®, ®, @), and flip switches to set up an
initial state S;,, then recording the final state S;y it evolves into. Table 1 catalogues
the resulting transitions.

The issue is, now, how to decide which computation—if any—the box performs.
We are, in this task, not unlike somebody who, having no knowledge of the Arabic
numerals, discovers a calculator—to them, keys labeled ‘2°, ‘3’, or even, we may
suppose, ‘+’ and ‘=" will carry no apparent connotation. All they could discover
would be the device’s reactions to certain key presses. Does this suffice to decide what
computation is being performed?

The answer to this question, as argued in (Szangolies 2020), turns out to be ‘no’. In
particular, the three functions shown in Table 2 (alongside others) can be associated
with the box on exactly equivalent grounds.

Each of these functions is simply obtained by mapping switch positions and lamp
states to logical values—a mapping equivalent to the one taking the label ‘3’ on the
button of a calculator to the number 3. The function f4 (x1, x2) is obtained by grouping
two switches together—as already indicated in denoting them as s11, 512 and so on—,
then interpreting ‘1’ to stand for 1, ‘|’ as 0, ‘O’ to denote 1, and ‘@’ again as O,
then translating the resulting three binary values into decimal notation. Hence, using
this mapping, the state (1, |, |, 1, @, O, O) decodes to the triplet (2, 1, 3), yielding
fa(2, 1) = 3 (which, incidentally, means that f4(x1, x2) = x1 + x2).

To obtain fp(x1, x2), the bit-values are simply switched, making (4, |, |, 1,
@, O, O) into (1, 2, 4), yielding fp(1,2) = 4, and for fc(x1, x2), the binary num-
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Table 2 Functions ascribed to

the box x2 falxr, x2) fB(x1,x2) fe(x1,x2)
0 0 0 1 0
0 1 1 2 2
0 2 2 3 4
0 3 3 4 6
1 0 1 2 2
1 1 2 3 1
1 2 3 4 6
1 3 4 5 5
2 0 2 3 4
2 1 3 4 6
2 2 4 5 2
2 3 5 6 1
3 0 3 4 6
3 1 4 5 5
3 2 5 6 1
3 3 6 7 3

bers are read from right to left—thus making the leftmost bit the least significant
one—which yields (1, 2, 6), or fc(1,2) = 6.

To make sense of this situation, the abstraction/representation (A/R) account of
computation, due to Horsman et al. (2014) (see also [Horsman 2015]) is appealed to.
In brief, the account employs a special relation, called a representation relation Rr,
to mediate between the physical states of a system and the abstract quantities of a
computation. This relation, as indicated by the subscript 7', depends on a particular
theoretical model of the system in question, such that different theories T will, in
general, lead to different representations, and consequently, different computations
being implemented by the same physical system.

The general form of the A/R-account is given by the following diagram:

fr (mp) ’
mp — mp

Here, ﬁT is the inverse of the representation relation, the instantiation relation,
and is used to encode a certain formal object into the starting state of the system’s
evolution. The system itself starts in the state p, and, under physical dynamics H (p),
implemented by some Hamiltonian H, transitions into the final state p’. Under the

@ Springer



2572 J. Szangolies

representation relation R7, defined by some appropriate theory T of the system, the
initial physical state maps to a certain abstract representation mp, perhaps a phase-
space point, or a vector in some suitable Hilbert space. The evolution H(p) then
induces a corresponding evolution mp — mp, which realizes some function taking
the abstract object my as input and returning f7(mp) = my as output—this is the
computation implemented by the system under the representation relation R7.

This is best illustrated by example. The following diagram shows how the computa-
tion corresponding to f4 is carried out by the system during a certain state transition:

(1,2,0) T (1,2,3)

Gl e.0.0 (141, 1.00,0)

Under the representation relation R 4, physical states of the box are mapped to num-
ber triplets, realizing a particular computation. A change in the underlying theory—and
hence, a change in representation relation—then induces a change in the computation
being implemented:

2.1,0) i) (0,1, 4)

(1110000 2 (11.1,1.0.0.0)

The central contention of Szangolies (2020), then, is that the representation relation
R7 is to be instantiated via the von Neumann process, by having the theory T being
given to a Replicator R as part of its tape—that is, by having this theory represented
to itself.

This takes heed of the caution regarding the nature of Ry from (Horsman 2015,
p. 6):

This is the core of AR theory, and it cannot be over-emphasized: R as a represen-
tation relation is not a mathematical relation. Neither is it a logical relation. It is
a relation whose domain is physical objects and whose range is abstract/math-
ematical objects: it is a representation relation. This is an entirely new kind of
relation, one that is key to understanding how physical computing devices oper-
ate by mediating between the level of physics and the level of data manipulation.
[original emphasis]
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It is the purpose of the following sections to further clarify the way by which the
representation relation can be embodied within a von Neumann replicator, and to
point out some potential obstacles and ways to overcome them.

3 Lobian Difficulties

A basic question that a replicator R must be able to answer, based on its access to
its own code via ‘quining’ of 7y, is whether to construct a certain action pattern
A—including whether to self-replicate (A = R) or self-modify (A = R’). What
conditions need to be fulfilled to license R ~» A?

The question of when an agent is justified in constructing a (possibly improved)
successor agent was investigated by Yudkowsky and Herreshoff (2013). There, an
agent’s criterion of action is considered. It is assumed that there is some goal G, some
state of the world such that it is in R’s interest to bring this state about; hence, R is
licensed only to take those actions that will aid in bringing that state about. We thus
write:

RO~ A« Op(RY ~ A — G) (3.1)

Here, we have introduced a generation index for the replicator; in the following,
R? will denote the current generation of a descending chain of replicators, R! the
parent, R? the parent’s parent, and so on (the reason for the descending ordering will
become obvious soon).

The box Uy is the modal provability operator. If Prur(x, y) is the provability
predicate of T, which expresses that x and y are Godel numbers such that x codes for
a correct proof of the statement with Godel number y, then (7 ¢ = 3x : Prvr(x, [¢])
(where [¢] denotes the Godel number of the formula ¢)—that is, (7 ¢ expresses that
¢ is provable in T'.

Consequently, the action criterion (3.1) expresses that R constructs .A if and only
if R can prove that constructing A leads to the realization of G. Such proof is made
possible through quining: that is, through having access to its own representation,
coded in an appropriate way.

On occasion, it may be advantageous, if no 4 is found such that G can be achieved,
to not simply stay inactive, but rather, to perform actions that do not immediately lead
to G, but at least, do no harm. Hence, we will allow actions to be taken that do not
significantly impact the state of the world, leaving it substantially unaltered, denoted
by #:

RO~ A < O (ROMA—>(GVVJ)) (3.2)

Such a criterion of action, however, can be problematic. For suppose that some
replicator R wants to license the creation of a successor pattern R°. To do so, it will
have to be sure that every action taken by that successor will be directed at achieving
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G—or at least, doing no harm. That is, the following must be the case:
R~ RO« O [VA:RO«»A<—> DO(RO«»A—> (Gv[/)))] (3.3)

In words, R! constructs R only if R! can prove that R° only constructs a pattern
A if R? has proven that doing so achieves G (or does nothing). We would then expect
that from this, it follows that

R~ R — (GV ), (3.4)

thus fulfilling the criterion of action (3.2) and licensing R to construct R". However,
this is unfortunately not the case.

The reason for this is Léb’s theorem (Lob 1955) (see [LaVictoire 2015] for an
accessible introduction). Assume for the moment that R and R' reason over the
same system; then, in order to conclude that (3.4) follows from (3.3), R! would have
to believe that

vA;Dl(Rl«»A—>(va))—>R1«»A—>(Gv@). (3.5)

This is because, to license the construction of RO, R! must have proven that ROs
reasoning is sound—that is, it must trust that whenever R proves that the construction
of an action pattern achieves the goal (or does nothing), then this is, in fact, so. But if
both R and R! reason over the same system, this is equivalent to proving that all of
R!’s own proofs that constructing an action pattern A achieves G Vv # obtain.

Suppose R! could establish that all of R’s proofs yield truths. Then, if R! can
prove that R? only constructs a pattern A if it has proven that doing so obtains Gv/#J, R !
can also prove that R only constructs a pattern A if doing so in fact does obtain GV,
and that consequently, constructing R is itself an act that works toward achieving
G V )—which is just what is asserted by Eq. (3.4).

The above is of the form [l —> ¢. Lob’s theorem then asserts that whenever this
can be proven, ¢ itself can be proven:

O@¢ — ¢) — O¢ (3.6)

Adding (3.6) to the axioms of the basic modal logic K, one obtains provability logic
(known also as Gddel-Lob modal logic) GL (Boolos 1995).
Instantiating (3.6) with ¢ = L (where L denotes falsehood) yields:

oL — 1) — 0L 3.7)

In other words, we can only prove that no falsehoods are proven by a system (i. e.
that it is consistent) if it is, in fact, inconsistent (which is nothing but Gédel’s second
incompleteness theorem [Godel 1931]).
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Consequently, R! cannot in general prove (3.5), on pain of inconsistency. But then,
it cannot in general license the construction of R?. This difficulty is referred to as the
Lobian obstacle in (Yudkowsky and Herreshoff 2013).

An ugly, but straightforward, way out of trouble is to suppose that R! uses a
strictly stronger formal system than RO to aid its decision making. In particular, we
may suppose that, if R? reasons in some theory T (which we shall assume strong
enough to formalize Peano arithmetic), then R! reasonsin T! = 70U -y L, i.e. Ty
plus the fact that Tj is consistent, R2 reasons in T2 = T! U =L, and so on.

Thus, each replicator must be the descendant of progressively stronger systems,
increasing backwards without limit. Here, we meet the homunculus regress in its most
refined form, 17th century preformationism coming back to haunt us in the austere
domain of modern mathematical logic.

However, as we will see, there is cause for hope. But first, we have to discuss a
striking consequence of Lob’s theorem, namely, the existence of modal fixed points.

3.1 Modal Fixed Points

As we have seen, using the description on the tape, a replicator R can prove theorems
about itself. However, what we really want is that a replicator uses itself as a repre-
sentation of the state of the world—as we had surmised, in order to trigger the action
‘grab the apple of the table’, the replicator ought to have some beliefs about the world,
such as that there is an apple on the table to grab, that grabbing that apple will achieve
the goal of acquiring nutrition, and so on.

It is not immediately obvious how to turn a replicator’s self-referential nature into
this sort of other-directed referentiality, or aboutness. How does the replicator interpret
itself as being about some beliefs regarding the environment?

The answer, I want to suggest, lies in the notion of modal fixed points. Modal fixed
points essentially allow us to eliminate the ‘self’ from self-referential statements, and
fashion a reference to external propositions; moreover, this reference is accessible
from within the system itself.

Thus, suppose we have a formula of the form

P(—>¢(p,q17~--aQn)a (38)
such that every instance of p in @ occurs under the scope of the provability operator
O (@ is modalized in p). Then, there exists a formula @ (qy, ..., g,) such that

O <= (g1 an) <= O(p <= Sq1.....qw) . (39)

That is, the formula @ is provably equivalent to p, and doesn’t mention p at all!
This is the fixed-point theorem of GL (Boolos 1995, chap. 8).
For the Godel sentence G «— —[IG, this yields
O(G «— —0G) «— O(G «— —1), (3.10)

that is, the Godel sentence is equivalent to the consistency of the system.

@ Springer



2576 J. Szangolies

Now note that the criterion of action (3.2) is essentially a formula of this type:
RO~ A« (R~ A, q), (3.11)

where the ¢; essentially pertain to the goal G and the ‘unchanged’ world-state .
Consequently, by the fixed-point property, this is equivalent to a formula

RO~ A« B (q)), (3.12)

or, in other words: the license to take some action (i. e. constructing some action-
pattern A) is equivalent to a certain belief (or set of beliefs) about the world. In fact,
for the criterion of action, the formula

Mo (RO ~A—> (GV @)) (3.13)

yields the modal fixed point! (Boolos 1995, p. 105, ex. 9)
Lo (G Vv 0). (3.14)

With (GV @) referring to the state of the world after the action has been undertaken, such
that the goal has been achieved (or nothing changed), this means that the intentional
object of the state of mind ultimately causing some action to be performed is the state
of the world brought about by the performance of said action. An action is directed
at bringing about G, and so, too, is the state of mind producing that action. Hence,
grabbing for the apple means that the agent believes that there is an apple on the table,
which when grabbed for (and bitten into), yields the desired nutrition.

In this sense, the intentional content of a certain state of mind is given by the modal
fixed point formula corresponding to the licensing of a certain action—thus, in creating
an action-pattern causing the agent to grab for an apple, that agent’s intentional state
is given by the fixed-point formula @ (gi), where the g; pertain to the goal G and/or
the unmodified state of the world @, as given explicitly in Eq. (3.14).

4 Subjective Experience and Intrinsic Properties

Up to this point, we seem not to have made much headway. While it is intriguing that
the preceding discussion seems to have opened up the possibility of fashioning an
account of intentionality by means of modal fixed points, it comes at the expense of
introducing an infinite regress of formal systems, with each parent generation needing
to be more powerful than its successor.

This difficulty was, in slightly different terms, already noted in (Szangolies 2020).
There, it was argued that the representation relation Rr, the central object of the A/R-
theory, cannot itself be computational. The reason for this is just the above regress: if
representation” itself is a computation, then we would need a representation’ relation to

11 thank an anonymous referee for drawing my attention to this point.
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implement it; and again, a representation? relation to implement this one; and so on. In
particular, this means that an agent cannot simply instantiate a computation by running
some quining program, as whether that program is computed is itself only settled by
an appropriate implementation relation. Hence, the caution of Horsman (2015) that
the representation relation cannot be a mathematical, or indeed, logical/computational
relation, is seen to be perfectly apt.

But how, then, to ground the regress and furnish a definite implementation of the
computation performed by our box? A hint is provided by the fact that, as observed
by Copeland (1996), the trivialisation challenge to computational implementation is
essentially the objection raised by Newman (1928) against Bertrand Russell’s struc-
turalism (Russell 1927).

Russell had argued that all we can ever infer from perception is structure (in the
sense of relational structure). But then, as Newman pointed out, any collection of
elements can be considered to support any arbitrary structure, as long as there are
sufficiently many of them. All we could empirically discover, on such a conception,
would then be answers to questions of cardinality.

This, then, suggests that the answer to the problem of implementation, to how to
ground the regress, is the same as the answer to Newman’s objection.

4.1 Monism and Models: Seager’s Analogy

An answer to the problem posed by Newman is often considered to be that, in some
sense, while we can only grasp the external world in terms of structure, we are, in expe-
rience, directly aware of non-structural elements of the world; of intrinsic properties,
which are brought to bear the structure of the world.

Seager (2016) glosses this in terms of an intriguing analogy. Considering the Godel
sentence G, he notes (Seager 2016, p. 337):

[TThere must be a model of the axioms of arithmetic that make G true. And
so there is. But, equally, there must also be a model of the axioms that makes
G come out false. Else, by the completeness of first order logic, G would be
provable from the axioms. [...]

The analogy with [...] the Newman problem is that [...] science cannot spec-
ify more than the bare structure of the world, rather in the way the axioms of
arithmetic cannot, obviously, specify more than the structure which is compat-
ible with all its models. The analogue of the Newman objection would be for
someone to complain that the axioms of arithmetic do not by themselves fix the
domain of interpretation. [...] The answer to the arithmetical analogue-Newman
problem is that we have a grasp of the mathematical domain at issue that goes
beyond the structure imposed by the axioms. Similarly, to answer the Newman
objection in the case of science, there must be some way for us to grasp the
domain to which scientific theory applies which goes beyond the merely struc-
tural or relational constraints imposed by the formal structure (mathematical
structure) of scientific theories.
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What is thus needed, in other words, to solve the Newman problem, is the speci-
fication of a model of the ‘axioms’ that define our theories of the external world. By
Copeland’s argumentation, we may propose that this will also yield a sufficient answer
to the problem of implementation.

This proposal was raised also in (Szangolies 2020). With the apparatus developed
here so far, we have the tools needed to give it a more explicit formal realization.

4.2 Self-modification: The Impact of the World Without

As we have seen previously, in the general case, licensing the construction of successor
patterns runs into difficulties of self-reference. However, it also suggests a way to turn
self-reference into ‘other-reference’, to turn navel-gazing introspection into beliefs
directed towards the rest of the world, by means of modal fixed points.

Taking Seager’s analogy seriously, these difficulties stem from Newman’s problem—
mere relation does not suffice to settle anything safe questions of cardinality. We must
thus go beyond structure—specify a concrete model realizing that structure.

When in contact with the exterior world, a replicator may need to construct succes-
sors having access to data it cannot accurately predict—which says nothing but that
external influences may lead to a change of mind, so to speak. New data will yield
new beliefs about the world, and successive mind-states, replicators, need to be able
to reason soundly given new data; hence, any given replicator must be sure that any
successor it creates will, given true data, come only to true conclusions about which
actions will precipitate the achievement of a certain goal—without, however, having
access to this data.

This is a more complex situation than we faced previously: R! needs not merely to
trust in the reasoning of RY, but needs to trust R” even if it has been modified by the
addition of arbitrary (true) statements about the environment. Following Yudkowsky
and Herreshoff (2013), we can model this by adjoining an explicit model 7 of ‘the
territory’, encoding the environment. To a replicator RV, this will be presented in terms
of its tape 7r. This will necessitate that R! be able to reason about things ‘true in the
territory’, which requires it to be able to reason within a system strong enough to be
able to formalize statements of the form ‘t = [¢]’, i. e. ‘the (quoted) formula ¢ is
true within the (quoted) model t’. Zermelo-Fraenkel set theory (ZF) has the requisite
expressive power (Yudkowsky and Herreshoff 2013).

The model 7, in general, consists of sets denoting a certain domain and the rela-
tions over this domain—for example, for Peano arithmetic, it would contain a set of
elements—namely, the natural numbers—, a set of ordered pairs modeling the suc-
cessor relation (e. g. (3,4)), a set of ordered triples for addition—(2, 3, 5), and so
on—and one for multiplication—(2, 4, 8), etc., thus yielding the standard model of
Peano arithmetic.

In our case, one salient part of the ‘territory’ is given by the box and the computation
it implements. We can think of this as being given by some pattern £ on the tape 7y,
induced by environmental influences (say, the inspection of the box by the agent). This
has the following ingredients:

1. Aset {4, |, O, @) to describe the physical state of the system

@ Springer



Self-reference, Self-representation, and the Logic... 2579

2. A set {0, 1} to describe the abstract representation of the system

3. A relation consisting of the ordered 7-tuples {({, |, !, . ®. ®, ®),{, |, !, 1,
0.0.0),....1 1 1. 1,0, O, @]} describing the physical behavior of the sys-
tem

A relation consisting of the triples {(0, 0, 0), (0, 1, 1), (1,0, 1), (1, 1, 0)}

A relation consisting of the triples {(0, 0, 0), (0, 1, 0), (1,0, 0), (1, 1, 1)}

A relation consisting of the tuples {(1, 1), ({, 0), (O, 1), (@, 0)}

A relation consisting of the tuples {(1, 1), (0, ), (1, O), (0, @)}

N s

1 and 2 simply enumerate the objects of our universe—both physical and abstract.
3 yields all allowed physical configurations of the system, thus characterizing the
physical state space. 4 and 5 then essentially characterize the elements 1 and 0: they
represent, respectively, addition and multiplication over the finite field of two elements,
G F(2). With these relations, one readily checks that {1, 0} fulfills the field axioms
F—multiplication and addition are both associative and commutative, there exists an
identity element (1 resp. 0) for either, every element has an inverse for both operations
(except for 0 in the multiplicative case), and multiplication distributes over addition.

Finally, the last two relations, 6 and 7, tell us the connection between the physical
states and the abstract symbols. Together 1 through 7 form a model of the theory T
used to furnish the representation relation R7—a (presumed to be) complete (to some
degree of accuracy) physical description of a system, together with the description
of an abstract space within which its states are to be represented, and the mapping
between these.

At first glance, it might seem odd to consider the abstract representations of phys-
ical states an element of a physical theory. In general, theories, as they are usually
specified, include only some reference to the abstract arena within which systems are
represented (the theory’s state space)—in quantum mechanics, for instance, each sys-
tem is associated with a separable complex Hilbert space equipped with an appropriate
inner product, and states of the system are represented by rays (subspaces of complex
dimension 1) within that Hilbert space.

This is less specific than the above: no prescription is given as to which state to
associate with what ray. However, in applying the theory to any given system, such a
choice has to be made: for instance, an electron’s ‘spin up’-state may be associated
with the state [1) = (0, 1)7. The label ‘spin up’ itself then may be thought to be
experimentally individuated—say, as that state the electron is in if it is deflected
upwards in a Stern-Gerlach type experiment. It is then this theory as specified to a
concrete system that we mean when speaking of ‘theory’ generally.

The example of the field axioms shows that in choosing this particular model, we
might have had alternatives—for instance, by the use of a different field, a different
realization of the field axioms, but more importantly, just as well by using a different
choice for the mapping between physical and abstract objects. Thus, substituting 6
and 7 by

6'. A relation consisting of the tuples {(1, 0), ({, 1), (O, 0), (@, 1)}
7'. A relation consisting of the tuples {(0, 1), (1, }), (0, ©), (1, @)},

an equivalent concrete realization of the same abstract structure would be achieved.
However, using the representation relation generated by this particular model, the
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box is seen to compute fp(x1, x2) instead of f4(x, x2). Consequently, the difference
between the implemented computations corresponds to the difference between the
models of the same formal description of the system—different models of the same
axioms, in this sense.

Using its tape, a replicator R! can then reason about what R® would conclude,
given some state of the environment. To do so, R! must be capable of proving that
every formula proven by a successor replicator R” about the environment must, in
fact, be true of it; but this is just what is achieved by augmenting R! with an explicit
model 7 of the environment, and assuming that its reasoning capabilities are strong
enough to represent the notion of semantic entailment (hence, the need to appeal to
ZF). Essentially, augmenting R! by  has the same effect as having it reason within a
formal system strictly stronger than that of RC. Including it serves as a reminder that
the mind, as given by the replicator R, is not a merely formal object, but possessed
of structure-transcending as well as structural properties.

This allows us to overcome the Libian obstacle, enabling R! to assert

V¢ Ui [( = [Log]) — (t = ToD]. (4.1)

This is again of the general form ‘LJ® — @, that is, it licenses R! to conclude
that whatever is proven by R, in fact obtains (in the quoted model 7).

With ¢ = R ~ A — (G Vv ¥), this provides the replacement of (3.5). Con-
sequently, if R? can establish this, it can establish that R only constructs an action
pattern if doing so achieves G V 4, and that hence, constructing R? is itself an action
achieving GV @. In result, the criterion of action (3.2) can be fulfilled, and construction
of R? will be licensed.

Thus, R! only constructs R, if it can prove that within the quoted model t,
whenever R? proves something, then it is in fact true within 7. Note the implicit
double quoting: [Uo¢] denotes the R1-Goédel number of 3x : Prug(x, |¢]), where
|# ] denotes the R°-Godel number of ¢p—that is, R! keeps an internal representation
of R"’s representation of arbitrary formulae (Yudkowsky and Herreshoff 2013). In
other words, R!' will have beliefs about the beliefs of RO—in the case where both
are equivalent, then, beliefs about its own beliefs. In some sense, a replicator must
represent its own beliefs to itself.

In the end, this is nothing but an explicit version of (3.5), viewed from the per-
spective of a stronger formal system than that used by R?. If R? reasons within 7,
we can take this system to be 7' = 70 U =0y L—T? ‘enhanced’ by the proposition
that 70 is consistent. This is equivalent to specifying a model 7 of T°; within that
model, R! can then conclude that all of R®’s proofs yield truths, thus overcoming the
Lobian difficulty. Hence, importantly, having access to a model of a given system is
equivalent to moving to a stronger system; using Seager’s analogy, intrinsic properties
then outstrip what can be formally captured by means of axiomatic reasoning.

This illustrates the importance of the self-referential nature of von Neumann’s con-
struction. Given a model of itself (or a successor pattern) together with the environment,
a replicator R is capable of reasoning about its own actions within the environment.
Moreover, differences in the model—as in, different models of the same axiomatic
structure being supplied to the replicator—will result in different actions: the criterion
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of action (3.2) will license different actions, given differences in the model. Consider,
for instance, the emission of an action pattern causing the agent to flip a switch of
the box: depending on whether the switch-up state 1 is mapped to 0 or 1, reaching a
certain goal—say, to represent the value 1—will be facilitated by either flipping, or
not flipping.

For areplicator R = N +7), the notation ‘t |=’in (4.1) must then be understood as
a formalization having access to its own intrinsic properties—ultimately, via quining,
or rather, using the tape 7/ to talk about the entire assembly R, including an encoded
representation of the external world. This will not, of course, enable it to prove itself
consistent. In appealing to an infinite regress of progressively stronger formal systems,
we are, essentially, confusing the map for the territory: it is not important what R can
prove about itself, but rather, what is true about R.

Consider again the modal fixed point corresponding to the criterion of action (3.2).
We know that R! can prove the following:

R~ A« B(q) 4.2)

That is, licensing the action of constructing .A is equivalent to a certain belief @ (gi)
about the world—setting up the excitation pattern in the motor cortex that leads to
grabbing an apple and biting into it is equivalent to believing that there is an apple at
such-and-such a position, and that apples yield nutrition. The truth of the fixed-point
formula itself is then independent of the formal system expressing R!’s reasoning
capabilities; indeed, the above discussion implies that, for any .4 equivalent to some
RY of equal capacities to R!, it must be equivalent to an assertion of that system’s
consistency.

However, in every given model, it will either be true, or false. In particular, it will
either be true, or false, of R!, itself—7R ! either has, or does not have this particular
belief. But then, the having of that particular belief, while a fact that cannot be derived
from any formal specification of R!, leapfrogs the need to appeal to a stronger system.
We do not have to establish the formula @ (R! ~ RO, gi), 1. e.

0, (Rl ~ R — GV @)) , 4.3)

and thus, need not appeal to (4.1), but only need @ (gi) instead.

This should not be misunderstood to imply that R can, in some mysterious way,
establish the rruth of @ (gi), despite it not being provable within the system of reasoning
used by R. The point is, rather, that R does not, in general, need to establish its truth.
The proposition @ (gi) can be considered to be of the form “R believes that g;’, which
is true if R believes that ¢;, without there being any need for R to believe that (read:
have proven that) “R believes that ¢;’. Rather, ® (gi) stands to R’s beliefs as the
proposition ‘the car is red’ to the car actually being red: there is no need for the car to
prove that it is red in order for it to have that color.

Hence, this is not an argument that the mind has powers exceeding that of any formal
system, as argued most famously by Lucas (1961) and Penrose (1989), but also Godel
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(1995) himself; on the contrary, its reasoning capacities are explicitly bounded by
what R can prove about itself.

One might claim that an agent always knows that it believes what it believes. But
this is not generally the case: many of our actions imply beliefs that may never have
consciously occurred to us. Indeed, it is in general a nontrivial matter to work out what
beliefs a certain stance commits us to. There is no need to know that we believe that
apples are nutritious to eat them.

However, knowledge of (at least some of) our beliefs does come about through this
mechanism. The reason for this is the double-quoting of 4.1: in general, a replicator
will have beliefs about its successor’s beliefs in order to license its construction.

While it is thus impossible to establish a license for the construction of a successor
pattern by formal means, introspecting on R !’s beliefs suffices to avert the detour into
having to prove a potentially infinite chain of successor patterns sound.

4.3 Introspecting Intrinsic Properties

The preceding discussion seems to make introspection a deeply mysterious capabil-
ity. Indeed, even to R itself, its introspective knowledge will remain fundamentally
unanalysable: if pressed, it could not give any sort of reason for its judgment that its
successor’s reasoning will be sound—as any such reasoning would yield a consistency
proof, and with the successor’s reasoning capacities equalling its own, hence imply
inconsistency.

But we should not be surprised by this essential boundary to analysis: after all, we
are trying to formulate a theory of something that, if Russell’s structural approach to
science is apt, is fundamentally beyond any theory’s grasp—the intrinsic, structure-
transcending (Strawson 2019) properties that ground the structure of the world as
relayed to us in our theories. We are thus faced with something that cannot be formal-
ized within any set of axioms, nor be the result of any computation whatsoever—and
that precisely because of this, has the right properties to fill in the concrete character
missing from mere structural specification, and, as discussed above, provide an answer
to Newman’s objection, the homunculus problem, and the question of computational
implementation—which are thus revealed to be nothing but facets of the same issue.

The intrinsic properties, as elaborated, then must be something inaccessible to
formal reasoning—something deeply mysterious, yet present to introspective exam-
ination. It is then a natural leap to identify them with the elements of subjective
experience, with qualia—as indeed proposed in (Szangolies 2020). After all, what-
ever structure the world has is, in experience, individuated by subjective qualities of
the objects of our experience.

Take, for instance, the structure of the visual field, as borne by the visual qualities
of the objects within it: consider a uniformly blue wall, illuminated by a single light
source, say a bulb some distance d removed from the wall’s center. There will then be
arelation ‘brighter than’ that holds between any two points a and b on the wall when
a is closer to the illuminated center than b. This will partition the wall into concentric
circles of equal brightness. It is then the subjective impression of brightness that
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presents this structure to us, and singles it out among all the other relations fulfilled
by points of the wall.

The proposal presented herein is then, essentially, that this singling-out of the
relational structure fulfilled by points on the wall proceeds by means of intrinsic
properties being ‘brought to attention’ via the von Neumann process—in experience,
we are directly presented with a concrete instantiation of the ‘brightness’ relation, just
as an R -replicator is presented with a concrete instantiation of the structural relations
between itself and its environment, as embodied in its tape.

While we thus cannot say much about the precise mechanism by which the intrinsic
properties become present in experience, its means seems quite clear: as discussed
above, the criterion of action (3.2) is a self-referential formula giving rise to a modal
fixed point, and hence, to beliefs about the world. Moreover, though, its truth value—
and thereby, the having of the attendant beliefs, which in general include meta-beliefs
about beliefs—is, like that of the Godel sentence, dependent on the model of the formal
system—and thus, with Seager’s analogy, on the intrinsic properties. Hence, via self-
reference, intrinsic properties enter as determining conditions into our beliefs about
the world. Modal fixed points are structural objects dependent on intrinsic properties,
thus bringing the latter within the purview of the former.

In particular, the action of creating a new replicator—a new state of mind—is either
licensed or prohibited by the intrinsic properties; in this way, a replicator looking to
create a successor will do so depending on the underlying model, thus eliminating the
need of a consistency proof in judging whether to carry out the construction. In this
sense, the action of creating a successor pattern must then be, as a modal fixed point,
equal to an assertion of the consistency of the system—similar to the Godel sentence.
Indeed, both von Neumann’s replicators and Godel’s construction share an obvious
structural similarity.

This also takes care of a looming worry: what we are conscious of does not seem
to pertain, in any form, to the construction of mental patterns, or even states of mind;
we are, typically, conscious of the world, or take ourselves to be. But what we are
conscious of is determined by the fixed point formula, which is explicitly independent
of the type of action taken by the replicator.

This idea has several intriguing consequences. First of all, it straighforwardly gives
a reason for the hardness of the hard problem—indeed, it shows it to be not merely
hard, but impossible to solve: intrinsic properties cannot be reduced to structural
notions, just as the truth of the Godel sentence does not follow from a given set
of axioms. We are cognitively closed (Kriegel 2003) with respect to these intrinsic
properties—which does not signal a failure of our own particular reasoning capacities,
but a consequence of the preconditions of reasoning itself: reasoning is, ultimately,
instantiating the structure of one domain within another—making a computer model
of something—or indeed, a mental, or physical model. That which ‘does the work’ of
instantiating structure—the structure-transcending—then necessarily lies beyond this
capacity.

Furthermore, it gives subjective experience, qualia, a respectable job to do: infer-
ences of the form of (3.2) will come out true or false, based on the intrinsic
properties—based on the model—and hence, license different actions. Qualia are
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not epiphenomena; however, their efficaciousness necessarily lies beyond theoretical
modeling.

5 Conclusion

The model introduced in (Szangolies 2015, 2018, 2020) and refined herein consists
of a range of interlocking components from different areas of study, whose precise
relationships can be difficult to disentangle. Thus, as an aid to the better appreciation
of the overall structure of the argument so far, I will highlight and discuss each of
these in turn.

(1) The von Neumann Mind. The self-representational and self-referential qualities
of von Neumann’s construction enable it to collapse the homunculus regress, by
eliminating the distinction between a (mental) representation and its user.

There is a widespread intuition that self-reference, or self-representation, in
some form or another, might be the linchpin in explaining the emergence of mind
from matter (Kriegel and Williford 2006). One approach appeals to the particular
self-representational properties of von Neumann’s formalism for self-reproducing
automata to imbue a material base with the sort of representational characteristics
present in conscious experience (Szangolies 2015; Pattee and Raczaszek-Leonardi
2012).

The chief focus of the present considerations is to throw the means by which self-
reference and self-representation provide the prerequisites to mental phenomena into
sharper relief. The key element of this is what Pattee (2008) terms ‘matter-symbol
complementarity’, or in other words, the capacity of the tape of a von Neumann
replicator to serve both syntactic and semantic roles—to be copied as a string of inert
signs, and to be interpreted as a blueprint of some pattern to be constructed.

(2) Quining. Via the tape, a von Neumann replicator obtains access to its own
properties—they are represented to it, and thus, can guide action.

With the tape fulfilling this dual role, replicators, using the quining-trick discussed in
Sect. 1, gain access to their own properties—essentially, they embody self-referential
propositions of the form

p <— @(p,qi),

where p in @ (p, g;) only occurs modalized, that is, under the scope of the provability
operator [1. The most familiar such proposition is the Godel sentence

G «— -G,
asserting its own unprovability.
In particular, for any replicator R, whether it licenses the construction of a successor

pattern is given by a proposition of the above form: to take any action, it must first
prove that doing so will bring about some goal G; thus, in particular, to construct a

@ Springer



Self-reference, Self-representation, and the Logic... 2585

successor pattern, R must prove that whatever action this successor takes will likewise
further achievement of G (or at least, do no harm).

This, however, spells trouble, due to Lob’s theorem: in general, since R can only
trust those proofs it has actually found, and not issue a blanket approval of the form
‘whenever I prove something, it is true’, it cannot conclude that, for its successor,
once it has proven some action to achieve G, this action will, in fact, achieve G.
Hence, it seems that R can never generally approve the construction of a successor,
as achievement of G cannot be certified.

(3) Modal fixed points. Self-reference can be turned into outward-directed reference
by exploiting the fact that self-referential formulas can be rewritten with the self-
reference eliminated.

However, a possible solution is posed by the fixed-point theorem of Godel-Lob
modal logic QL, which demonstrates the existence of modal fixed points, that is,
propositions @ (g;) such that

O(p <— @(p, ) < O(p «— ®(q1)).

In other words, propositions equivalent to p such that they do not mention p at all.
For the Godel sentence G, this is simply the proposition —[J_L, i. e. the proposition
asserting the consistency of the system. In this sense, G can be considered to represent
the consistency of the system via ‘quining’, i. e. referring to its own representation.

If the proposition p now pertains to the performance of some action (such as the
construction of a successor), we may consider @ (gi) to be a representation of the
replicator’s beliefs about the world that license this action (or fail to, as the case may
be). In the concrete case of the criterion of action, Eq. (3.1), the modal fixed point is
nothing but [y (G V @), the state of the world the action is directed at bringing about.
That is, the action of grabbing for the apple on the table is licensed by the belief that
there is such an apple, and that apples provide nutrition, and that hence, doing so will
achieve the goal of acquiring nutrition.

(4) The intrinsic/structural dichotomy. Propositions undecidable by the axioms of a
formal system are either true or false in a given model; with the analogy between
axioms/model and structure/intrinsic properties, a system’s intrinsic properties can
license action even if the system cannot formally prove this.

For any model of a system, such a proposition will either be true, or false; and
in general, the system will not be able to decide which. Using an analogy proposed
by Seager (2016), we may think of this as a proposition made true (or false) by the
intrinsic (or structure-transcending Strawson 2019) properties of a system not captured
by its structural description. But as we surmised, it is equivalent to the action-licensing
proposition p; hence, whether an action is licensed depends on the replicator’s intrinsic
properties. To license replication, R thus never has to perform the impossible task of
proving that all its (or its successors’) proofs yield truths; the truth of @ (gi), which is
independent of p, suffices.

(5) The Hard Problem’s hardness. Intrinsic properties are beyond formal describabil-
ity; hence, just as the axioms of PA are consistent with either the truth or falsity of
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the Godel sentence, they cannot be captured by any structural account (i. e., any
theory).

In the above sense, the intrinsic properties can break the deadlock of regress—at
the cost of evading formal describability. This, it was proposed in (Szangolies 2020),
is the origin of the ‘Hard Problem’ (Chalmers 1995) of consciousness: any formal
description is consistent with either value for the structure-transcending properties, as
any physical description is consistent with different sorts of phenomenal experience
(as in inverted spectra [Shoemaker 1982]), or even, their utter absence (as in zombies
[Chalmers 1996]).

(6) Overcoming Newman'’s problem. Intrinsic properties provide the relata that fulfill
the relations captured by formal descriptions.

Intrinsic properties, as proposed in (Szangolies 2020), are ideally suited to provide
the theory T of a physical system that furnishes its computational interpretation by
means of the representation relation Ry of Horsman (2015). More generally, they
provide the ‘clay’ used by an agent to furnish its models of the world—that is, they
allow to answer the objection of Newman (1928), levied against the structuralism of
Russell (1927). Such models are present to us in subjective experience. The key point
of the present proposal as regards subjective experience then is that qualia are intrinsic
properties shackled to perform representational duties by the von Neumann process.

The combination of (1)—(6) then constitutes an approach to the philosophy of mind
that combines elements from familiar proposals, extending them with some novel ideas
regarding the origin of intentionality and the role of phenomenal/intrinsic properties.

As such, this approach is a kind of nonreductive physicalism that shares certain
ground with mysterianism (McGinn 1989), Russellian or intrinsic-property monism
(Alter and Nagasawa 2015), and higher-order theories (HOT) (Rosenthal 2005). Like
mysterianism, according to (5), it proposes that the Hard Problem remains unsolvable:
intrinsic properties are ineffable, because the effable is limited to the structural. With
Russellian monism, (4) entails that it shares a commitment to properties that go beyond
the structural—without, however, entailing a commitment to an inherently experiential
or mental character for the intrinsic properties, hence, not leading to some kind of
panpsychism or panexperientialism (Strawson 2019; Seager 2006). For this, it appeals
to a mechanism to ‘bring to light’ the intrinsic properties—the von Neumann process,
(1), considered as a means to imbue symbols with meaning (Szangolies 2015; Pattee
1969). This is then similar to the commitment of higher-order theories, in which a
thought is conscious if it is the object of a higher-order thought—however, the self-
referential nature of the von Neumann construction allows to identify base- and higher-
order thought. In this, it shares characteristics with self-representational theories of
consciousness (Kriegel 2003) and the ‘quotational’ higher-order theory of Picciuto
(2013).

The most significant novel aspect of this proposal is, then, that von Neumann Minds,
in a way similar to the notion of quining (2), can gain access to their own properties.
This allows for two related advancements: first, by appealing to modal fixed points
(3), the intentional content of the state of mind leading to the performance of a certain
action can be brought to the fore. These modal fixed points are independent of a
given replicator’s formal reasoning capabilities; hence, it is the intrinsic properties
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that fix their truth-value, and thus, ultimately license actions. This is then what fixes
the reference of representations, and thus, overcomes structural underdetermination,
leading to an answer to Newman'’s objection (6).

Should the above considerations bear fruit, systems implementing processes for-
mally equivalent to von Neumann’s replicator should exist in the brain. One line of
further research is then to investigate in what form neural networks—either natural or
artificial—may support processes of replication. Indeed, von Neumann (1966) took
the neuron model of McCulloch and Pitts (1943) as a means to implement the logical
operations performed by his automaton. However, the implementation of something
like the present proposal would take place entirely within a neural network. Along
such lines, various proposals for self-referential, ‘quining’ neural networks have been
formulated (Schmidhuber 1993a,b; Chang and Lipson 2018); whether they can be
appealed to as a realization of the von Neumann process remains to be discussed.

In a more directly biological setting, one might investigate the role of reentry
(Edelman and Gally 2013): the bi-directional signaling along reciprocal connections
between distinct brain areas. Mumford (1991, 1992) has introduced the notion of
‘active blackboards’: cortical areas carry out computations with the aid of thalamic
nuclei with which they are reciprocally connected. The hope is then that in this bi-
partite structure, one might find reflected the relationship between a von Neumann
automaton and its tape.

A final question that we can only raise here is that of how distinct concepts may
come to be bound together within one unified conscious field of experience. A single
replicator, one might propose, corresponds to some appropriate ‘simple’ concept, with
an agent’s state of mind being made up of a simultaneous population of such entities.
What binds them together into a unified whole?

One should take care to distinguish this issue from the combination problem of
panpsychism (Seager 1995): on the present proposal, there is no need to unify distinct
elements of experience, associated, for instance, with individual intrinsic properties,
into one larger consciousness, as conscious experience tout court only emerges upon
the unification of intrinsic properties within a von Neumann replicator. However, it
seems implausible (although logically possible) to have the state of mind of an agent
given by a single replicator; economy, if nothing else, seems to suggest separate
replicators for separate concepts, or thoughts, or whatever else the basic elements of
experience might be considered to be.

One proposal might be to look towards structures that achieve self-reference only
by referring to one another, such as the following pair of sentences:

(A) Sentence B is true
(B) Sentence A is false

Indeed, it is possible to construct simultaneous fixed points for agents accessing
each other’s source code, for instance, to decide whether to collaborate or defect in a
multi-agent prisoner’s dilemma (LaVictoire et al. 2014; Barasz et al. 2014). However,
we will leave the investigation of such possibilities for future work.
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Appendix A: A Self-Inspecting Quine

function Quine2 {
$start = "@'"
Send = "'@"
Squine = ""

$sep = [char]59
$rep = [char]63
Stape = @'
function Quine2 {
$start = "@'"
Send = "'@r
$quine = ""

$sep = [char]59
$rep = [char]63
Stape = ;

place

# Construct the first lines up to $tape = .
$quine += $tape.Split($sep)[0] + $start + "'n"

# Copy the tape
$quine += $tape

# Construct the final lines
Squine += "'n" + $end + $tape.Split($sep) [l

Write-Host "The length of this program is: $($quine.Length)"

if ($quine.Contains($rep)) {

Write-Host "This program will produce a copy of itself."
Return $quine

} else {

Write-Host "This program will not produce a copy of itself."
Return $null

}

}

‘e

place
# 2

# Construct the first lines up to $tape = ...
$quine += $tape.Split($sep) [0] + $start + "'n"

# Copy the tape
Squine += S$tape

# Construct the final lines
Squine += "'n" + $end + $tape.Split($sep)[1]

Write-Host "The length of this program is: $($quine.Length)"

if ($quine.Contains($rep)) {

Write-Host "This program will produce a copy of itself."
Return $quine

} else {

Write-Host "This program will not produce a copy of itself."
Return $null

}

}

# If there is a question mark in the code, reproduction will take

# If there is a question mark in the code, reproduction will take

Listing 2 A quine which inspects its own code, and modifies its actions based on that.
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