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Abstract
Supersymmetry in quantum physics is a mathematically simple phenomenon that 
raises deep foundational questions. To motivate these questions, I present a toy 
model, the supersymmetric harmonic oscillator, and its superspace representation, 
which adds extra anticommuting dimensions to spacetime. I then explain and com-
ment on three foundational questions about this superspace formalism: whether 
superspace is a substance, whether it should count as spatiotemporal, and whether it 
is a necessary postulate if one wants to use the theory to unify bosons and fermions.

1 Introduction

Supersymmetry—the hypothesis that the laws of physics exhibit a symmetry that 
transforms bosons into fermions and vice versa—is a long-standing staple of 
many popular (but unconfirmed) theories in particle physics. This includes several 
attempts to extend the Standard Model as well as many research programs in quan-
tum gravity, such as the failed supergravity program and the still-ascendant string 
theory program. The supersymmetry hypothesis remains popular because of its 
potential to solve the hierarchy problem, considered one of the most challenging 
puzzles in particle physics (Martin 2016, 2–5) and because it permits string theory 
to incorporate fermions.

Its popularity aside, supersymmetry (SUSY for short) is also a foundationally 
interesting hypothesis on face. The fundamental equivalence it posits between bos-
ons and fermions is prima facie puzzling, given the very different physical behavior 
of these two types of particle. And supersymmetry is most naturally represented in 
a formalism (called superspace) that modifies ordinary spacetime by adding Grass-
mann-valued anticommuting coordinates. It isn’t obvious how literally we should 
interpret these extra “spatial” dimensions. So supersymmetry presents us with at 
least two highly novel interpretive puzzles.
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Only two philosophers of science have taken up these questions thus far. In one of 
the earliest philosophical essays directed at the interpretation of string theory, Wein-
gard (1988) commented briefly on both questions. More recently Menon (forthcom-
ing) has begun to work on the question of how literally to understand the superspace 
formalism. This is not a large literature, and despite its depth and sophistication, 
Menon’s work should hardly be the last word on the topic. There is considerable 
room for further debate.

Moreover, supersymmetry is not an outrageously challenging topic. Its essential 
features can be understood through simple models derived from one of the most 
basic quantum mechanical systems, the simple harmonic oscillator. Using this 
model to bring the reader quickly up to speed (which will be the task of Sect. 2), I 
hope to provoke more philosophers to turn their attention to SUSY and the question 
of the interpretation of superspace.

With the supersymmetric oscillator model on the table, I’ll raise (in Sect. 3) three 
closely-connected interpretive questions about SUSY. First is an ontological ques-
tion: what is the most fundamental geometric structure posited by SUSY theories? 
In particular, if a SUSY theory is one day confirmed by experiment, should we 
adopt substantivalism about superspace, in keeping with the common opinion that 
spacetime theories license substantivalism about their most basic spatiotemporal 
structure? This will be the topic of Sect. 3.1.

A second question, which is closely related but not quite the same: is superspace 
the spacetime background of SUSY theories, or are these theories best understood 
as existing in ordinary relativistic spacetime? As Menon has pointed out, this ques-
tion is closely related to the recent work of Knox (2014) on functionalism about spa-
cetime. Menon has argued that in light of Knox’s approach, we should conclude that 
superspace is indeed the spacetime in which SUSY theories exist. This conclusion 
may be correct—but I will show (in Sect. 3.2) that Menon’s argument is not quite 
sufficient to prove it, and that the answer may depend on whether substantivalism 
about superspace is justified.

Finally, in his seminal essay on string theory, Weingard suggests that an impor-
tant explanatory issue hinges on these interpretive questions about superspace. It is 
tempting to think that SUSY achieves a sort of ontological unification, by represent-
ing bosons and fermions as fundamentally the same sort of entity. Weingard argues 
that this unification is only possible, however, if we understand superspace as space-
time. In Sect. 3.3, I will show that Weingard’s argument rests on a mistaken assump-
tion about the difference between spacetime symmetries and internal symmetries.

But let’s not get ahead of ourselves. Before we get to the philosophy, we’d better 
take a look at the physics.

2  The Supersymmetric Harmonic Oscillator

SUSY is normally thought of as a symmetry of quantum field theories (QFTs) or 
string theories, because these are the supersymmetric theories believed to have 
physical applications. But SUSY can also be defined on much simpler models of 
ordinary quantum mechanics. We will focus here on the supersymmetric version of 
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the well-known quantum simple harmonic oscillator. Due to the often-noted analogy 
between harmonic oscillators and free quantum fields, this model will turn out to be 
analogous to supersymmetric quantum field theories in most foundationally relevant 
respects.

I’ll proceed by presenting two separate non-supersymmetric models, the bosonic 
oscillator and the fermionic oscillator, and explaining their similarities to bosonic 
and fermionic quantum field theories. (In brief, a harmonic oscillator is formally 
identical to a free QFT on one-dimensional spacetime.) Then I’ll show how to com-
bine these into a single model representing a supersymmetric oscillator. Finally I 
will construct the superspace version of this SUSY oscillator, which is a quantum 
field theory on superspace.1

The most familiar part of this whole apparatus will be the bosonic oscillator. This 
is just the ordinary simple harmonic oscillator (in one spatial dimension) covered 
in introductory quantum mechanics textbooks. Its lowest-energy state is the ground 
state �0⟩ . The higher eigenstates of energy �1⟩, �2⟩, etc then correspond to the first, 
second, etc, modes of vibration of the oscillator, and its energy levels are given 
by the expectation values of the Hamiltonian (energy operator) HB in these states. 
For any eigenstate �n⟩ , this expectation value ⟨n�HB�n⟩ is given by the ground state 
energy plus some constant times n.

For a textbook simple harmonic oscillator, we normally choose these constants 
so that ⟨n�HB�n⟩ = (n + 1∕2)� for an oscillator of characteristic frequency � . But 
this is where our analogy with QFT will begin to appear, if we write the constants 
in a different way. Consider the energy of a (scalar) bosonic quantum field in one-
dimensional spacetime—that is, the energy of a quantum field with a single degree 
of freedom located at one spatial point, which takes on values at different times t. 
“Particles” are the quanta of excitation of this field. Since there’s nowhere for these 
particles to go in one-dimensional spacetime, their kinetic energy is zero and their 
only contribution to the total energy of the system is their mass. The field will also 
have some zero-point energy E0 . Thus if we label our constants so that

where mB is the mass of one particle, the energy eigenstates of our oscillator behave 
exactly like the energy eigenstates of the one-dimensional bosonic QFT.

This analogy can be taken further. As usual, we can define the lowering operator 
a and its adjoint, the raising operator a† , so that a†�0⟩ = �1⟩ = a�2⟩ and so on. Also 
as usual, these obey the canonical commutation relations

Sticking with our QFT analogy, applying a† to a state adds a particle and applying 
a subtracts a particle, so we’ll call a† the creation operator and a the annihilation 
operator. These allow us to define a number operator NB = a†a , which gives us

⟨n�HB�n⟩ = nmB + E0,

(1)[a, a] = [a†, a†] = 0; [a, a†] = 1.

1 My presentation of this model is based off of Susskind (2012) and Bagchi (2001, 9–36).
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so that HB = NBmB + E0 . Again, the energy is just the mass of the particles plus the 
zero-point energy. We can also define a scalar-valued “position” operator. Instead of 
labeling this x or q, we’ll call it �(t) , because it’s the analog of the field operator for 
our one-dimensional scalar field.

These are the relevant features of the bosonic oscillator; except for the analogy 
with QFT, they will be old hat to anyone who has studied much quantum mechan-
ics. The fermionic oscillator, which is likewise analogous to a one-dimensional free 
fermionic QFT, will not be so familiar.

The crucial difference between the two models arises when we define the crea-
tion and annihilation operators for the fermionic oscillator. Instead of obeying the 
canonical commutation relations (1), the fermion creation operator c and annihila-
tion operator c† will obey the canonical anticommutation relations:

As a consequence of these relations, (c†)2 = 0 , and thus

This is a simplified case of the Pauli exclusion principle: the oscillator cannot take 
on energy levels beyond the first. In terms of our QFT analogy, this means that the 
fermionic field can only contain a single particle.

Similarly to the bosonic case, we can define a fermion number operator NF = c†c , 
with eigenvalues 0 and 1, and a Hamiltonian HB = mFNF − E0 . (Interestingly, the 
ground state energy of the fermionic oscillator is equal but opposite to the ground 
state energy of the bosonic oscillator (Bagchi 2001, 12).) Unlike with the bosonic 
oscillator, there is no scalar position operator. Thinking in terms of the QFT anal-
ogy, one would not expect such an operator to exist: the bosonic “position” operator 
�(t) is the analogue of a field operator, and fermionic QFTs cannot have scalar field 
operators.

Instead, the fermionic oscillator has a Weyl spinor-valued field operator �(t) , 
which is the closest analog to a position operator for this system. This can be thought 
of as a Dirac field with one degree of freedom. (The field’s adjoint �†(t) is also an 
important quantity for some purposes.)

2.1  Introducing SUSY

With both these models on the table, we now have the resources to describe super-
symmetry. The SUSY harmonic oscillator is a composite system, formed by taking 
the tensor product of their state spaces. If HB is the Hilbert space of states for the 
bosonic oscillator and HF is the Hilbert space for the fermionic oscillator, the states 
of the SUSY oscillator live in the Hilbert space H = HB ⊗HF . The total Hamilto-
nian will then be H = HB + HF = NBmB + NFmF ; the energy is the total mass of the 
bosons plus the mass of the fermion if one exists.

⟨n�NB�n⟩ = n,

(2){c, c} = {c†, c†} = 0; {c, c†} = 1.

c†�1⟩ = (c†)2�0⟩ = 0.
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For this system to exhibit supersymmetry, we must further stipulate that the mass 
of a boson equals that of a fermion, mB = mF = m , which means H = (NB + NF)m . 
In that case, replacing a boson with a fermion, or vice versa, does not change the 
total energy. Indeed, we may define operators Q and Q† which do exactly that:

will remove a fermion from the state and add a boson, while

removes a boson and adds a fermion.2 Since these particle-swapping operations 
don’t change the energy, Q and Q† both commute with the Hamiltonian:

As a result, Q and Q† generate symmetries—the transformations generated are the 
SUSY transformations, and Q,Q† are called supercharge operators. This general 
phenomenon is familiar from many examples, such as the momentum operator act-
ing as the generator of spatial translations, the Hamiltonian as the generator of time 
translations, or the electric charge as the generator of U(1) gauge transformations. 
(Because we’ve introduced only a single independent supercharge operator and its 
conjugate, we say that this theory exhibits N = 1 supersymmetry.)

The supercharges don’t behave exactly like these other symmetry generators, 
however. To begin with, because Q† can transform an excited state of a scalar field 
into an excited state of a spinor field, Q† must itself operate like a spinor (and the 
same goes for its inverse Q). This means the Qs must multiply like Grassmann anti-
commuting numbers. We will discuss Grassmann numbers in more detail soon, but 
for the moment, this is relevant because it means that the anticommutation relations 
of the Qs, rather than their commutation relations, characterize the structure of the 
symmetries they generate.

Thus, in order to understand the structure of the SUSY transformations, we 
should look at the anticommutation relations between Q and Q† . These are

and

that is:

Q =
√
ma†c

Q† =
√
mc†a

(3)[Q,H] = [Q†
,H] = 0.

{Q,Q} = {Q†
,Q†} = 0

{Q,Q†} =
√
ma†c

√
mc†a +

√
mc†a

√
ma†c = m(a†a + c†c) = m(NB + NF),

(4){Q,Q†} = H.

2 Not that (Q†)2 = 0 , which means that we cannot violate the exclusion principle by replacing multi-
ple bosons with fermions. Only one particle may be swapped. This phenomenon holds generally: SUSY 
doesn’t allow us to create Bose-Einstein condensates out of fermions, for example!
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Here we’ve found something surprising: the Qs cannot generate a “group” of sym-
metries—not actually a group, but a generalized algebraic structure called a super-
group3—by themselves. Their anticommutator is the generator of another symme-
try—the Hamiltonian H, generator of time translations.

This means that the supergroup containing the supersymmetry transformations 
must also contain time translations. We call it the super-Poincare group; its gen-
erators are Q,Q† and H. In other words, the supersymmetry transformations cannot 
be defined on their own within a self-contained algebraic structure. They must be 
mixed in with spacetime symmetries. (In our toy example of one-dimensional space-
time, the only continuous spacetime symmetry is time translation, but in more real-
istic versions of SUSY the super-Poincare group contains the whole Poincare group 
of symmetries of Minkowski spacetime as a subgroup.)

2.2  Constructing Superspace

This connection with spacetime symmetries suggests that we may be able to under-
stand SUSY as a spacetime symmetry itself. This is the motivation for the super-
space formalism. The thought is that instead of existing on the original spacetime 
that the separate bosonic and fermionic theories were defined on, the SUSY theory 
can be understood as existing on a different spatiotemporal structure, with the super-
Poincare group as the corresponding group of spacetime symmetries. This different 
spacetime structure is superspace.

Superspace is constructed by adding extra dimensions to spacetime—dimensions 
which are naturally coordinatized by Grassmann anticommuting numbers. These are 
characterized by the anticommutation relations

for any pair of Grassmann numbers. This means they have some funny properties; 
for example, it implies that �2 = 0 for any Grassmann number � , which implies (as 
we noted above) that there are no polynomials over Grassmann variables of order 
greater than 1. Grassmann numbers may be combined with ordinary real numbers in 
a Grassmann algebra—a structure that is also sometimes referred to as an algebra of 
supernumbers, in the context of SUSY.

To construct a superspace for our SUSY oscillator, we must add some extra 
Grassmann-valued coordinates to our representation of spacetime. In this case, a sin-
gle Grassmann-valued coordinate � will do. In our ordinary boson/fermion descrip-
tion of the SUSY oscillator (called the component formulation of the system), we 
used one-dimensional spacetime with a single coordinate t. So our superspace will 
be two-dimensional, with coordinates t and �.

(5){�i, �j} = �i�j + �j�i = 0

3 Roughly, a supergroup behaves like a group except that it includes some elements that multiply like 
Grassmann numbers.
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Now we need to construct a QFT on our superspace that can be interpreted as 
physically equivalent to the SUSY oscillator. We define a real scalar superfield Φ 
using the boson field � and fermion field � as inputs:

This formulation of the superfield allows us to understand the physical meaning of 
different “locations” along the Grassmann-valued dimension � . The value of Φ(t, �) 
at the location � = 0 is just the value of the boson field. At other locations along 
� , the fermion field is added to the mix; and Φ(t, �) − Φ(t, 0) = i�(t)� , which tells 
us the value of the fermion field at time t. So we can think of � = 0 as the “purely 
bosonic” location in superspace, and the other locations as “mixed boson/fermion” 
locations. (The separate Bose and Fermi fields � and � are often called the com-
ponents of the superfield, and the version of the theory constructed in the previous 
section, using these component fields, is called the component formulation of the 
theory.)

We may now ask what effect the supercharge operators Q,Q† have on the super-
field. Thinking intuitively, given the physical meaning of the superfield operators we 
just discussed, we would expect the Qs to interchange (in some sense) the values of 
the superfield at the bosonic and fermionic locations along � . Such an interchange 
is essentially a translation along � . Consider the following transformation on these 
coordinates:

where � is an infinitesimal Grassmann-valued parameter. This transformation 
changes the value of the superfield by an amount �Φ , where

This can be implemented on the state by a generating operator � , so that �Φ = ��Φ , 
where

Note that �2 = i
�

�t
Φ , the time derivative of the field—which is to say, the generator 

of time translations, or the Hamiltonian! This means that the square of this “super-
space translation” generator will generate a time translation. In terms of the har-
monic oscillator picture of the system, � is the “all-purpose” supercharge operator 
one gets by summing Q and Q†,

which replaces a fermion with a boson if the state contains a fermion to begin with, 
and replaces a boson with a fermion otherwise.

The transformations generated by � are often called supertranslations, because 
as we’ve seen, they translate the state along � as well as the time axis. In SUSY 
theories on higher-dimensional spacetimes, the same pattern holds, and in general 

(6)Φ(t, �) = �(t) + i�(t)�.

(7)� → �� = � + �, t → t� = t + i��

(8)�Φ = Φ(t�, ��) − Φ(t, �).

(9)� =
�

��
+ i�

�

�t
.

(10)� = Q + Q†
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the square of a supertranslation is a spacetime translation. Because � is just a more 
compact way to express the supersymmetry generators, this means that SUSY trans-
formations act like spacetime translations, if we think of superspace as spacetime. 
This is where our first philosophical puzzle appears: should we think of super-
space as spacetime? More generally, how should we interpret this new theoretical 
structure?

3  Three Interpretive Questions

In superspace, we have a structure analogous to the spacetime structures described 
in previous spacetime theories, especially special relativity. Substantivalism—
the view that spacetime is a substance in its own right, a “container” for material 
objects and fields—is a popular interpretation of these theories. We may similarly 
ask whether superspace is best understood as a substantival container for the fields 
described by SUSYQFT.

Talk of “containers” is pure metaphor, of course. Before this debate can begin, 
we must settle on a literal way of stating the superspace substantivalist view in the 
language of physics and metaphysics. I tend to agree with North (2018), who argues 
that the disagreement between substantivalists and their relationist opponents should 
be understood as follows: Substantivalists assert that spacetime structure is a part 
of the world’s fundamental structure, while relationists claim that spatiotemporal 
facts are metaphysically derivative, depending on (or grounded in) more fundamen-
tal facts about material objects and fields. Analogously, we may ask whether super-
space is fundamental in SUSYQFT, or whether it is derived from some more basic 
structure.

Some care is required here, because it is almost certain that our best present-day 
theories, including supersymmetric quantum field theories, don’t really describe the 
fundamental structure of our world. In particular, spacetime—and superspace—
are now thought to be derivative rather than fundamental structures which emerge 
from some more basic non-spatiotemporal theory of quantum gravity (Huggett and 
Wüthrich 2013). So if superspace substantivalism is the thesis that superspace struc-
ture is perfectly fundamental, we can be highly confident even before looking at the 
arguments that superspace substantivalism is false.

To formulate an interesting and potentially true version of superspace substan-
tivalism, while remaining true to the spirit of North’s picture, I suggest reformu-
lating the view in terms of relative fundamentality. Some things are more fun-
damental than others: a quark is more fundamental than a proton, which is more 
fundamental than a hydrogen atom. Substantivalism is (I think) the correct inter-
pretation of general relativity because spacetime is among the most fundamental 
entities described by the theory, even though general relativity is not a fundamen-
tal theory.4 Similarly, the question of superspace substantivalism should amount 

4 This is closely related to North’s own view of how to understand the debate about general relativity, 
except that she considers substantivalism about general relativity to be a conditional view of the form: If 
general relativity were a fundamental theory, then spacetime would be fundamental (North 2018).
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to the question of whether superspace is among the most fundamental entities 
described by SUSYQFT (if in fact supersymmetry turns out to be a fundamental 
symmetry of nature). In Sect. 3.1 below, we will take up this question.

A structure can be (highly) fundamental without qualifying as spacetime struc-
ture, and if the prevailing opinion among quantum gravity theorists is correct, 
spacetime need not be fundamental. We may thus ask a second, logically distinct 
question about superspace: is it spacetime? That is to say, is it the sort of entity 
that our concept of spacetime includes, or to which our word ‘spacetime’ refers? 
The same question has been asked about other theoretical structures, such as the 
once-popular electromagnetic ether, the metric in general relativity, and the vari-
ous possible spacetime structures of Newtonian gravitation theory (Rynasiewicz 
1996; Hoefer 1998; Knox 2014). Applied to superspace, we may label this the 
question of superspace spatiotemporality; Menon argues that superspace ought to 
count as spacetime on Knox’s functionalist approach.

At heart this is a semantic debate, rather than a metaphysical one, although 
metaphysical questions may need to be answered in order to resolve the debate. 
Our concept of spacetime may include metaphysical presuppositions about 
the nature of spacetime, after all. Knox (2014) can be read as suggesting that 
no metaphysical questions—or at least no difficult ones—need be answered to 
adjudicate this semantic debate. This strikes me as too hasty, as I will argue in 
Sect. 3.2 below. I think the question of superspace substantivalism may need to 
be answered in order to resolve the debate about superspace spatiotemporality.

A third interpretive question about SUSY concerns the status of bosons and 
fermions in light of this symmetry. It may seem obvious that SUSY is telling us 
bosons and fermions are the same sort of entity, and (perhaps more fundamen-
tally) that boson fields and fermion fields are really two ways of describing the 
same sort of field (the superfield). This is the thesis of ontological unification 
discussed by Weingard (1988). Weingard argues that ontological unification is 
only possible if supersymmetry is interpreted as a spacetime symmetry. In my 
terminology, Weingard argues that superspace spatiotemporality is a necessary 
condition for ontological unification. In Sect. 3.3 I’ll argue that Weingard is mis-
taken, and that the superspace anti-realist can also accept ontological unification.

To summarize, we’ve identified three interpretive puzzles, which concern the 
status of the following three theses:

Superspace substantivalism Superspace is among the most fundamental struc-
tures described by supersymmetric QFTs.
Superspace spatiotemporality Superspace (and not Minkowski spacetime) is 
the spacetime in which supersymmetric QFTs are set.
Weingard’s unification thesis Superspace spatiotemporality is a necessary con-
dition for the ontological unification of bosons and fermions.

Now it is time to ask what reasons count for and against these interpretive theses.
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We may need an answer to the substantivalism question about superspace in order 
to issue a verdict about superspace spatiotemporality. Moreover, the substantivalism 
question is a more substantive question in its own right—a question about the meta-
physical interpretation of the theory, not just semantics. But metaphysical questions 
are also, notoriously, harder to investigate than semantic ones. What sort of purchase 
can we find on the substantivalism question—and what sort of evidence might bear 
on it?

The good news is that we have a good sense of which arguments might bear on 
the general question of substantivalism, from the pre-existing debate in general 
relativity. The bad news, however, is that superspace substantivalism is not com-
peting with relationism alone. The most interesting rivalry is between the super-
space substantivalist and the Minkowski spacetime substantivalist, who asserts that 
Minkowski spacetime is a more fundamental structure than superspace.

For the sake of clarifying the dialectic between these two varieties of substan-
tivalism, and because I see no new arguments for relationism arising from SUSY, 
I will assume for the sake of argument that some variety of substantivalism is cor-
rect. The question then becomes, what to be a substantivalist about: superspace or 
Minkowski spacetime? That is to say, on the North (2018) approach I adopt here: is 
Minkowski spacetime or superspace more fundamental?5

A wide variety of theoretical virtues would seem to apply to this question, 
although their application will be a tricky matter. For example: is Minkowski sub-
stantivalism more ontologically parsimonious than superspace substantivalism? The 
affirmative answer might seem obvious, since superspace posits additional space-
time structure over and above Minkowski spacetime. But superspace also permits 
us to make do with fewer fundamental fields, since it allows us to posit a single 
superfield in place of separate boson and fermion fields. (On the other hand, it isn’t 
obvious that the field operators in QFT should be understood as part of the theory’s 
fundamental structure—see Baker (2009) and the discussion of observables below.) 
It’s impossible to raise all the relevant arguments in a single essay, but I will con-
sider two of the most interesting ones in this section.

Ontological debates are often won or lost on the basis of theoretical parsimony. 
Where two ontological interpretations of a theory can accomplish the same predic-
tive and explanatory work, we prefer the interpretation that posits fewer entities or 
types of entity. Let’s look at a promising line of argument that seems to suggest 
that Minkowski substantivalism is preferable to superspace substantivalism in this 
regard.

To begin, we need an argument for the predictive and explanatory equality of 
the interpretations. Such an argument is ready to hand. In a mathematically rigor-
ous sense, a superfield theory and its Minkowski-space counterpart describe the 

5 To avoid the misleading appearance of begging the question against either superspace spatiotemporal-
ity or its denial, I will do my best to refer to “the thing substantivalists are substantivalist about” not as 
spacetime, but as the fundamental background structure of a theory.
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same physical quantities (that is to say, the same observables). This equivalence 
has been proven in simple one-dimensional models like the one presented in Sec. 2 
(Hack et al. 2016, 661–662), and is expected to hold in general. In essence, the same 
algebras of observables (and their expectation values as given by the states) can be 
understood either as assigned to regions of superspace, or as assigned to regions of 
Minkowski spacetime while exhibiting an additional internal symmetry that relates 
observables connected by supertranslations.

This equivalence holds only for quantities in the algebras of observables, and 
so it may seem to be a merely empirical equivalence. But in fact, the algebra of 
observables in quantum field theory includes every operator that could plausibly 
be understood to represent a physically significant quantity in the theory’s canoni-
cal formalism—that is to say, in the absence of an interpretation like Bohmian 
mechanics that involves non-standard formalism representing ontology (Baker et al. 
2015, Section 3).

Arguably, there are some physically significant quantities that don’t correspond 
to operators on the space of states (Wallace 2008, 21). But note that the plausi-
ble candidates for such quantities listed by Wallace are determined by the state’s 
expectation values for observables. In particular, operators outside the algebra of 
observables generally fail to be invariant under permutation, gauge symmetries, or 
other important symmetries, or fail the condition of relativistic causality. So we have 
strong grounds for supposing that (within the canonical quantum formalism) theo-
ries sharing the same space of states and the same algebra of observables are fully 
equivalent in explanatory power.

Therefore—somewhat surprisingly—the superspace and Minkowski space ver-
sions of a SUSYQFT include the same ontology of physically significant quantities, 
with the exception of spatiotemporal quantities, which the SUSYQFT includes more 
of. This may seem impossible. What about the separate boson and fermion fields 
posited by the ordinary QFT, and the superfields posited by the SUSY theory? The 
answer is that the equivalence is possible because not all field operators are elements 
of the observable algebra; only some boson field operators are. So the different-
looking fields posited by the two formalisms differ only in terms of operators which 
are not observables, and which thus lack physical significance.6

Bringing this argument to its conclusion: By the above argument for equivalence, 
the Minkowski and superspace substantivalists can predict and explain all the same 
experimental phenomena equally well. The Minkowksi substantivalist accomplishes 
this with a more parsimonious ontology, since Minkowski spacetime has less struc-
ture than superspace and the two interpretations otherwise agree on ontology (since 
they agree about the observables). So Occam’s Razor gives us reason to prefer 
Minkowski substantivalism over superspace substantivalism.

6 The two formalisms may still differ about which observable operators signify fundamental quantities, 
as opposed to merely physically significant (but derivative) quantities. I wish I had room in the present 
paper to explore the implications of this possible disagreement, but it is worth noting that it may imply 
further differences in explanatory power between the Minkowksi substantivalist and superspace substan-
tivalist ontologies, beyond the ones discussed here.
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This argument would be decisive, I think, if concrete observable predictions 
were the only facts supersymmetric QFTs aimed to explain. But on a more ambi-
tious conception of physics—a conception that fits well, in my opinion, with the way 
high-energy theorists practice their craft—other more general facts also call for an 
explanation. In particular, we may ask for an explanation of a theory’s symmetries in 
terms of deeper facts, such as the structure of spacetime. In this light, the superspace 
substantivalist’s extra ontology seems more like an asset than a liability. Let me fill 
in the details of this line of thought with an argument that was suggested to me by 
James Wells (personal communication).

Wells’s argument for superspace substantivalism proceeds as follows: If we 
assume Minkowski structure is more fundamental than superspace structure, this 
leaves us with a sort of fine-tuning puzzle. Since the most fundamental background 
structure is Minkowski spacetime, this structure could support a variety of non-
supersymmetric laws for the same fields. In particular, the masses of the boson and 
fermion fields need not have been equal. We are left with no explanation for why 
SUSY is a symmetry at all—the equality of the masses must be left unexplained, a 
brute posit.

If superspace is the more fundamental structure, on the other hand, and the sys-
tem is most fundamentally described as a superfield, there is a ready explanation 
for the equality of the masses. For the only possible superfield theories that can be 
formulated on superspace exhibit equal masses for the (less fundamental) boson and 
fermion fields.

Wells’s argument depends on the assumption that fundamental spacetime struc-
ture can explain the dynamical symmetries of basic physical laws. This assumption 
has been questioned by Brown (2005), who argues that in general, good explana-
tions will go in the other direction—the symmetries of the dynamics explain the 
symmetries of spacetime, not vice versa. We must, Brown suggests, “consider abso-
lute space-time structure as a codification of certain key aspects of the behavior of 
particles” (Brown 2005, 24). This view implies, however, that the behavior of par-
ticles is more fundamental than spacetime structure—a claim that is incompatible 
with substantivalism defined in North’s terms.

While the substantivalist cannot accept Brown’s own view, Brown is right to insist 
that there is no impossibility (logical or metaphysical) of disagreement between the 
symmetries of spacetime and the symmetries of the laws. But I agree with Skow 
(2006) and Janssen (2009), who suggest that there may be a higher-order law of 
nature requiring dynamical symmetries to mirror the symmetries of the fundamental 
background (spacetime) structure.7

At any rate, it seems obvious to me that explaining dynamical symmetries in 
terms of the symmetries of fundamental background structure is a justified method 

7 Such a law will have to relate a theory’s dynamical symmetries to its absolute background geometrical 
structure, of course. In a theory like general relativity, for example, which admits of many solutions with 
different spacetime structures, we should not require that the symmetries of the force laws vary from 
solution to solution. But a similar law in general relativity could explain the local Lorentz covariance of 
the laws of general relativistic field theory, since Lorentz covariance is a local symmetry of all general 
relativistic spacetimes.
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of theorizing in physics. This allows us to escape the primary pitfall of Brown’s 
dynamical picture, namely the glaring lack of any explanation for the coincidence—
highly surprising, on Brown’s picture—that all of the different relativistic matter 
fields share the same (local) external symmetries, and that these match the sym-
metries of the metric. On Brown’s picture, no explanation is possible for the fact 
that we don’t live in a world where some fields exhibit Galilean invariance while 
other fields exhibit Lorentz invariance. Since the dynamical laws governing the dif-
ferent fields are explanatorily prior to spacetime structure, it is simply a coincidence 
that those dynamical laws all happen to agree on their external symmetries. In later 
work, Brown and co-authors refer to this coincidence as a “miracle” of relativity 
(Read et al. 2018, 7).

But if it is a law that the symmetries of the matter fields must match those of the 
spacetime (fundamental background) metric, this fact is no coincidence and no mir-
acle. And if we assume such a law, Wells’s argument for superspace substantivalism 
is compelling. Indeed, the manifest persuasiveness of Wells’s argument for super-
space substantivalism further underscores the implausibility of Brown’s picture of 
spacetime. We have here a good argument in favor of superspace substantivalism. It 
is by no means a decisive argument, and there is much more to be said on both sides 
of this interpretive question, but considerations of space compel me to move on to 
the question of spatiotemporality.

3.2  Superspace Spatiotemporality

Menon (forthcoming) is primarily concerned with the question of superspace spati-
otemporality: whether superspace deserves the name ‘spacetime.’ (To avoid endless 
repetition of an awkward phrase, let’s shorten the view’s name to ‘spatiotemporal-
ity.’) His answer to the spatiotemporality question is yes (insofar as superspace fills 
the role he calls theoretical spacetime) and no (insofar as it fails his criteria to count 
as operational spacetime). I will focus here on the theoretical spacetime role, since 
that is the role Menon takes to settle the question of whether SUSY is a “spacetime 
symmetry.”

One of the theoretical roles of spacetime structure is to connect the symmetries 
of different matter fields—e.g., the Lorentz invariance of relativistic spacetimes 
extends to the Lorentz invariance of matter fields defined on such spacetimes. This 
is the role Menon identifies with theoretical spacetime. He initially defines theo-
retical spacetime as “That structure which picks out the (local) symmetries of the 
dynamical equations governing matter fields” (Menon forthcoming, 3). But as he 
recognizes, this first-pass definition requires further precisification to accommodate 
the fact that we don’t ordinarily treat spacetime as determining all the symmetries 
of matter fields. Different matter fields with different symmetries can be defined (or 
even coexist) on the same spacetime; for example, the quark and gluon fields pos-
sess an SU(3) gauge symmetry that the electromagnetic field lacks, even though all 
these fields are defined on Minkowski spacetime.

So Menon further qualifies his definition in a natural way: theoretical spacetime 
picks out only the external symmetries of the matter fields. ‘External symmetry’ 
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is often treated as another term for spacetime symmetries, so to avoid the risk of 
circularity, Menon stipulates his own definition: an external symmetry is a symme-
try shared (in a sense I will explain in a moment) by all the different matter fields 
(Menon forthcoming, 5). So theoretical spacetime is the structure required to specify 
the family of external symmetries shared by all matter. As Menon notes, this accords 
with Earman’s well-known postulate that “Any dynamical symmetry of [a theory] T 
is a spacetime symmetry of T” and vice versa (Earman 1989, 46).

Beginning from Menon’s definition, it is straightforward to show that superspace 
is theoretical spacetime in SUSY-invariant theories. To identify the external sym-
metries, Menon begins with the parameter space expression for a field theory, in 
terms of n-tuples of real numbers specifying the theory’s states. For example, a 
four-dimensional real scalar field theory’s parameter space (in this sense) will be 
given by quintuples (the four spacetime dimensions for a point plus the field value 
at that point), while a complex field on the same spacetime will be given by sextu-
ples (since it takes two real numbers to specify a complex-valued field at a point). 
In special relativity, assuming the dynamics is independent of the complex field’s 
phase, the complex field’s parameter space can be thought of as breaking down into 
two parts: one invariant under U(1), and one invariant under the Poincare group. 
The real field will also have a corresponding section of its parameter space which is 
invariant under the Poincare group. For Menon, this is how we know that the Poin-
care group gives the external symmetries of special relativistic field theories. The 
external symmetry group, on his definition, is the symmetry group of the common 
parameter space of all the fields.

In a SUSY theory defined on superspace, the super-Poincare group will be the 
largest invariance group of the fields’ common parameter space. So Menon’s defi-
nition will identify the super-Poincare group as the external symmetry group, and 
superspace as theoretical spacetime.

Clearly a lot is built into Menon’s definition of theoretical spacetime, since the 
argument for spatiotemporality is extremely straightforward once we accept his defi-
nition. We must ask whether the definition captures what we are after when we raise 
the question of spatiotemporality. Since this is ultimately a semantic question—a 
question of how best to apply our pre-existing spacetime concept—the best way to 
proceed is by considering cases.

Menon openly admits one counterintuitive consequence of his definition: when 
dealing with examples of a single field on spacetime, “there is no principled rea-
son to refer to one parameter space rather than the other as the ‘external’ space” 
(Menon forthcoming, 5). For example, consider an example like the one above, 
but minus the real scalar field—that is, a special relativistic world with only a 
complex scalar field exhibiting U(1) symmetry. This theory’s parameter space 
splits into a U(1)-invariant part and a Poincare-invariant part. Both of these sym-
metry groups are symmetries of all the matter fields, since there is only one field. 
So while Menon’s definition tells us that only one of these two groups, U(1) or 
the Poincare group, represents the external symmetries, the definition cannot tell 
us which one is the external symmetry group. And since he defines theoretical 
spacetime as the geometric structure needed to pick out the external symmetries, 
there is no fact of the matter in this example whether that structure is Minkowski 
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space (the geometry characterized by Poincare symmetry) or the complex unit 
circle (the geometry characterized by U(1) symmetry).

This ambiguity does not only arise in the case of a single field. Consider the 
example of quantum electrodynamics (QED). QED describes two quantum fields, 
an electron (Dirac) field and a photon (Maxwell) field. But these two fields as a 
composite system are jointly invariant under a local U(1) gauge symmetry, which 
transforms both the photon field’s potential and the electron field’s phase. As a 
result, there will similarly be no way for Menon’s definition to determine whether 
it is the Poincare symmetry of QED or its local gauge symmetry which represents 
its external symmetry—even though common sense dictates that the theory’s 
Poincare invariance, and not its gauge invariance, represents the symmetries of 
spacetime.

How serious of a problem is all this for Menon’s definition of theoretical space-
time? Given his aim of advancing a definition that can determine whether a new and 
unfamiliar geometric structure, superspace, falls under our existing spatiotemporal 
concept, I think the problem is quite serious. I grant that Menon’s definition will 
give the correct result about the spacetime structure of physically realistic ordinary 
field theories like the Standard Model, which describe more then one interaction. 
But first, one might worry that even more realistic future field theories might pursue 
the unification of the forces (“grand unification”) in such a way as to conjoin their 
internal symmetries, thus giving rise to the same problem that appears for Menon’s 
definition in the case of QED. And second, when applying Menon’s definition of 
theoretical spacetime to the conceptually ill-understood case of SUSY, it is difficult 
to be confident about its verdict given that the definition’s extension does not unam-
biguously include some paradigm cases of spacetime in field theories such as QED.

There is a further, and potentially more troubling, problem for the full generality 
of Menon’s definition of theoretical spacetime: His definition offers no guarantee 
that a physically intelligible geometric structure invariant under the external symme-
tries (as he defines them) will always exist. Supersymmetry is actually an interesting 
test case here, since for some complex SUSY theories it is not yet known whether a 
superspace formalism exists (Castellani et al. 2014, 420). For example, N = 4,D = 4 
supersymmetric Yang-Mills theory (a gauge theory on four-dimensional spacetime 
with four independent supercharge operators) no superfield formulation of the the-
ory has yet been constructed. This is not a problem that arises for the supersymmet-
ric Standard Model, the most physically realistic SUSYQFT. But it is concerning to 
say the least that it remains an open question, for some SUSY theories, whether any 
geometric structure meeting Menon’s definition of theoretical spacetime even exists. 
Surely if it is proven that no superspace version of N = 4 super-Yang-Mills theory 
exists, we should not conclude that this theory is not set on (theoretical) spacetime. 
Rather, the natural conclusion would be that the theoretical spacetime setting of the 
theory is Minkowski spacetime.

Getting ahead of myself for a moment, I think these problems arise from Menon’s 
presuming to offer necessary and sufficient conditions for a concept (“spacetime”) 
that I take to have the more complicated structure of a cluster concept. To make this 
point of disagreement clearer, I will first consider Menon’s other argument for spati-
otemporality before presenting my own view.
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3.2.1  Superspace in Knox’s Spacetime Functionalism

In addition to his theoretical spacetime definition, Menon considers Eleanor Knox’s 
inertial functionalist account of spacetime. Knox’s view is functionalist in the sense 
that it identifies spacetime as whatever geometric structure plays a particular role in 
the laws, which she calls its functional role, on analogy with functionalism about the 
mind. Menon’s symmetry-based definition of theoretical spacetime is also a func-
tionalist definition in this sense. But instead of requiring, as Menon does, that space-
time determine the external symmetries, Knox’s functionalism holds that spacetime 
is the geometric structure required to determine inertial frames.8

Menon argues that Knox’s inertial functionalist picture gives the same answer 
about spatiotemporality as his own definition of theoretical spacetime: superspace 
is spacetime, on Knox’s picture. I disagree, though, with Menon’s application of 
Knox’s view to SUSY. It seems to me that Knox’s view lacks the resources to tell 
whether superspace or Minkowski spacetime is spacetime. To show why, let me first 
explain how Menon employs her definition.

For Knox, spacetime is the (minimal) theoretical structure required to determine 
the inertial frames for a theory. Frames for Knox are coordinate systems in which 
the theory can be expressed. The inertial frames are then the coordinate systems 
meeting these criteria:

1. Inertial frames are frames with respect to which force free bodies move 
with constant velocities.

2. The laws of physics take the same form (a particularly simple one) in all 
inertial frames.

3. All bodies and physical laws pick out the same equivalence class of iner-
tial frames (universality). (Knox 2013, 348)

The first criterion may not apply in non-mechanical theories with no ready definition 
of force or velocity, in which case Knox would call a structure spatiotemporal if it 
satisfies the other two criteria. Unless we want to beg the question against super-
space spatiotemporality, we must not apply criterion 1 to SUSY, since it isn’t clear 
what it would mean for a force or velocity vector to point along the Grassmann-
valued directions.

What about Knox’s criteria 2 and 3? As Menon points out, superspace does 
possess its own analogue of inertial frames—coordinate systems sometimes 
called “superinertial frames,” in which the superfield and the dynamical equa-
tions governing it take on their simplest form. In these coordinate systems, the 
formula for the superspace anologue of the spacetime interval also takes on its 
simplest form; additionally, the superinertial frames are related by super-Poin-
care transformations (Buchbinder and Kuzenko 1998, 160). Menon infers that, 

8 Knox’s account actually focuses on local inertial frames, but since the scope of this paper only 
includes flat spacetimes, I’ll follow Menon in leaving that complication aside and considering only the 
special case of global inertial frames.
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applying Knox’s criteria to the theory of a superfield, we must conclude that the 
coordinate systems meeting criteria 2 and 3 are the superinertial frames. There-
fore, since superspace is the structure required to define superinertial frames, 
superspace must be spacetime in SUSY theories.

The problem with Menon’s reasoning here is that the same line of inference 
gives a different answer if we apply Knox’s criteria to a SUSY theory written in 
its component form (in terms of separate Bose and Fermi fields) rather than its 
superfield form. In that case, the relevant coordinate systems will be ordinary 
Minkowski coordinate systems, and the ones giving the simplest expressions of 
the (component) fields and their dynamics will be the inertial frames of ordi-
nary Minkowski spacetime, not the superinertial frames. By applying Knox’s 
criteria to the superfield form of the theory rather than its component form, 
Menon effectively treats the coordinate systems on superspace as the relevant 
coordinate systems to which we should apply Knox’s criteria. He has not really 
given an argument from Knox’s picture to superspace spatiotemporality. Instead 
he has given us an argument from Knox’s picture, plus the assumption that the 
superfield form of a SUSY theory is its proper form—but this begs the question 
against the denier of spatiotemporality, who will surely insist that the compo-
nent form of the theory is more basic.

This underscores a weakness of Knox’s inertial definition of spacetime. The 
case of supersymmetry illustrates that Knox’s definition does not (as one might 
hope) take as input a theory and return an answer about which of that theory’s 
structures represent spacetime. Instead, it takes as input a theory plus a class 
of descriptions of that theory in different coordinate systems; only with all that 
information can Knox’s definition be applied to give an answer about which of 
the theory’s structures are spatiotemporal.

This aspect of her definition alone should be disturbing to those of us who 
believe that the real physical content of a theory, including what it tells us about 
spacetime, should be a coordinate-independent matter. But even worse, as the 
case of SUSY also illustrates, it sometimes matters which class of coordinate 
systems one provides as input to Knox’s definition. Applying Knox’s criteria 
to the class of Minkowski coordinate systems, her criteria give the answer that 
Minkowski spacetime is spacetime. Feeding in the superspace coordinate sys-
tems, on the other hand, gives an entirely different answer.

Baker (2020) has argued that there are several other reasons to reject Knox’s 
inertial version of spacetime functionalism, even assuming (as seems plausible) 
the correctness of the broader functionalist picture that questions about spati-
otemporality should be answered by looking at each theoretical structure’s role 
in a theory’s laws. (In brief, Knox’s version of functionalism cannot be applied 
to theories with no inertial structure or local degrees of freedom, such as top-
ological quantum field theories, even though such theories may possess many 
other attributes we ordinarily think of as spatiotemporal.) Instead, we should 
think of our spacetime concept as a cluster concept (Baker 2020, Section 4).
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3.2.2  Superspace in the Cluster Concept Approach

On this cluster concept picture, there is no one simple set of necessary and sufficient 
conditions for an entity in our theories to count as ‘spacetime.’ Rather, there are 
many independent criteria for falling under that concept. To apply it, we must look 
at a theory to see whether one or more structures meet a sufficient number of these 
criteria. If there is a sufficiently satisfactory realizer of the concept in our theory, 
then either we may count each sufficiently good realizer as one variety of space-
time described in that theory, or else count only the best realizer as spacetime. (This 
choice point gives rise to two different versions of the cluster concept picture, one 
on which there must be a single unique spacetime in each theory, and another on 
which multiple classes of structures may qualify as spatiotemporal.)

If we choose the more permissive version of the cluster view, on which a sin-
gle theory may describe “multiple spacetimes,” it seems likely that both Minkowski 
spacetime and superspace should qualify as spatiotemporal. Minkowski spacetime 
is obviously a strong enough candidate to count as spacetime, since that is the role 
it plays in ordinary special relativity. And the reasons Menon adduces in favor of 
superspace spatiotemporality are certainly compelling: superspace has a central role 
in codifying the symmetries of SUSY theories and its analogues of familiar spati-
otemporal features like the interval and inertial frames are highly suggestive.

What if we assume, on the other hand, that there can be only one spacetime? One 
might assume, as Baker (2020, Section 5) argues, that the more fundamental struc-
ture is a better realizer for the spacetime concept, other things being equal. If that 
is indeed a significant criterion for the spacetime cluster concept, the arguments of 
the previous section count in favor of superspace spatiotemporality as well as super-
space substantivalism. On the other hand, superspace fails many criteria that we 
ordinarily think of when we imagine spacetime. As Menon points out, in his argu-
ment that superspace is not “operational spacetime,” there are no clear analogues of 
rods and clocks that measure the metric on superspace in the same way that ordinary 
(ideal) rods and clocks measure the Minkowski metric in special relativity (Menon 
forthcoming, Section 4.2). In many ways, the Grassmann-valued dimensions do not 
behave like spatial dimensions. Depending on how heavily we weight the impor-
tance of these operational characteristics, as opposed to fundamentality, either 
conclusion on the spatiotemporality question could conceivably be justified. This 
amounts to a question of conceptual analysis, or of the semantics of our theoretical 
term ‘spacetime,’ and borderline questions of this sort can be difficult to resolve. A 
systematic survey of competent users (physicists?) might be required.

Let me close this section with an observation It may be that a satisfactory inter-
pretation of supersymmetry requires revision or (depending on how one looks at 
it) replacement of our existing spatiotemporal concepts. When Minkowski (1909) 
proposed that we conceive of ourselves as existing in a four-dimensional geometric 
structure rather than a three-dimensional one, his recommendation was not that we 
subsume this notion of spacetime under our existing concept of space. Rather, the 
idea that came to define so much of subsequent physics, and its interpretation, pos-
ited an altogether new sort of entity. Our understanding of this entity has been illu-
minated by the ways it is analogous to our pre-existing spatial concept. But it would 
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be wrong—a misuse of words—to suggest that spacetime is simply another variety 
of space.

To suggest that superspace is another variety of spacetime may involve a similar 
error. There are many analogies between superspace and the sort of structure we 
ordinarily identify with spacetime; also many disanalogies. Perhaps what is needed 
(and underway in the theory of SUSY) is the introduction of a new concept. Since 
these are semantic questions, and the use of the relevant terms (‘spacetime,’ ‘super-
space’) and concepts is currently in flux, there may be no fact of the matter as yet. 
I think this suggests that the most interesting question in the vicinity is not actually 
the semantic/conceptual question, but the substantive metaphysical question about 
substantivalism discussed in the previous section. But for the reader interested in 
how best to subsume SUSY under our existing spatiotemporal concepts, I offer the 
arguments of this section as my best attempt.

3.3  Weingard’s Unification Thesis

One way of posing the question of superspace spatiotemporality is to ask whether 
SUSY is a spacetime symmetry (like time reversal, rotations and boosts) or an inter-
nal symmetry (analogous to phase transformations in quantum mechanics). Wein-
gard has suggested that a lot hinges on this question—not just the interpretation of 
superspace, but also our naive understanding of bosons and fermions as separate 
species of particle.

Consider the photon and its supersymmetric partner, the photino. In a supersym-
metric world, it seems natural to suggest that these are really two states of a sin-
gle species of particle. Perhaps the difference between a photon and a photino is 
analogous to the difference between a spin-up electron and a spin-down electron. 
Weingard argues that this is the right way to understand SUSY—as an ontological 
unification of bosons and fermions—but only if SUSY is a spacetime symmetry.

Weingard suggests that states related by a spacetime symmetry are physically 
equivalent even if that symmetry is spontaneously broken (as SUSY is if it is a 
symmetry of our world). “[T]he difference between a spin z = 1∕2 electron and 
z = −1∕2 electron is that of the orientation of a single particle. And this is so even 
if the symmetry is broken by a magnetic field and the two have different energies” 
(Weingard 1988, 103). But the same does not hold, according to Weingard, for inter-
nal symmetries.

He considers the case of isospin, an approximate symmetry that transforms pro-
tons into neutrons (by transforming up quarks into down quarks). As a matter of 
group theory, this symmetry has an SU(2) structure isomorphic to the structure of 
rotations of electrons—the up quark is treated as the “isospin-up” state and the down 
quark as the “isospin-down” state. But we are not tempted in this case to say that 
these quark varieties are different states of the same particle type.

The reason we are not tempted, Weingard claims, is that “the symmetry trans-
formations are merely ‘rotations’ in an internal space like isospin space. Because 
such an internal space is, apparently, just a mathematical space, the symmetry trans-
formations just represent the fact that the particles can be transformed into each 
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other” (Weingard 1988, 103). In this case the symmetry does not signify physical 
equivalence of states, but rather the dynamical possibility of one state evolving into 
another. Generalizing from this example, Weingard concludes that SUSY will only 
imply the physical equivalence of bosons and fermions if it is a spacetime symmetry.

I don’t accept Weingard’s reasoning here, however. Many times in physics, rota-
tions within an internal space do imply physical equivalence between the states 
related by these rotations. The most obvious example is phase transformations in 
quantum mechanics: to multiply the global state by a phase is to rotate the state vec-
tor within an internal space. But (almost) no one denies that global states related by 
a phase are the same state physically.

As Weingard observes, isospin rotations aren’t a reason to consider up and 
down quarks to be two states of the same fundamental particle type. But this is not 
because isospin is an internal symmetry. It’s because isospin is only an approximate 
symmetry, at least within the Standard Model—so fundamentally speaking, it isn’t a 
symmetry at all. The fundamental interactions of the theory (given by the Standard 
Model Lagrangian) recognize the difference between these species of quark, assign-
ing them different fundamental masses and charges. Isospin is not a spontaneously 
broken symmetry (as SUSY is conjectured to be)—it is, as they say, broken by the 
Lagrangian.

We may discover in the future that the Standard Model is inaccurate in this 
regard, and the differences between up and down quarks are the result of spontane-
ous symmetry breaking. In that case, I think we should conclude that these different 
species of quark really are different states of the same type of particle, even though 
the symmetry that relates them would be an internal symmetry.

In short, Weingard’s argument fails because he assumes that internal symmetries 
cannot ground physical equivalence of states as spacetime symmetries do. But they 
can—and so there is no obstacle to the ontological unification of ordinary particles 
with their supersymmetric partners, even if SUSY is not understood as a spacetime 
symmetry. If SUSY is a fundamental symmetry, the photon and the photino are best 
understood as two states of the same elementary particle type.

4  Conclusions

Of the interpretive questions raised here, the only one I take to be closed is Wein-
gard’s unification question. Although I have concerns about its ultimate interest as a 
philosophical puzzle as opposed to a purely semantic one, the question of spatiotem-
porality has thus far only been addressed from perspectives, like mine and Menon’s, 
which are broadly sympathetic to functionalism about spacetime. On alternative 
views holding that spacetime has some metaphysically robust essence, the question 
may prove more substantive.

The question of superspace substantivalism is clearly substantive, and although 
I have argued in its favor, there remain many further angles to be considered. One 
example: suppose it turns out that the nonexistence of a superspace formalism can 
be rigorously proved for some non-realistic but conceptually interesting SUSY 
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theories. How should this affect our opinion of whether superspace is fundamental 
in those theories where it does exist?

There also remain many questions aside from these which have not been 
addressed anywhere in the literature. Many of these will require more complicated 
physics than the toy model presented in this paper. For example, I’ve considered 
only “rigid” supersymmetry (supersymmetry which acts as a global symmetry). 
How do the puzzles raised here change in the context of supersymmetry which acts 
non-rigidly, on analogy with a local gauge symmetry? How should our interpreta-
tion of SUSY change in the context of superstring theory? What are the implications 
of supersymmetry breaking for superspace substantivalism? Lastly, I discussed in 
Sect. 3.1 the open question of how to understand the equivalence between compo-
nent and superspace formulations of the same SUSY theory. Given the fervid recent 
interest in theoretical equivalence among philosophers of physics (e.g. Coffey 2014; 
Rosenstock et al. 2015; Barrett and Halvorson 2016), this could prove to be a highly 
illuminating test case.

Although the future of supersymmetry as a theory of our universe is uncertain, 
I see a bright future for the foundational interpretation of supersymmetry. It is too 
puzzling and fruitful a topic to be ignored any longer.9
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