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Abstract
Deliberation is a standard procedure for making decisions in not too large groups. It

has the advantage that group members can learn from each other and that, at the end,

often a consensus emerges that everybody endorses. Unfortunately, however,

implementing a deliberation procedure also has a number of disadvantages due to the

cognitive limitations of the individual groupmembers.What is more, the very process

of deliberation introduces an additional bias, which we investigate in this article. We

demonstrate that even in a group of (boundedly) rational agents the resulting con-

sensus (if there is one) depends on the order in which the group members speak. More

specifically, the group member who speaks first has an unproportionally high impact

on the final decision, which we interpret as a new instance of the well-known

anchoring effect. To show this, we construct and analyze an agent-based model—

inspired by the disagreement debate in social epistemology—and obtain analytical

results for homogeneous groups (i.e., for groups whose members consider each other

as epistemic peers) as well as simulation results for inhomogeneous groups.

1 Introduction

There are numerous instances of group decision-making in our daily practice. For

example, families have to decide on where to spend the summer holidays, funding

agencies have to decide which research projects to support, expert panels have to

decide which advice to give, and juries in courts have to decide whether a defendant
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is guilty or not. Sometimes a decision is made in the light of different preferences

(and each group member wants to get the best out of it for herself), and sometimes

all group members share the conviction that the resulting decision should be best in
some sense that is commonly agreed upon. Juries in court, for example, aim at

making the right decision: every jury member wants that a guilty defendant be

convicted, and no one wants that an innocent defendant be sent to prison. Likewise,

committees such as the Intergovernmental Panel on Climate Change (IPCC)

deliberate to arrive at the best policy recommendations (see, e.g., Oreskes 2004).

Many real-life decisions are somewhere in between these two extremes: personal

preferences play a role, but there is often also some overarching goal that all group

members share. Decisions of funding agencies are a case in point. Here one wants,

on the one hand, to fund the best researchers who have applied. On the other hand,

some research topics are considered to be more important than others, and some

research institutes are better suited than others. Here, the corresponding judgments

may depend on personal preferences and biases.

But how should a group make a decision in a rational way? Which decision-

making procedure is best? Consider a group whose members have conflicting

preferences. For example, after discussing the issue for some time, three family

members have the strong desire to spend the summer holidays at the seaside, while

one family member wants to spend the holidays in the mountains. However, all

family members agree on spending the holidays together. At this point it is unlikely

that one of them will change her mind. And so the best procedure to arrive at a

collective decision is to vote and do what the majority prefers.

In other cases, a deliberation procedure will be best. Let us assume that all group

members agree on a common goal and that additional personal preferences are not

meant to play a role. If, for example, all members of a jury in court want to make the

right decision, then each of them will appreciate the opportunity to learn from the

other jury members and possibly revise their judgments accordingly. The same

holds for expert panels that give advice and make policy recommendations. It is

well known, however, that a variety of biases show up in such decision-making

procedures and that the resulting group verdict may be far from optimal (Sutherland

and Burgman 2015). In a recent monograph, Burgman (2016) elaborates on this:

Strong personalities in groups influence outcomes. People defer to others they

believe have greater authority or who appear confident, even when asked to

make an independent estimate. Participants advocate positions, views are

anchored and change is resisted. People hold covert opinions, and there is

pressure to conform. Some analysts do not acknowledge these problems and

continue as if group estimation is largely detached from subjective

influences—even for circumstances as value-laden, uncertain and politically

charged as assessing radioactive waste risks.

The traditional way of dealing with a group of experts is to herd the group into

a room and ask, what do you think? The group mulls over the question in an

unstructured way and forms a consensus. I term this ‘naive group judgement’.

This approach is perhaps the worst possible technique. It exposes participants

to the countervailing pressures listed above. It leads to groupthink, a process in
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which arbitrary starting positions and the hidden agendas or prejudices of a

few lead a group to a position that does not reflect the individual participants’

private opinions. (Burgman 2016, p. 122)

To get the best out of a group of experts, Burgman recommends structured

procedures such as a modification of the Delphi method called the IDEA protocol.

Here ‘‘IDEA’’ stands for ‘‘Investigate, Discuss, Estimate, Aggregate’’ and Burgman

shows empirically that the procedure often leads to excellent results. And so, in the

end, Burgman arrives at the optimistic conclusion that ‘‘all other things being equal,

groups outperform individuals consistently and by a considerable margin’’

(Burgman 2016, p. 140).

This is of course not entirely surprising. There are many reasons, at least from a

normative perspective, to believe that the collective decisions reached by

deliberation will outperform individual ones. To name some, deliberation makes

information more readily available to everyone, individual arguments and reasons

are reviewed and scrutinized and so mistakes and fallacies are more easily

recognized, and the availability of information makes it harder to manipulate the

decision by controlling the flow of information (see, e.g., Cohen 1989a, b; Estlund

1993, 1994, 1997; Manin 1987; Marti 2006; Nino 1996). As Dryzek and List (2002)

argue, deliberation also helps aligning the preferences of the decision makers

(especially when they do share a common goal, like expert panels or juries), and

creates single-peaked profiles that are easier to aggregate.

In joint work with Steele et al. (2007), Burgman also recommends the use of

consensus models such as an extension of the well-known Lehrer–Wagner model

(Lehrer and Wagner 1981; see also Regan et al. 2016). Such models facilitate a

group consensus which, or so the authors argue (though without providing empirical

evidence), makes all group members happy, as each of them endorses the decision

of the group. However, the improved performance of structured procedures such as

IDEA, even in theory, is highly contingent on the details of their implementation.

What gives deliberation much of its support is the process of discussion, the

exchange of arguments, and that the different group members can learn from each

other. But this process, even in very simple and plausible implementations, may

introduce biases that can, as we will show in this article, fully reverse the benefits,

procedural or epistemic, that the deliberation procedure is considered to have.

To be more precise, any account of structured collective decision-making which

can benefit from the advantages of deliberation has to take some of the details of the

deliberative process into account. We will show that this includes some

inevitable components which introduce biases. To see this, let us notice that

models of deliberation and opinion pooling such as the Lehrer–Wagner model,

although very efficient in generating a consensus, fall short of the spirit of the IDEA

protocol unless one reduces the deliberation process to an iterated voting

procedure.1 These models abstract away the process in which the agents discuss,

exchange arguments and revise their beliefs in light of what they learn from their

1 The same holds for other formal models of deliberation based on simultaneous updates, such as the

Hegselmann–Krause model (see Hegselmann and Krause 2002, 2006, 2009), the Bayesian models by

Hartmann and Rafiee Rad (2018), described in the next section, and Olsson (2011).

123

Anchoring in Deliberations 1043



fellow group members. In doing so, these models ignore some essential aspects of

real deliberation processes.

This article focuses on one important example of this, to wit, the order in which

the individual group members speak in the course of deliberation. Any account of

deliberation that captures the exchange of opinions and arguments and incorporates

the spirit of a debate will inevitably have to deal with the consecutive presentation

of opinions and arguments. This, or so we shall argue, creates an important

additional bias even if the individual groups members are (boundedly) rational in

the way described in our model below. More specifically, the group member who

speaks first often has an unproportionally high impact on the final decision: she

anchors the deliberation. The resulting bias is not due to the cognitive limitations of

the group members (which are well known to exist), but result from the structure of
the procedure.2 We show that this can fully offset both the procedural and the

epistemic benefits of group deliberations.

Before we proceed, a disclaimer is in order: despite an intensive literature search,

we could not find any established empirical evidence for the particular (structural)

anchoring effect we are focusing on here. However, there is a wealth of anecdotal

evidence for it, and in the management science literature, among others Bazerman

(2002), Malhotra et al. (2015), Tuschke et al. (2014) and Zhu (2013) hint at the

possible occurrence of the effect in the decision-making of boards of companies.

We hope that the work presented here will kick off detailed empirical studies which

will lead to a better understanding of the presumed effect.

The remainder of this article is organized as follows. Section 2 discusses two

formal models of deliberation from the literature, on the basis of which our own

model will be built. Section 3 presents our deliberation model, which will then, in

Sect. 4, be used to study the anchoring effect in deliberations. Section 4.1 presents

analytical results for the anchoring effect in homogeneous groups (i.e., groups

whose members consider each other as epistemic peers) and Sect. 4.2 presents

simulation results for inhomogeneous groups. Finally, Sect. 5 summarizes the main

results of this article and points out some open problems and questions which should

be addressed in future research.

2 Models of Deliberation

In this section, we consider two models of deliberation in more detail. It turns out

that neither can be used directly to study the anchoring effect in deliberations.

However, we will see below that the model we propose in the next section combines

elements of both models.

We begin with the Lehrer–Wagner model of deliberation (Lehrer 1976; Lehrer

and Wagner 1981). Consider a group of n members, ordered from 1 to n, that has to
fix the value of a real-valued parameter x. Initially, each group member i submits an

initial value x
ð0Þ
i (with i ¼ 1; . . .; n). Each group member i also assigns a normalized

2 For a review of the literature on the anchoring effect in other contexts, see Mussweiler et al. (2004). See

also Furnham and Boo (2011).
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weight wij to each group member j (including herself). These weights sum up to 1,

i.e.,

Xn

j¼1

wij ¼ 1:

The weights reflect to what extent group member i takes the opinion of group

member j into account. One can also think of them as group member i’s subjective
estimates of the suitably normalized reliabilities of all group members. Now, each

group member i updates her initial value x
ð0Þ
i in the following way (‘‘linear pool-

ing’’) to obtain the new value x
ð1Þ
i :

x
ð1Þ
i :¼

Xn

j¼1

wij x
ð0Þ
j : ð1Þ

If we denote the vector of initial values by V~
ð0Þ

:¼ x
ð0Þ
1 ; . . .; x

ð0Þ
nð ÞT, the vector with

the updated values by V~
ð1Þ

:¼ x
ð1Þ
1 ; . . .; x

ð1Þ
nð ÞT, and the weight matrix by

ðWÞij :¼ wij, then we can write Eq. (1) in a convenient matrix form:

V~
ð1Þ ¼ WV~

ð0Þ
: ð2Þ

Next, we iterate this process and obtain for deliberation round k:

V~
ðkÞ ¼ WV~

ðk�1Þ ¼ Wk V~
ð0Þ
: ð3Þ

Lehrer and Wagner (1981) have shown that this process converges if the matrix W

is connected. In this case, all entries in limk!1 V~
ðkÞ

are identical and all group

members agree on this consensual value. Here are three remarks about the Lehrer–

Wagner model:

1. In each round, all group members update at the same time. Hence the anchoring

effect cannot be studied in this model.

2. The weight matrix W is not derived. It simply contains the weights each group

member assigns to the members of the group. This is disturbing, as one might

expect that the weights a rational group member assigns to all group members

are based on an estimate of their true reliabilities.

3. Lehrer and Wagner considered the model to be a model of rational consensus

formation. Disagreement is impossible if the weight matrix is connected and the

various group members do not assign, e.g., a weight of 1 to themselves. This

requirement reflects the assumption that each group member is willing to learn

from the other group members. As a result, dissent is impossible in a group of

rational agents, which seems too strong, e.g., in situations of high uncertainty.

There are alternative models for the determination of a real-valued parameter by a

group, including the Hegselmann–Krause model (or ‘‘bounded confidence model’’;

see Hegselmann and Krause 2002, 2006, 2009). This model has a number of
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interesting features. However, it uses a synchronic updating rule similar to Eq. (3)

and can therefore not be used to study the anchoring effect either.

Let us now turn to a model of deliberation presented in Hartmann and Rafiee Rad

(2018). This model considers a group of n members, ordered from 1 to n, who
deliberate in a sequence of rounds to eventually agree upon the truth value of a

certain propositional variable (e.g., guilty/not guilty). Each group member enters the

deliberation process with a prior probability of the proposition in question and then

votes for or against the proposition based on that probability. It is also assumed that

each group member has a certain first-order reliability ri 2 ð0; 1Þ to make the right

decision as well as a second-order reliability c
ðkÞ
i 2 ð0; 1Þ which reflects how well

group member i is able to estimate the first-order reliability of the other group

members j 6¼ i in round k. Group members i with a high value of c
ðkÞ
i give a more

accurate assessment of the reliabilities rj of the other group members in round k than

group members with a low value of c
ðkÞ
i . More specifically, the model assumes that

group member i estimates the reliability of a group member j in round k, denoted by

r
ðkÞ
ij , by drawing from a uniform distribution3 around the true value rj:

r
ðkÞ
ij :¼ Uniform distribution max 0; rj þ c

ðkÞ
i � 1

� �
; min 1; rj � c

ðkÞ
i þ 1

� �� �
: ð4Þ

Thus, for c
ðkÞ
i ¼ 0, the uniform distribution extends over the whole interval (0, 1). In

this case group member i assigns a random reliability between 0 and 1 to group

member j. Turning to the other extreme, for c
ðkÞ
i ¼ 1, we obtain r

ðkÞ
ij ¼ rj, i.e., group

member i gives a gives a perfectly accurate assessment of the first-order reliability

of group member j. Taking this into account, each group member updates her prior

probability by conditioning on the votes of the other group members. (Clearly, the

better a group member is in estimating the reliabilities of the other group members,

the better her updated probability will be.) This process is then iterated over several

rounds, assuming that the second-order reliabilities increase from round to round,

reflecting the fact that one learns more and more about the reliability of the other

group members in the course of deliberation, until a consensus is reached. If no

consensus is reached after K0 rounds, then a majority vote decides.

Hartmann and Rafiee Rad (2018) use this Bayesian model to investigate the

question under which conditions a deliberation process tracks the truth better than a

simple voting procedure that is supported by the Condorcet Jury Theorem. This

question does not concern us here. Neither shall we discuss alternative Bayesian

models of deliberation, such as the Laputa model (see, e.g., Olsson 2011), as they

are not relevant for the study of the anchoring effect in deliberations. However, we

will use the idea of first- and second-order reliabilities in our model of the anchoring

effect, to which we turn now.

3 Here we deviate from the model in Hartmann and Rafiee Rad (2018) by taking the estimations from a

uniform distribution instead of a b-distribution.
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3 A Model of the Anchoring Effect in Deliberations

Consider a group of n members, ordered from 1 to n, which has to fix the value of a

real-valued parameter x. Each group member i enters the deliberation process with

an initial value x
ð0Þ
i . These values are not announced publicly right away. As in the

Hartmann–Rafiee Rad model discussed in the previous section, each group member

i is characterized by two reliabilities:

1. A first-order reliability ri 2 ð0; 1Þ that measures how good group member i is in
identifying the right value x.

2. A second-order reliability c
ðkÞ
i 2 ð0; 1Þ that measures how good group member

i is in round k in estimating the first-order reliabilities of the other group

members.

We present the details of our model in four steps.

1. The Deliberation Procedure in a Nutshell The deliberation proceeds in a

number of rounds. Each round consists of n steps. In round 1, step 1, group

member 1 announces her assignment and provides reasons for it. Then all other

group members update their assignments according to rational rules specified

below, taking this new information into account. In step 2, group member 2

announces her assignment and provides reasons for it. Then all other group

members update their assignments according to rational rules specified below,

taking this new information into account. Here we assume that there are no

personal biases. And so on until the end of round 1. Before round 2 starts, the

second-order reliabilities c
ð0Þ
i are increased. This takes into account that the

group members get to know each other better in the course of the deliberation

(e.g., by assessing the reasons the group members give for their assignments),

which has the effect that their ability to assess the first-order reliabilities of the

other group members improves.4 In fact, we assume that the second-order

reliabilities increase after every round until a maximum value Ci � 1 is reached

after K rounds. Afterwards, c
ðkÞ
i remains constant. We use the following

formula:5

c
ðkÞ
i ¼

Ci � c
ð0Þ
ið Þ � k=K þ c

ð0Þ
i ; if 0� k�K;

Ci; if k[K:

�
ð5Þ

4 Note that we do not model the process of giving reasons in detail. This would be the task of a more

complex model. Instead, we focus on the epistemic effect of giving reasons, i.e., that the individual group

members become better in assessing each other’s reliabilities. In this sense our model is effective or

phenomenological. See Frigg and Hartmann (2006) for a discussion of the value of such models. See also

the corresponding discussion in Hartmann and Rafiee Rad (2018). Eva and Hartmann (2018) show how

argumentation can be modeled on the level of individual agents. It will be interesting to explore how these

ideas can be applied and extended to model group argumentation in more detail.
5 It turns out that the results of our simulations, presented in Sect. 4.2, do not depend on the details of this

formula. Other monotonically increasing functions of k lead to similar results. The linear dependence is

chosen for reasons of simplicity.
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Note that updating the second-order reliabilities justifies that the deliberation

process proceeds in several rounds. In each round, the group members learn

something new about the reliabilities of their fellow group members. And this is

why they keep on updating. However, it seems natural to stop the updating

procedure after a finite number K0 [K of rounds. Clearly, the value of K0 will

depend on contextual factors such as how patient the individual group members

are, how much time there is for the deliberation, etc. If no consensus is reached

after K0 rounds, then the straight average of all assignments in the last round

will be taken.

2. Discrete First-Order Reliabilities While each group member i has a first-order

reliability ri 2 ð0; 1Þ, we assume that the reliabilities that are actually used by

the group members have discrete values. This simplifies the computations and is

psychologically more plausible. (This assumption, which reflects the bounded

rationality of the group members, will be relaxed later; see Figs. 8, 9.) More

specifically, we assume that there are only three possible reliability values:

H (‘High’), M (‘Medium’), and L (‘Low’). We furthermore assume that every

group member i has perfect access to her own first-order reliability6 and assigns

herself a reliability of

• H if ri � 2=3,
• L if ri � 1=3, and
• M otherwise.

3. Estimating the Discrete First-Order Reliabilities of Other Group Members
Using the procedure described in the previous section, each group member i
estimates the first-order reliability r

ðkÞ
ij of the other agents in round k. This value

is mapped onto H, M, or L as described above.

4. The Updating Procedure After one group member has announced her

assignment, all other group members update their original assignments and

their own reliability assignment according to the following rules. The rules

express group member i’s assignment of the value of the parameter x
ðkþ1Þ
i in

round k þ 1 in terms of her assignment in round k and the assignment of the

person who speaks (¼ group member j, a.k.a. the presenter) in round k. They
are inspired by Elga’s (2007) contribution to the debate about rational

disagreement in the literature on social epistemology. It is worth noting,

however, that Elga’s conciliatory stance on disagreement is a matter of

controversy in the literature on disagreement (see esp. Jehle and Fitelson 2009;

Kelly 2010). Hence our choice is, at last to some extent, a convenient

simplifying assumption, and we submit that more work needs to be done to

substantiate it or to identify alternative individual updating procedures in the

6 This is a strong assumption, which can easily be relaxed. Indeed, psychological evidence suggests that

people are not that good in assessing their own reliabilities (see Burgman 2016). Notice, however, that we

only need to assume that each group member has access to her own reliability bracket (i.e., H,M, or L) as
opposed to the exact value of her own first-order reliability, since only those are used in the computations.
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light of disagreement.

Presented in first-person perspective, the updating proceeds as follows:

(a) I am H (orM, or L)7 and the presenter is my epistemic peer, i.e., she is (on
my estimation) also H (or M, or L, respectively). In this case, my new

assignment is the straight average of her assignment and my original

assignment:

x
ðkþ1Þ
i ¼ 1

2
x
ðkÞ
i þ x

ðkÞ
jð Þ:

My reliability value (i.e., the reliability value that I use in the next round

to update my assessment) remains H (or M, or L, respectively).
(b) I am H, the presenter is (on my estimation) L. In this case I disregard the

opinion of the presenter and stick to my original assignment:

x
ðkþ1Þ
i ¼ x

ðkÞ
i :

My reliability remains H.
(c) I am L, the presenter is (on my estimation) H. In this case I accept the

opinion of the presenter:

x
ðkþ1Þ
i ¼ x

ðkÞ
j :

My reliability changes to H.
(d) I am H (or M), the presenter is (on my estimation) M (or L, respectively).

In this case, my new assignment is the weighted average of her and my

original assignment:

x
ðkþ1Þ
i ¼ 1

4
3 x

ðkÞ
i þ x

ðkÞ
jð Þ:

My reliability value remains H (or M, respectively).

(e) I am L (or M), the presenter is (on my estimation) M (or H, respectively).
In this case, my new assignment is the weighted average of her and my

original assignment:

x
ðkþ1Þ
i ¼ 1

4
x
ðkÞ
i þ 3 x

ðkÞ
jð Þ:

My reliability value changes to M (or H, respectively).

Rule (a) expresses the Equal Weight View (Elga 2007). Rules (b) and (c) are

inspired by Elga’s discussion of the guru case. Rules (d) and (e) use weights

which reflect that the reliability assignments in question are one step apart from

each other.

7 For ease of writing, we assume that I (i.e., group member i) am one of the other group members, i.e., ‘‘I

am H’’ is shorthand for ‘‘My reliability value is H’’ etc.
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Before we present our results, we would like to make two remarks:

1. Our model is closely related to the Lehrer–Wagner model. However, while the

weight matrix W used in the Lehrer–Wagner model contains the (subjective)

weights each group member assigns to the members of the group, our model

allows for the calculation of W from assumptions about the deliberation

procedure and assumptions about the individual updating method. To see this,

note that the updating procedure in each step in a given round can be

represented by a n� n matrix. At the end of a round, n such matrices obtain (as

every one of the n group members speaks in each round) and the resulting

updating can be represented by the product of these n matrices (in the right

order). At the end of round 1, this product is the Lehrer–Wagner weight matrix

W mentioned above [see Eqs. (2), (3)]. Note, though, that in our model the

effective weight matrix of round 2 differs from the effective weight matrix of

round 1, as the estimated reliabilities change from round to round. In our

exposition of the Lehrer–Wagner model we assumed that the weight matrix W
does not change. However, such a change is easy to model: one simply has to

replaceWk byWk � � �W2 W1 in Eq. (3), whereWi is the weight matrix of round

i. For details and a discussion, see Lehrer and Wagner (1981).

2. Our model assumes discrete reliability values. This is psychologically plausible

and simplifies the computations. At the same time, using discrete reliabilities

disregards valuable information. We will show below that the anchoring effect

is a consequence of our model, but one may wonder whether the effect

disappears if one instead considers agents who update on the basis of more fine-

grained reliability brackets or who even update directly on the basis of the

(estimated) real-valued reliabilities. Perhaps the effect is, after all, only the

result of the fact that the group members are not fully rational. We will revisit

this question at the end of Sect. 4.2.

4 Results

Let us now explore the consequences of our model. To do so, we study two types of

groups separately: (1) In homogeneous groups, the different group members

consider each other as epistemic peers. This case can be analyzed analytically and

we will present several theorems in Sect. 4.1. (2) In inhomogeneous groups,
different group members have different reliabilities. We will present the results of

our computer simulations of this case in Sect. 4.2.

4.1 Homogeneous Groups

In a homogeneous group, all group members consider each other as epistemic peers

and only Rule (a) from the previous section applies. Let V~ :¼ ðx1; . . .; xnÞT be the

vector of the assignments of the group members 1; . . .; n at some point in the

deliberation process. Let us now assume that group member i speaks and all other

group members update their assignments on that information. As all group members

123

1050 S. Hartmann, S. R. Rad



are epistemic peers, each group member’s new assignment is the straight average of

her own previous assignment and the previous assignment of the speaker. Denoting

the new vector by V 0~ :¼ ðx01; . . .; x0nÞ
T
, this can be formally expressed as follows:

V 0~ ¼ 1=2Bi
n � V~

Here Bi
n :¼ Ai

n þ In, where Ai
n is an n� n matrix with 1’s in the ith column and

zeros elsewhere. In is the n� n unit matrix.

Let us now denote the vector of initial assignments by V~
ð0Þ

:¼ x
ð0Þ
1 ; . . .; x

ð0Þ
nð ÞT.

The vector V~
ð1Þ

after one round of deliberation is then given by

V~
ð1Þ ¼ 1

2n
Bn
n � Bn�1

n � � �B1
n

� �
� V~ð0Þ ¼: B � V~ð0Þ

;

with the weight matrix B. Note the formal analogy to Eq. (2). After k rounds of

deliberation, we obtain8

V~
ðkÞ ¼ Bk � V~ð0Þ

: ð6Þ

Building on the results of Lehrer and Wagner, we first show that the deliberation

process converges.

Theorem 1 The deliberation process described above converges to a consensus.

Proof It is easy to check by induction on k that Pk
i¼1B

i
n has exclusively positive

entries in columns 1; . . .; k. Hence B only has positive entries. The theorem then

follows from Theorem 7.1 in Lehrer and Wagner (1981), p. 130. h

Next, we investigate the anchoring effect. To do so, we have to show that the first

speaker gets a higher effective weight in the final weight matrix (limk!1 Bk) than

all other speakers.9 This is stated in the following theorem.

Theorem 2 In the consensus value reached by a homogeneous group through the
process of deliberation described above, the opinion of the first speaker receives a
higher weight than the opinion of any other group member. Moreover, the opinion
of the ith speaker receives a higher weight than all subsequent speakers.

The proof is given in ‘‘Appendix 1’’.

8 Note that the second-order reliabilities do not change here: the group members consider each other as

epistemic peers during the whole deliberation process. Our discussion is therefore analogous to the

original Lehrer–Wagner model where the weight matrix is the same in all deliberation rounds. This

assumption is not uncontroversial (see, e.g., Hartmann et al. 2009 and references cited therein). Lehrer

and Wagner (1981) have also relaxed this assumption and investigated the question under which

conditions a consensus emerges nevertheless in their model. In the model considered in this section, the

assumption allows us to derive some interesting analytical results. For results which do not rely on this

assumption, see Sect. 4.2.
9 Arguably, also the last speaker has an important impact on the final decision. See, e.g., Mussweiler

et al. (2004), p. 183. Analyzing this instance of the anchoring effect requires a model that differs from the

model that we present in this article. We leave this for another occasion.
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Finally, we show that Theorem 2 also holds for small deviations from the equal

weight assignment. If the group members consider small deviations from the equal

weights by assigning ð1� �Þ=2 weight to the speaker and ð1þ �Þ=2 to themselves

(for some small �), then the above updating procedure can be represented as before.

In this case, the update will again be given by a matrix multiplication, replacing the

matrices Bi
n by

Bi0
n :¼ Bi

n þ �Ei
n;

where

E j
n :¼ Bj

n � 2Aj
n:

We then obtain after one round of deliberation:

V~
ð1Þ ¼ 1

2n

Yn

i¼1

Bi0
n � V~

ð0Þ

After k rounds of deliberation, the assignments are given by

V~
ðkÞ ¼ 1

2n

Yn

i¼1

Bi0
n

 !k

V~
ð0Þ
:

The following theorem states our result:

Theorem 3 For a sufficiently small �, the process of deliberation described above
with weights set as ð1� �Þ=2 and ð1þ �Þ=2 will converge to a consensus. That is, if

V~ ¼ lim
k!1

1

2n

Yn

i¼1

Bi0
n

 !k

V~
ð0Þ

then hV~ii ¼ hV~ij for i; j ¼ 1; . . .; n. Moreover, in the consensus the initial assign-

ment of each speaker receives a higher weight than the initial assignment of all
subsequent speakers.

The proof and some more details are given in ‘‘Appendix 2’’.

4.2 Inhomogeneous Groups

Let us now turn to inhomogeneous groups, where the different group members have

different first-order reliabilities. Here, each group member has to estimate the first-

order reliabilities of the other group members to properly take their verdict into

account. As it is not possible to obtain analytical solutions in such cases, we run

computer simulations. The results will of course strongly depend on the distribution

of reliabilities one starts with. We will study, for example, groups in which the first

speaker has a lower first-order reliability than the rest of the group, as well as groups

in which some members are more reliable and some members less reliable than the

first speaker. Of course there will be reliability assignments for which the
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emergence or non-emergence of the anchoring effect is trivial. If the first speaker is

highly reliable while the rest of the group has very low reliabilities then they will all

simply adopt the assignment of the first speaker and the anchoring effect is

inevitable. Similarly, the anchoring effect will not emerge if the first speaker has an

extremely low reliability and the rest of the group members are all highly reliable.

Thus the interesting cases are those groups where reliabilities of high, medium and/

or low are mixed in such a way that a considerable part of the group will not

abandon their own assignments in favor of that of the first speaker. It is in particular

interesting to see the emergence of the anchoring effect in groups where a large

portion of the group members have reliabilities higher than the first speaker (but not

high enough to completely discard her opinion).

Let us now present the results of our simulations of the deliberation process for

different groups. We compute the probability that the final consensus of the group is

closest to the initial assignment of the first speaker (call this proposition A) and plot

this probability as a function of the group size unless stated otherwise.We shall denote

the same proposition for the middle and the last speaker by Amiddle and Alast,

respectively. The second-order reliabilities are assumed to be the same for all group

members. Notice that a second-order reliability of 0.8 implies that the estimation is

made in intervals of length of at least 0.2. This means that the group members can

possibly assign wrong reliability brackets to their fellow group members. The

simulation algorithm and somemore technical details are described in ‘‘Appendix 3’’.

Figure 1 shows the anchoring effect for a group in which the first speaker has a

reliability of 0.85 and the rest of the group have reliabilities of 0.75 and 0.4, equally

distributed. So at least half of the group members have reliabilities close to that of

the first speaker. Given the assignment of reliability brackets, the first speaker will

on average be assigned high reliability (H), half of the group will be given

reliabilities high or medium (H or M) and the other half will be given reliabilities

M or L.
Figure 2(i), (ii) shows the same group as in Fig. 1, where the group member with

high reliability (0.85) is the middle speaker and the last speaker respectively. The

Fig. 1 The probability of A as a function of the group size. The first speaker has a reliability of 0.85; the
other group members have reliabilities of 0.75 and 0.4 (equally distributed)
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plots in Fig. 2(i), (ii) shows the probability that the final consensus is closest to the

original submission of this group member (the middle speaker and the last speaker,

respectively).

Comparing Fig. 1 with Fig. 2(i), (ii) shows how the anchoring effect depends on

the speaker’s position in the group. In particular, the comparison of the plots

suggests that the anchoring effect depends more on the speaker’s position in the

group than on her reliability, as the same member placed in the middle or at the end

will result in a much smaller anchoring effect. To see this more clearly one can

compare the anchoring effect for the first speaker in Fig. 1 with that of the middle

and the last speaker in Fig. 3(i), (ii) respectively, where the middle and the last

speakers have significantly higher reliabilities than the rest of the group.

Next we study how the first speaker’s reliability influences the anchoring effect.

The first speaker in Fig. 1 has a higher reliability than the rest of the group. This,

Fig. 2 The probability of Amiddle and Alast as a function of the group size. (i) (lighter bars) The middle
speaker has a reliability of 0.85; the other group members have reliabilities of 0.75 and 0.4 (equally
distributed). (ii) (darker bars) The last speaker has a reliability of 0.85; the other group members have
reliabilities of 0.75 and 0.4 (equally distributed)

Fig. 3 The probability of Amiddle and Alast as a function of the group size. (i) (lighter bars) The middle
speaker has a reliability of 0.85; the other group members have reliabilities of 0.55 and 0.4 (equally
distributed). (ii) (darker bars) The last speaker has a reliability of 0.85; the other group members have
reliabilities of 0.55 and 0.4 (equally distributed)
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however, is not necessary for the anchoring effect; the effect emerges even when the

first speaker is not particularly reliable in comparison with the other group

members. Figure 4 shows the anchoring effect for two groups in which all [Fig. 4(i)]

or a considerable number of group members [Fig. 4(ii)] have reliabilities higher

than the first speaker.

Although the anchoring effect also shows up when the first speaker does not have

a particularly high reliability, the comparison of Figs. 1 and 4 suggests a positive

correlation between the reliability of the first speaker and the intensity of the

anchoring effect, as one would expect. To see this more clearly, Fig. 5 shows the

probability of A as a function of the first speaker’s reliability for a group of size 11

where the rest of the group members have reliabilities of 0.7 and 0.5.

The next two graphs show the anchoring effect for two groups with random

distributions of reliabilities. In Fig. 6, the reliabilities of the group members are

coming from a uniform distribution over the interval (0, 1). In Fig. 7, the

reliabilities are assigned through a b-distribution with parameters a ¼ b ¼ 2 over

the interval (0, 1). In both cases the first speaker has a reliability of 0.5.

So far our simulations have assumed that there are only three reliability brackets:

H, M and L. One may wonder whether the anchoring effect is simply a consequence

of this assumption, which models the group members as not fully rational. Fully

rational agents will arguably take all available information (i.e., in the present case,

their most precise assessment of the reliability of the other group members) into

account. We will now investigate to what extent our results presented above change

if the group members consider a higher number of reliability brackets.

The effect of increasing the number of reliability brackets depends on how the

reliability of the first speaker compares to that of the majority of the group members.

In general, and as one would expect, for groups where the first speaker is more

reliable than the majority of the group members, increasing the number of reliability

brackets increases the anchoring effect, while for groups with a less reliable first

Fig. 4 The probability of A as a function of the group size. (i) (lighter bars) The first speaker has a
reliability of 0.6; the other group members have reliabilities of 0.9. (ii) (darker bars) The first speaker has
a reliability of 0.5; other group members have reliabilities of 0.9 and 0.7 (equally distributed)
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Fig. 5 The probability of A as a function of the first speaker’s reliability for a group of size 11. The other
group members have reliabilities of 0.7 and 0.5 (equally distributed)

Fig. 6 The probability of A as a function of the group size. The first speaker has a reliability of 0.5; the
other group members have reliabilities randomly assigned from a uniform distribution

Fig. 7 The probability of A as a function of the group size. The first speaker has a reliability of 0.5; the
other group members have reliabilities randomly assigned from a b-distribution
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speaker, increasing the number of reliability brackets has the opposite effect of

reducing the anchoring effect. However, our simulations suggest that for groups

where the majority of group members have reliabilities close to that of the first

speaker, increasing the number of reliability brackets does not make a significant

difference, especially for larger groups. This is not all that surprising: If the other

group members have reliabilities close to that of the first speaker, increasing the

number of reliability brackets will still keep them in a reliability bracket that is the

same or close to that of the first speaker. Thus, increasing the number of reliability

brackets does not engender a significant change in the weights that the other group

members assign to the first speaker. Figure 8a, b show the dependence of the

anchoring effect on the number of reliability brackets for two such groups. The plots

suggest that although changing the number of reliability brackets can influence the

anchoring effect in these groups in both directions, the changes are small, and

negligible for medium and large groups.

In contrast, when there is a significant difference between the reliability of the

first speaker and those of the majority of the group members, increasing the number

of reliability brackets makes a visible change to the anchoring effect. This will lead

to a considerable increase of the anchoring effect when the first speaker is far more

reliable than the majority, and to a decrease when she is significantly less reliable.

See, for example, Fig. 9a, where the first speaker has a reliability of 0.85 and the

rest of the group have reliabilities of 0.4 and 0.6. Notice that for this group, when we

restrict ourselves to three reliability brackets, the first speaker will, on average, be

estimated as highly reliable (H) and most of the other group members will, on

average, be perceived as having a medium (M) reliability value; the opinions will be

weighted accordingly. When we move to a higher number of reliability brackets, the

first speaker will still be estimated as highly reliable, while at least half of the other

group members will now be assigned a reliability value lower than medium; hence

the first speaker will receive a higher relative weight. This will naturally increase the

anchoring effect, as the plot shows. Figure 9b shows the reverse situation, where the

first speaker has a reliability of 0.4 while the rest of the group have reliabilities of

0.6 and 0.85. As expected, increasing the number of reliability brackets will clearly

reduce the anchoring effect. Notice, however, that in all these cases the anchoring

(a) (b)

Fig. 8 The probability of A as a function of the group size for different numbers of reliability brackets.
a The first speaker has a reliability of 0.55; the other group members have reliabilities of 0.7 and 0.65
(equally distributed). b The first speaker has a reliability of 0.7; the other group members have reliabilities
of 0.5 and 0.65 (equally distributed)
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effect persists; it is only the extent of the effect that changes with an increase in the

number of reliability brackets. This supports the claim that the anchoring effect is

indeed a result of the order in which the group members express their opinions, but

that the extent of the anchoring effect can be influenced by the number of reliability

brackets.

Finally, we study the effect of second-order reliability on the anchoring effect.10

A group member’s second-order reliability measures how good she is in assessing

the (first-order) reliabilities of the other group members. We first note that changing

the second-order reliability in an almost homogeneous group does not have much of

an effect, as any effect will average out over several rounds and several runs of the

simulation. However, if the first-order reliability of the first speaker differs

significantly from those of the other group members, then a change of the second-

order reliability will have a considerable effect, similar to changing the number of

reliability brackets as discussed above: If the first speaker is significantly more

reliable than the majority of the group members, increasing the second-order

reliability will only make this difference more obvious to the other group members

and hence result in the assignment of a higher weight to the first speaker by the other

group members. This, in turn, makes the anchoring effect more pronounced. In

contrast, if the first speaker is significantly less reliable than the majority of the other

group members, increasing the second-order reliability will result in a lower weight

assigned to the first speaker by the other group members. This, in turn, reduces the

anchoring effect. Figure 10 illustrates this case. Here we consider a group of size 11

where the first speaker is highly reliable (reliability ¼ 0:9), while the rest of the

group has a rather low reliability of 0.3. We see that the anchoring effect increases

with increasing second-order reliability.

(a) (b)

Fig. 9 The probability of A as a function of group size for different numbers of reliability brackets. a The
first speaker has a reliability of 0.85; the other group members have reliabilities of 0.4 and 0.6 (equally
distributed). b The first speaker has a reliability of 0.4; the other group members have reliabilities of 0.6
and 0.85 (equally distributed)

10 Note that we assume throughout this study that all group members have the same second-order

reliability. This is an unrealistic assumption, but it is acceptable in the context of this paper as our main

goal is to show that the (structural) anchoring effect can occur in deliberations.
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5 Conclusions

It has been argued that group deliberation has both epistemic and procedural

advantages compared to other collective decision-making procedures. An important

issue in this regard, however, is that the advantages of deliberative decision-making

depend strongly on the actual implementation of the process. We therefore argued

that it is pertinent to take into account all aspects relevant to the implementation of

the deliberation process if one wants to correctly judge the performance of the

deliberative procedure (and if one wants to compare it to other group decision-

making procedures). A problem that arises in this context is that the process of

exchanging arguments and reasons, and the revision of individual opinions in light

of what group members learn from their fellow group members, i.e., what grants a

deliberative procedure much of its support, may also introduce unwanted biases.

One example of such a bias is related to the fact that in real deliberations the

different group members speak one after the other (at least if things are somehow

organized) which may lead to an order-dependence of the resulting consensus (if a

consensus emerges). It may happen that the first speaker anchors the deliberation

and that she therefore has an unproportionally high impact on the final group

decision.

‘‘Anchoring’’ is an umbrella term referring to a wide range of biases where

decision makers assign an unjustifiably high weight to certain pieces of (sometimes

even irrelevant) information (see, e.g., Mussweiler et al. 2004). Different types of

anchoring associated with both individual and collective decision-making have been

investigated in the literature, mainly in terms of the cognitive limitations of the

agents involved. In this article, we have suggested a new instance of the anchoring

effect which results from the structure of the deliberation procedure and not from

the cognitive limitations of the individual group members. To do so, we constructed

a simple model of the deliberation procedure and assumed that the individual group

members are (boundedly) rational, making sure that they are not prone to individual

biases. We then showed that the unwanted anchoring effect emerges under a wide

range of conditions, even if the first speaker is considered by the other group

Fig. 10 The probability of A as a function of the second-order reliability for a group of size 11. The first
speaker has a (first-order) reliability of 0.85; the other group members have (first-order) reliabilities of 0.3
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members to be not particularly reliable. This suggests that the effect will be even

more pronounced if some of the idealizations of our model are removed. As a first

step in this direction, we have relaxed the (perhaps psychologically realistic)

assumption of considering only three reliability brackets and shown that the effect

persists. But more work needs to be done in this direction. It is, however, fair to

conclude that our results challenge the deliberative account of decision-making as

well as some of the work that goes under the label ‘‘deliberative democracy’’. To

respond to our challenge, it has to be shown how pertinent aspects of the

deliberation procedure (such as the exchange of arguments and reasons over time)

can be taken into account without suffering from an order-dependence bias.

In future work, we plan to extend our studies in several directions. Here are three

of them:

1. Alternative models Our results might still be an artifact of the idealizations

made in the proposed model. We do not think so, as the effect occurs for a wide

range of parameters and is stable (though less pronounced) if the number of

reliability brackets is increased. And yet, it will be important to study variants of

the present model (imposing, e.g., also network structures) and to explore the

possible occurrence of the anchoring effect in deliberations in alternative

modeling frameworks such as a suitably modified Hegselmann–Krause model.

(This model will also allow us to explore the possible influence of the anchoring

effect on the phenomenon of opinion polarization.)

2. Empirical studies It would be good to have detailed empirical studies that

provide hard evidence for (and more details of) the anchoring effect in

deliberations as explored in this paper. Do the predictions of our model hold in

such experiments? Does, for example, the second speaker also have a

considerable influence on the consensus that eventually emerges? Which role

does the reliability of the group members play? And: How, if at all, does the

anchoring effect differ in experiments in the lab and in field experiments with,

say, boards of companies?

3. Interventions It would be interesting to explore which constraints on (or designs

of) the deliberation procedure may help preventing, or at least reduce, the

anchoring effect in deliberations. This task could first be addressed in computer

simulations, building on and extending the present model. Subsequently,

laboratory experiments could be carried out on the basis of the simulation

results to test them empirically.
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Appendix 1: Proof of Theorem 2

We first prove the following lemma:

Lemma 1 For 1�m� n;

Bm
n � Bm�1

n � � �B1
n ¼

�Bm 0

Cm In�m

� �
;

where

�Bm :¼

2m�1 þ 1 2m�2 . . . 20

2m�1 2m�2 þ 1 . . . 20

2m�1 2m�2 . . . 20

..

. ..
. ..

.

2m�1 2m�2 . . . 20 þ 1

0

BBBBBB@

1

CCCCCCA

m�m

;

0 is the m� ðn� mÞ zero matrix, In�m is the ðn� mÞ � ðn� mÞ identity matrix and

Cm :¼

2m�1 2m�2 . . . 20

2m�1 2m�2 . . . 20

..

. ..
. ..

.

2m�1 2m�2 . . . 20

0

BBBB@

1

CCCCA

ðn�mÞ�m

:

Proof We prove the lemma by induction. For m ¼ 1 the result is trivially true. Next,

we suppose that it is true for m� 1 and show that it also holds for mþ 1.

Bmþ1
n � Bm�1

n � � �B1
n ¼ Bmþ1

n �
�Bm 0

Cm In�m

� �

¼ ðAmþ1
n þ InÞ �

�Bm 0

Cm In�m

� �

¼ Amþ1
n �

�Bm 0

Cm In�m

� �
þ In �

�Bm 0

Cm In�m

� �

¼
�Bmþ1 0

Cmþ1 In�ðmþ1Þ

 !
:

This completes the proof of Lemma 1. h

Corollary 1 The result of updating the assignments V~
ð0Þ

through one round of
deliberation is given by
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V~
ð1Þ ¼ 1

2n
Bn
n � Bn�1

n � � �B1
n

� �
V~

ð0Þ

¼ 1

2n

2n�1 2n�2 . . . 20

2n�1 2m�2 . . . 20

..

. ..
. ..

.

2n�1 2n�2 . . . 20

0
BBBB@

1
CCCCA

þ 1

2n
In

0
BBBB@

1
CCCCA
V~

ð0Þ
:

Proposition 1 Let

B :¼ 1

2n

Yn

i¼1

Bi
n �

1

2n
In;

then the result of updating the assignments V~
ð0Þ

through k rounds of deliberation is
given by

V~
ðkÞ ¼ 1

2n
Bn
n � Bn�1

n � � �B1
n

� �� �k

�V~ð0Þ

¼
Xk

t¼1

k

t

� �
ð2n � 1Þt�1

ð2nÞk�1
Bþ 1

2nk
In

 !
� V~ð0Þ

:

Proof Let bi :¼
Pn

j¼1hBiij. Notice that by Lemma 1, in matrix B all rows are equal,

so b1 ¼ b2 ¼ � � � ¼ bn ¼ b, where b :¼
Pn

i¼1 2
�i ¼ 1� 2�n. Moreover, we have

Bk ¼ bk�1B. Hence,

V~
ðkÞ ¼ 1

2n

Yn

i¼1

Bi
n

 !k

V~
ð0Þ ¼ Bþ 1

2n
In

� �k

V~
ð0Þ

¼ 1

2nk
In þ

Xk

t¼1

k

t

� �
1

2n
In

� �k�t

Bt

 !
V~

ð0Þ

¼ 1

2nk
In þ

Xk

t¼1

k

t

� �
1

2n
In

� �k�t

ðbt�1BÞ
 !

V~
ð0Þ

¼ 1

2nk
In þ

Xk

t¼1

k

t

� �
1� 1

2n

� �t�1

2nðk�tÞ B

 !
V~

ð0Þ

¼ 1

2nk
In þ

Xk

t¼1

k

t

� �
ð2n � 1Þt�1

2nðk�1Þ B

 !
V~

ð0Þ
;

which completes the proof. h
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Proof of Theorem 2 Let V~ be the asymptotic result of the deliberation process and let

wi be the weight assigned to the ith speaker in the limit. By Proposition 1,

V~ ¼ lim
k!1

Xk

t¼1

k

t

� �
ð2n � 1Þt�1

ð2nÞk�1
Bþ 1

2nk
In

 !
V~

ð0Þ

¼ lim
k!1

Xk

t¼1

k

t

� �
ð2n � 1Þt�1

ð2nÞk�1

 !
BV~

ð0Þ

¼ d BV~
ð0Þ
;

where d :¼ limk!1
Pk

t¼1

k
t

� �
ð2n�1Þt�1

ð2nÞk�1 . Then, by Proposition 1, the weight assigned

to the ith speaker is given by wi ¼ d � 2n�i. Hence, w1 �w2 � � � � �wn. h

Appendix 2: Stability Result

In this Appendix we will investigate the stability of our results for homogeneous

groups by showing that the results still hold for small changes in the equal-weights

assumption. Here the group members consider small deviations from the equal

weights by assigning ð1� �Þ=2 to the speaker and ð1þ �Þ=2 to themselves. As

before, after the ith group member speaks, everyone will update their assignment as

a weighted average of their current value and that announced by the ith speaker

while assigning a slightly higher/lower weight to themselves as opposed to the

speaker. This process can again be represented by matrix multiplication as before by

replacing the matrices Bi
n with

Bi0
n ¼ Bi

n þ �Ei
n;

where

E j
n ¼ Bj

n � 2Aj
n:

Thus, for example, in a group of size 3, the matrix

B2
3 ¼

1 1 0

0 2 0

0 1 1

0
B@

1
CA

will be replaced by
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B20
3 ¼

1 1 0

0 2 0

0 1 1

0
B@

1
CAþ �

1 1 0

0 2 0

0 1 1

0
B@

1
CA� 2

0 1 0

0 1 0

0 1 0

0
B@

1
CA

0
B@

1
CA

¼
1 1 0

0 2 0

0 1 1

0
B@

1
CAþ �

1 � 1 0

0 0 0

0 � 1 1

0
B@

1
CA

¼
1þ � 1� � 0

0 2 0

0 1� � 1þ �

0

B@

1

CA:

With this, we obtain the following result after one round of deliberation:

V~
ð1Þ ¼ 1

2n

Yn

i¼1

Bi0
n � V~

ð0Þ
:

Similarly, after k rounds of deliberation we shall have

V~
ðkÞ ¼ 1

2n

Yn

i¼1

Bi0
n

 !k

V~
ð0Þ
:

We are now in a position to prove the corresponding versions of Lemma 1 for this

setting.

Lemma 2 Let the Ai
n’s be the matrices with 1 on the ith column and zero elsewhere

and B j
n ¼ In þ Ai

n as before. Then

Yn

k¼jþ1

Bk
n

 !
Aj
n

Yj�1

k¼1

Bk
n

 !
¼ 2n�jA j

n þ
Xj�1

k¼1

2n�1�kAk
n:

Proof

Yn

k¼jþ1

Bk
n

 !
Aj
n

Yj�1

k¼1

Bk
n

 !
¼

Yn

k¼jþ1

ðIn þ Ak
nÞ

 !
Aj
n

Yj�1

k¼1

Bk
n

 !
:

First notice that for all i; j ¼ 1; . . .; n we have Ai
n � Aj

n ¼ Aj
n. Hence,

Yn

k¼jþ1

Bk
n

 !
Aj
n

Yj�1

k¼1

Bk
n

 !
¼

Yn

k¼jþ1

ðIn þ Ak
nÞ

 !
Aj
n

Yj�1

k¼1

Bk
n

 !
¼ 2n�jA j

n

Yj�1

k¼1

Bk
n:

From Lemma 1 we have

Yj�1

k¼1

Bk
n ¼ In þ

Xj�1

k¼1

2j�1�kAk
n:
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Thus

Yn

k¼jþ1

Bk
n

 !
Aj
n

Yj�1

k¼1

Bk
n

 !
¼ 2n�jA j

n In þ
Xj�1

k¼1

2j�1�kAk
n

 !

¼ 2n�jA j
n þ 2n�jA j

n

Xj�1

k¼1

2j�1�kAk
n

¼ 2n�jA j
n þ

Xj�1

k¼1

2n�1�kAk
n;

as required. h

Next we consider a modified version of Proposition 1.

Proposition 2

1

2n

Yn

i¼1

Bi0
n ¼ 1

2n

Yn

i¼1

Bi
n þ

n �

2n
In þ �

Xn

j¼1

ðj� 2Þ
2 j

A j
n

 !
þ Oð�2Þ

2n
:

Proof

1

2n

Yn

i¼1

Bi0
n ¼

1

2n

Yn

i¼1

Bi
n þ �Ei

n

� �

¼ 1

2n

Yn

i¼1

Bi
n þ �

Xn

j¼1

Yn

k¼jþ1

Bk
n

 !
E j
n

Yj�1

k¼1

Bk
n

 !
þ Oð�2Þ

 !

¼ 1

2n

Yn

i¼1

Bi
n þ �

Xn

j¼1

Yn

k¼jþ1

Bk
n

 !
ðBj

n � 2Aj
nÞ

Yj�1

k¼1

Bk
n

 !
þ Oð�2Þ

 !

¼ 1

2n

Yn

i¼1

Bi
n þ

�

2n

Xn

j¼1

Yn

k¼1

Bk
n � 2

Yn

k¼jþ1

Bk
n

 !
Aj
n

Yj�1

k¼1

Bk
n

 ! !
þ Oð�2Þ

2n

¼ 1

2n

Yn

i¼1

Bi
n þ

�

2n

Xn

j¼1

Yn

k¼1

Bk
n � 2 2n�jA j

n þ
Xj�1

k¼1

2n�1�kAk
n

 ! !
þ Oð�2Þ

2n

¼ 1

2n

Yn

i¼1

Bi
n þ

�

2n

Xn

j¼1

In þ
Xn

k¼1

2n�kAk
n

 ! 

� 2n�jþ1Aj
n þ

Xj�1

k¼1

2n�kAk
n

 !!
þ Oð�2Þ

2n

¼ 1

2n

Yn

i¼1

Bi
n þ

�

2n

Xn

j¼1

In � 2n�jþ1Aj
n þ

Xn

k¼j

2n�kAk
n

 !
þ Oð�2Þ

2n
:

Simplifying things further, we obtain:
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1

2n

Yn

i¼1

Bi0
n ¼

1

2n

Yn

i¼1

Bi
n þ

n �

2n
In þ

�

2n

Xn

j¼1

�2n�jþ1Aj
n þ

Xn

k¼j

2n�kAk
n

 !
þ Oð�2Þ

2n

¼ 1

2n

Yn

i¼1

Bi
n þ

n �

2n
In þ

�

2n

Xn

j¼1

�2n�jA j
n þ

Xn

k¼jþ1

2n�kAk
n

 !
þ Oð�2Þ

2n

¼ 1

2n

Yn

i¼1

Bi
n þ

n �

2n
In þ

�

2n

Xn

j¼1

Xn

k¼jþ1

2n�kAk
n

 !
�

Xn

j¼1

2n�jA j
n

 ! !
þ Oð�2Þ

2n

¼ 1

2n

Yn

i¼1

Bi
n þ

n �

2n
In þ

�

2n

Xn

j¼1

ðj� 1Þ2n�jA j
n �

Xn

j¼1

2n�jA j
n

 !
þ Oð�2Þ

2n

¼ 1

2n

Yn

i¼1

Bi
n þ

n �

2n
In þ

�

2n

Xn

j¼1

ðj� 2Þ2n�jA j
n

 !
þ Oð�2Þ

2n

¼ 1

2n

Yn

i¼1

Bi
n þ

n �

2n
In þ �

Xn

j¼1

ðj� 2Þ
2 j

A j
n

 !
þ Oð�2Þ

2n
;

as required. h

Proof of Theorem 3 Notice that 1
2n

Qn
i¼1 B

i0
n is essentially a weight matrix in the sense

of the Lehrer–Wagner model and thus the convergence in the limit follows for the

same reason as in the Lehrer–Wagner model. We will now show that the first

speaker receives the highest weight in the final consensus. Let Cn :¼ 1
2n

Qn
i¼1 B

i
n and

O�
n :¼ Oð�2Þ=2n, then by Proposition 2 we have

V~ ¼ lim
k!1

1

2n

Yn

i¼1

Bi0
n

 !k

V~
ð0Þ

¼ lim
k!1

Cn þ
n �

2n
In þ �

Xn

j¼1

ðj� 2Þ
2 j

A j
n

 !
þO�

n

 !k

V~
ð0Þ

¼ lim
k!1

X

n1þn2þn3þn4¼k

Cn1
n

n�

2n
In

	 
n2
�
Xn

j¼1

ðj� 2Þ
2 j

A j
n

 !n3

O�
n

� �n4
 !

V~
ð0Þ
:

Any term with n2 � 2 or n3 � 2 or n4 � 1 includes a term of the order of Oð�2Þ and
can thus be ignored. The same holds for terms with n2 ¼ n3 ¼ 1. Hence,

123

1066 S. Hartmann, S. R. Rad



V~ ¼ lim
k!1

1

2n

Yn

i¼1

Bi0
n

 !k

V~
ð0Þ

¼ lim
k!1

C k
n þ C k�1

n

n �

2n
In

	 

þ C k�1

n �
Xn

j¼1

ðj� 2Þ
2 j

A j
n

 ! !
V~

ð0Þ

¼ lim
k!1

C k
n V
~ð0Þ þ lim

k!1
C k�1
n

n �

2n
In þ �

Xn

j¼1

ðj� 2Þ
2 j

A j
n

 !
V~

ð0Þ

¼ d BV~
ð0Þ þ d B

n �

2n
In þ �

Xn

j¼1

ðj� 2Þ
2 j

A j
n

 !
V~

ð0Þ

¼ d B 1þ n�

2n

	 

In þ �

Xn

j¼1

ðj� 2Þ
2 j

A j
n

 !
V~

ð0Þ

¼ d 1þ n�

2n

	 

BV~

ð0Þ þ d � B �
Xn

j¼1

ðj� 2Þ
2 j

A j
n

 !
V~

ð0Þ
;

where d :¼ limk!1
Pk

t¼1

k
t

� �
ð2n�1Þt�1

ð2nÞk�1 and B ¼ 1
2n

Qn
i¼1 B

i
n � 1

2n
In as in Theorem 2.

Notice that B and
Pn

j¼1
ðj�2Þ
2 j A j

n are both matrices with all rows equal, and thus

B �
Xn

j¼1

ðj� 2Þ
2 j

A j
n ¼

Xn

k¼1

Bik

 !
Xn

j¼1

ðj� 2Þ
2 j

A j
n

 !
¼ 1� 1

2n

� � Xn

j¼1

ðj� 2Þ
2 j

A j
n

 !
;

where the last equality is derived from Corollary 1. Thus

V~ ¼ lim
k!1

1

2n

Yn

i¼1

Bi0
n

 !k

V~
ð0Þ

¼ d 1þ n �

2n

	 

Bþ d � B �

Xn

j¼1

ðj� 2Þ
2 j

A j
n

 ! !
V~

ð0Þ

¼ d 1þ n �

2n

	 

Bþ � 1� 1

2n

� � Xn

j¼1

ðj� 2Þ
2 j

A j
n

 ! !
V~

ð0Þ
:

The weight assigned to the ith member will be the sum of the weights assigned to B

and
Pn

j¼1
ðj�2Þ
2 j A j

n, that is,

d 1þ n�

2n

	 

2�i þ d � 1� 1

2n

� �
ði� 2Þ

2i
:

For n large enough we have n �=2n � 0, and hence wi (i.e., the weight assigned to

the ith speaker) will be

123

Anchoring in Deliberations 1067



1þ � 1� 1

2n

� �
ði� 2Þ

� �
� d
2i
:

It is now easy to check that for �� 1=2 we have w1 �wi for i ¼ 1; . . .; n. This means

that the first speaker receives the highest weight. h

Appendix 3: The Algorithm for the Simulation Procedure

The general sketch of the algorithm used for the simulation is as follows:

1. First we set the relevant parameters. This includes the number of group

members, n, the first-order reliabilities, ri, the initial second-order reliabilities,

ci, as well as the maximum second-order reliabilities Ci. We set the number of

simulation runs to N ¼ 105 and limit the number of deliberation rounds to

K ¼ 40. Unless otherwise specified, we use the assignment ci ¼ 0:8 and Ci ¼
0:9 for all i ¼ 1; . . .; n.

2. The simulation proceeds as follows:

(a) Initialize the prior values assigned by the group members randomly.

(b) Compute the estimated reliabilities rij from a uniform distribution around

the value rj using Eq. (4).

(c) Calculate the estimated reliability brackets.

(d) Start deliberation steps 1; . . .; n: in step i update all assignments and

reliability rankings based on the assignment of the ith member and her

reliability.

(e) If a consensus is reached, stop. If there is no consensus yet, repeat the

deliberation steps 1; . . .; n.
(f) Repeat (e) at most K times.

(g) If a consensus is reached, calculate the difference between the consensus

value and the initial assignment for each group member.

(h) Add 1 to a counter if the consensus is closest to the initial value assigned

by the first group member. Do nothing otherwise.

(i) After N runs, compute the probability that the consensus is closest to the

initial assignment of the first group member.
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