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Abstract I argue that information is a goal-relative concept for Bayesians. More

precisely, I argue that how much information (or confirmation) is provided by a

piece of evidence depends on whether the goal is to learn the truth or to rank actions

by their expected utility, and that different confirmation measures should therefore

be used in different contexts. I then show how information measures may reason-

ably be derived from confirmation measures, and I show how to derive goal-relative

non-informative and informative priors given background information. Finally, I

argue that my arguments have important implications for both objective and sub-

jective Bayesianism. In particular, the Uniqueness Thesis is either false or must be

modified. Moreover, objective Bayesians must concede that pragmatic factors

systematically influence which priors are rational, and subjective Bayesians must

concede that pragmatic factors sometimes partly determine which prior distribution

most accurately represents an agent’s epistemic state.

1 Introduction

Suppose you are about to roll a six-sided die (with faces numbered one through six)

and you want a probability distribution that represents how probable each of the six

possible outcomes is.1 I have rolled the die many times already, and I tell you that—

on average—the die has landed on 5. Clearly, the die is strongly biased towards
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landing on high numbers, and it seems intuitively probable that the die will land on

a high number on the next roll as well. But how do you come up with precise

probabilities for each of the possible outcomes? This is an instance of the so-called

‘‘problem of the priors’’: how do you translate background information into a

probability distribution, and—in the absence of background information—how do

you represent a lack of information probabilistically? This paper argues that how

you should answer these questions depends on what goals you have.

More precisely, I will consider two different situations, defined by two different

goals that an agent may have. In the first situation, the goal of the agent is to learn

which hypothesis in a partition of hypotheses is true. In the second situation, the

agent instead intends to use the partition of hypotheses as a predictive tool in

decision making. My arguments will show that these two situations call for different

prior distributions. The implication in the die example is that you need to figure out

why you are interested in the outcome of the die roll before you can figure out which

prior probability you should use.2

The arguments of the paper have important implications for both objective and

subjective Bayesians. In particular, the Uniqueness Thesis for priors, which is a

prominent thesis among objective Bayesians according to which there is a uniquely

rational prior given any background information, is either false or must be modified.

Moreover, objective Bayesians must concede that pragmatic factors systematically

influence which probability distribution is most rational. Subjective Bayesians, on

the other hand, must concede that pragmatic factors sometimes in part determine

which probability distribution most faithfully represents an agent’s epistemic state.

2 Notation and the Basics of Bayesianism

A few notational remarks are in order. First, I will generally use H to refer to a

partition of hypotheses (i.e. a set of mutually exclusive and exhaustive hypotheses),

and I will use Hj to refer to some arbitrary member in the partition. Similarly, I will

generally use E to refer to a partition of possible evidence and Ei to refer to some

element in the partition. However, if I am explicitly discussing a continuous

hypothesis space (i.e. a hypothesis space that is indexed by a real-valued parameter),

then I will use H to refer to a partition of hypotheses, h to refer to some hypothesis

in the partition, X to refer to a partition of possible evidence, and x to refer to an

element of the partition. Generally, sums over all the elements in a partition will be

denoted by
P

i or
P

j, unless the sum is over a continuous space, in which case

integrals will be used instead.

The basic problem in Bayesian inference is to infer the true, predictively

accurate, or otherwise useful hypotheses in H given some particular observation E.

Bayesians solve this problem by using Bayes’s theorem. Bayes’s theorem requires

two ingredients: a prior probability function and a likelihood function. A prior

probability function is a probability distribution p over H that is supposed to

represent how probable each Hj is prior to any evidence. For ease of notation, I will

2 I return to the die example in Sect. 8.
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sometimes use pðHÞ to refer to the set of probabilities pðH1Þ, pðH2Þ, ..., pðHnÞ over
the partition H. The fact that p is a probability distribution means that we require

that
P

j pðHjÞ ¼ 1. A likelihood function, pðEjHjÞ, is a function that says how

probable each Hj makes the observation E.

Once we have a prior and a likelihood, Bayes’s theorem says that

pðHjjEÞ ¼ cpðHjÞpðEjHjÞ.3 To a Bayesian, p(H|E) is the new probability that we

ought to assign to H in light of having observed E.

3 The Importance of Information Measures for Bayesianism

An ‘‘information measure’’ is a quantitative measure of how ‘‘informative’’ or

‘‘opinionated’’ a probability distribution is.4 The most well known information

measure is the Shannon entropy, which says that the information content in pðHÞ is
given by �

P
j pðHjÞ log pðHjÞ. The higher the Shannon entropy, the less informa-

tive and less opinionated is the probability distribution. The probability distribution

with the highest Shannon entropy is the ‘‘flat’’ distribution that assigns the same

probability to every hypothesis in H. Intuitively the flat distribution is indeed the

least informative and least opinionated probability distribution since it does not

favor any hypothesis in H over any other. On the other hand, the distribution over

H that has the lowest Shannon entropy and is therefore the most informative is the

distribution that assigns all its probability mass to one of the hypotheses. This also

seems intuitively reasonable. Indeed, we may view it as a sanity check on any

proposed information measure that the measure deem a probability distribution that

assigns all its probability to a single hypothesis maximally opinionated, and that it

deem the flat probability distribution minimally opinionated.5

But what about all the other probability distributions in between the maximally

and minimally opinionated ones? Here intuition often comes up short. Let’s say we

are considering distributions over a partition of three hypotheses. Is a distribution

that assigns probabilities of 0.2, 0.3 and 0.5 to the three hypotheses more or less

opinionated than a distribution that assigns 0.15, 0.4, and 0.45? This may seem like

an esoteric question, but the answer to the question is of crucial importance, and is

sensitive to the choice of information measure.

The reason why this question is of crucial importance to so-called ‘‘objective

Bayesians’’ is clear. According to most objective Bayesians a probability

distribution is rational for an agent if and only if the distribution is maximally

non-informative relative to the agent’s background knowledge; thus, objective

Bayesians explicitly need an information measure in order to evaluate how

informative various candidate probability distributions are.

That information measures are also crucially important to subjective Bayesians is

probably a more contentious claim. I defer a more thorough discussion of this issue

3 Here c ¼ 1=
P

j pðEjHjÞpðHjÞ.
4 In this paper I will use ‘‘informative’’ and ‘‘opinionated’’ interchangeably.
5 This sanity check only makes sense when the hypothesis space is finite. Matters are subtler when the

hypothesis space is continuous, as we shall see later.
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to Sect. 9.2, since my discussion will rely on developments made in the paper.

However, the reason why information measures are also important to subjective

Bayesians can be put briefly as follows. Subjective Bayesians hold that an agent’s

probability distribution should accurately represent the agent’s epistemic state.

Since most of us do not have numerical probabilities in our heads, this introduces a

kind translation problem, because agents’ subjective degrees of confidence must

somehow be translated into numbers. How this translation problem should be solved

will sometimes depend on what the goals of the agent are and what the

correspondingly suitable information measure is.

4 Other Approaches to Measuring Information

Many information measures have been proposed in the statistical and information

theory literatures.6 Which of these many information measures is appropriate for

Bayesian purposes? Most Bayesians who have thought about this issue have

endorsed the aforementioned Shannon information measure. As was pointed out

previously, the Shannon entropy has the intuitively appealing feature of declaring

the flat distribution maximally uninformative and the distribution that assigns all its

probability to a single hypothesis maximally informative. However, there are many

other information measures that also have this feature,7 so why go for the Shannon

entropy rather than one of these other measures?

The standard arguments in favor of Shannon’s information measure have nothing

in particular to do with Bayesian inference,8 and it is therefore unclear why

Bayesians should care about these arguments.

For example, one of the standard postulates used to derive Shannon’s information

measure holds that the information content of a probability distribution should

decrease as the number of hypotheses increases, all else being equal. This postulate

has dubious relevance to Bayesian inference, however, because in Bayesian

analyses the hypothesis space is almost always held fixed throughout the analysis.

And even if we do demand that our information measure satisfy this requirement,

there are many information measures that satisfy it aside from Shannon entropy.

Indeed, in the traditional argument for Shannon’s information measure, the only

property that distinguishes Shannon’s measure from a whole slew of other

information measures is that it has a certain additivity property (Rényi 1961).

Although it may make sense to require this additivity property in the original

communication theory context in which Shannon information was introduced, it’s

not clear why an information measure needs to have the property in the context of

Bayesian inference.

6 Including two (infinitely) large classes of information measures, the Rényi measures (Rényi 1961) and

the Tsallis measures (Tsallis 1988) .
7 Including all Rényi and Tsallis measures.
8 A notable exception is Williamson (2010), who uses an argument based on Bayesian scoring rules.

However, below I will argue that the scoring rule he relies on is only appropriate in what I call the

‘‘learning’’ situation, where the goal is to identify the true hypothesis in a partition of hypotheses.
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Some Bayesians have taken a more radical and pluralist approach to information

measures. For example, DeGroot (1962) defines ‘‘the value of information’’ as the

difference that a piece of evidence makes to the expected utility calculation of an

agent. This definition is used by Bernardo (1981) to define ‘‘minimally valuable’’

priors. However, the ‘‘minimally valuable’’ prior is often not the flat distribution and

is sometimes even the probability function that assigns all its probability mass to a

single hypothesis. Hence, whatever the ‘‘minimally valuable’’ prior is supposed to

be, it should not be interpreted as the prior that is maximally uninformative,9 and

DeGroot’s measure is therefore not an appropriate measure of the informativeness

of probability functions, since the measure clearly fails the previously mentioned

sanity checks. The reason DeGroot’s measure gives unintuitive results is because

the measure depends on the utility function of the agent.

The approach advocated here is intermediate between the preceding two

approaches. I do not think information measures should be functionally dependent

on agents’ utilities, but I also do not think a single measure of information is

appropriate in all contexts, nor do I think arguments for information measures

should proceed in a complete vacuum from the contexts in which the information

measures will play a role. In particular, in a Bayesian context, the prior and the

posterior probabilities of a hypothesis are the fundamental quantities that represent

how probable the hypothesis is prior to and after the observation of evidence,

respectively. Since evidence is the conveyer of information, the starting point of my

argument is the following foundational observation about information in a Bayesian

context:

Observation Given some hypothesis H and evidence E, the posterior,

p(H|E) is more informed than the prior, p(H).

That the posterior probability is more informed than the prior seems to me to be a

truism, but the question now arises of how much more informed the posterior is

when compared to the prior.

5 Confirmation Measures as Measures of the Informativeness of Data

In general, a measure of the distance between the posterior and prior probability of a

hypothesis given a piece of evidence is known as a ‘‘confirmation measure.’’ Here, I

will follow convention and use c(H, E) to refer to the confirmation score of H given

E according to some unspecified confirmation measure. Additionally, two specific

confirmation measures will play a particularly important role. The difference

measure, d(H, E), measures the degree of confirmation that E confers on H as

pðHjEÞ � pðHÞ. The log-ratio measure, lr(H, E), measures the degree of confir-

mation as log
pðHjEÞ
pðHÞ . Note that both the difference measure and the log-ratio measure

have the property that 0 signifies that E confers no confirmation on H.

Importantly for our purposes, confirmation measures may naturally be interpreted

as quantitative measures of how much information a piece of evidence provides

9 It is not clear (Bernardo 1981) would have endorsed such an interpretation either.
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with respect to a hypothesis.10 For example, if c(H, E) is a large number (either

positive or negative), then that means that E provides us with a lot of information

about H, since H greatly changes the probability of H; if, on the other hand,

c(H, E) is 0, then E provides us with no information about H.

It is immediately clear that different confirmation measures will in general

disagree on how informative a given datum is, and sometimes the extent of

disagreement can be extreme. For example, a change from PrðHÞ ¼ 0:00001 to

PrðHjEÞ ¼ 0:01 is trivial compared to a change from 0.5 to 0.6 if we use the

difference measure; but according to the log-ratio measure, the first change is much

greater than the second. How informative E is with respect to H therefore depends

on which confirmation measure is used.

The argument put forward here will be that the appropriate way to measure the

distance between the posterior and the prior probability of a hypothesis depends on

the goals of the agent. Thus, for example, whether the difference between a

probability of 0.01 and a probability 0.1 is ‘‘big’’ or ‘‘small’’ depends on pragmatic

factors. I will consider two more specific goals that an agent may have in order to

demonstrate the point.

5.1 The Learning Situation and the Log-Ratio Measure

In the first situation I consider—let’s call it the ‘‘learning situation’’—the goal is to

identify which hypothesis, H, in a partition of hypotheses, H, is true. Translated into

the Bayesian framework, the goal is for the posterior probability of the true

hypothesis, H0, to be as large as possible. Ideally, we want pðH0jEÞ ¼ 1. Given that

this is the goal, what is the best way to measure the extent to which E informs us

about some H in H?

One way to make the goal more explicit is by creating a ‘‘scoring rule’’ that more

precisely encodes what our epistemic values are in the learning situation. A

‘‘scoring rule’’ is a function of the form sðp;H0Þ, where H0 is the true hypothesis in

the partition H. The score of p is supposed to represent how well p achieves our

goals. The defining feature of the learning situation is that we want to assign as

much probability to H0 as possible. A reasonable way to formalize this goal is to

require that a probability function, p, receive a higher score than a different

probability function, q, if and only if pðH0Þ[ qðH0Þ.
A scoring rule that ranks p as better than q if and only if p assigns the truth a

higher probability than does q is sometimes known in the literature as a ‘‘local’’

scoring rule. Such scoring rules are ‘‘local’’ because the probabilities that p and

q assign to false hypotheses are irrelevant to which probability function receives a

higher score.11 Sometimes we do care about how inaccurate our probabilities in

10 That confirmation measures may be interpreted in this way is not to deny that they may also be

interpreted in other ways. For example, one prominent strand of confirmation theory (e.g. Crupi and

Tentori 2013) regards confirmation as a generalization of logical entailment. I thank Jan Sprenger for

emphasizing this to me.
11 Clearly, in practice we often do care about which probabilities we assign to false hypothesis, so the

learning situation, as characterized here, describes a somewhat idealized epistemic goal.
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false hypotheses are, and in those cases locality is a bad requirement to make of our

scoring rule. However, locality is a very reasonable requirement to make of a

scoring rule in the learning situation, because in the learning situation the objective

is precisely and only to identify the truth.

Out of the well-known and independently plausible scoring rules, the only local

scoring rule is the log scoring rule, which assigns a score of log pðH0Þ to p. In fact,

the log-scoring rule is the only local scoring rule that is strictly proper (Bernardo

1979a), which is a property that many philosophers have argued any reasonable

scoring rule ought to have (see, e.g. Oddie 1997; Gibbard 2007; Joyce 2009;

Horowitz 2014). The log-scoring rule is therefore a reasonable scoring rule in the

learning situation: it appropriately encodes the epistemic goal of learning the truth.

Note that this does not mean that the log-scoring rule is the uniquely rational scoring

rule in the learning situation.

As van Enk (2014) points out in a recent paper, there is a clear connection

between scoring rules and confirmation measures. More precisely, the extent to

which E confirms (or disconfirms) a hypothesis H can also naturally be understood

as the extent to which E changes the score of p(H), on the assumption that H is true.

The idea is that the scoring rule assigns an epistemic value to the posterior and to the

prior, and the difference in score is therefore the difference that the evidence makes

to the epistemic value of the hypothesis.

In the learning context, the epistemic value is to learn the truth, so the difference

in log-score between p(H|E) and p(H) is therefore the difference that the evidence

makes to the goal of learning whether H is true. If we measure this difference by

taking the arithmetic difference, we end up with the log-ratio measure of

confirmation:

log pðHjEÞ � log pðHÞ ¼ lrðH;EÞ: ð5:1Þ

Thus, we get the conclusion that the log-ratio measure is a reasonable measure of

the informativeness of evidence in the learning situation, where the goal is to learn

whether H is true.12

The above argument is not intended to be a knock-down argument for the

log-ratio measure of confirmation; the argument is only intended to show that

the log-ratio measure is reasonable in the learning situation, where the goal is

to identify the true hypothesis in a partition of hypotheses. Indeed, although the

log-ratio measure is reasonable in the learning situation, it is not reasonable in

all other situations; in the next subsection, I consider a different situation

where the log-ratio measure is not reasonable, while another confirmation

measure is.

12 Why measure the difference between the log-score of the posterior and the prior using the arithmetic

difference rather than, say, the ratio,
log pðHjEÞ
log pðHÞ ? Of course, we could use the ratio instead of the difference,

but the resulting confirmation measure is not independently plausible, in contrast to the familiar log-ratio

measure. In any case, I am not claiming that the formal choices I make here and other places in the paper

are uniquely reasonable, but only that they are reasonable.
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5.2 The Decision Situation and the Difference Measure

Our goal is not always to find the truth; sometimes the goal is to make a good

decision. Thus the second situation I will consider is the ‘‘decision situation.’’ In the

traditional Bayesian formalization of the decision situation, there is a preference

ranking over a partition of various states Sm that the world may be in, and there is

also a partition of possible available acts An ranked by their expected utility. For

example, Sm may represent hypotheses about how much it is going to rain in the

next hour, and An may represent how far away from home we are willing to venture

without an umbrella.

For simplicity, I will assume in this paper that the acts and states are independent

according to p.13 More importantly, I will also assume that the utility function does

not depend on p or on possible evidence.14 The ‘‘prior’’ expected utility of some act

An is then defined15 as:

EUðAnÞ ¼
X

m

pðSmÞUðSm&AnÞ ð5:2Þ

Here, UðSm&AnÞ is the utility of performing An when Sm obtains. For example,

going on a long walk without an umbrella when it rains a lot has a low utility for me,

but going on a long walk without an umbrella when it’s sunny has a high utility.

Now suppose we also have available a partition of hypotheses, H, that can be

used to predict whether Sm will obtain. For example, H may be hypotheses about

what the barometric pressure will be in the next hour. Clearly, if we knew what the

barometric pressure H0 would be in the next hour, then we could use that

information to predict how much it would rain using the conditional probability

pðSmjH0Þ. Unfortunately, we don’t know what the barometric pressure is going to

be, so we need to put a prior probability over H, pðHjÞ, that represents the

probability of each of the possible values the barometric pressure can take in the

next hour. Once we have this prior distribution, we can use the Hj’s to predict the

Sm’s by using the law of total probability:

pðSmÞ ¼
X

j

pðSmjHjÞ � pðHjÞ ð5:3Þ

Now, suppose we wanted to use a scoring rule to evaluate the prior probability

distribution over H. Is the log-scoring rule appropriate in this context? By

assumption, we do not really care about what the true value of the barometric

pressure is; what we care about is how much it will rain in the next hour. The

13 When the acts and states are not independent, there is some controversy over which Bayesian decision

theory is the correct one. Some endorse Causal Decision Theory (e.g. Lewis 1981; Pearl 2009; Joyce

2009), while others endorse Evidential Decision Theory (e.g. Jeffrey 1983; Eells 1991; Ahmed 2012).
14 Hence, the utility function is not a scoring rule in the sense of the previous section. The learning

situation as I presented it in the previous section may also be regarded as a kind of decision problem, but

it is important to realize that it is a qualitatively very different decision problem from the kind of decision

problem considered in this section, because the utility function (i.e. the scoring rule) in the learning

situation depends on the agent’s probability function and on the data.
15 Following Savage (1954).
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hypotheses about barometric pressure are therefore for us mere predictive tools.

Clearly, if the goal is to use the Hj’s to predict which Sm is going to obtain, then we

want to assign high probabilities to predictively accurate hypotheses (irrespective of

whether they are true) and low probabilities to predictively inaccurate hypotheses.

The true hypothesis only has a special status insofar as it can be expected to have the

highest predictive accuracy. But a probability function that assigns a high proba-

bility to the truth will not be good for predictive purposes if it also assigns high

probabilities to hypotheses that are very predictively inaccurate, and, moreover, it

will not be better than a probability function that assigns a low (even 0) probability

to the truth, but at the same time only assigns high probabilities to predictively

accurate hypotheses. But this means that a local scoring rule, such as the log-scoring

rule, is inappropriate, because a local scoring rule scores probability functions only

by the probabilities that they assign to the truth.

In particular, in the prediction of Sm (i.e. formula (5.3)), each Hj is in a sense

equally important because each Hj is used in the weighted prediction, so a non-local

scoring rule that takes into account the probability assigned to every hypothesis in

the partition seems much more appropriate. The most well known non-local scoring

rule that does this is the quadratic scoring rule, which assigns a score of
P

j ðiðHjÞ � pðHjÞÞ2 to p, where iðHjÞ is the indicator function that assigns 1 to Hj if

Hj is true and 0 otherwise. The quadratic scoring rule therefore seems more

appropriate than the log-scoring rule for the purpose of evaluating our prior over

H in the decision situation, where H is used as a predictive tool. Moreover, as Enk

(2014) shows, the standard confirmation measure that is associated with the

quadratic scoring rule is the difference measure. Hence we get the conclusion that

the difference measure, and not the log-ratio measure, is a reasonable measure of the

informativeness of evidence in the decision situation.

The above argument is rather sketchy, so here is a more detailed analysis that

shows how the difference measure of confirmation naturally arises in the decision

situation. First, note that we can plug (5.2) into (5.1) in order to make the

dependence of the expected utility of An on Hj explicit:

EUðAnÞ ¼
X

m

X

j

pðSmjHjÞpðHjÞUðSm&AnÞ ð5:4Þ

Next, suppose we receive evidence regarding which hypothesis in H is true in the

form of data E; for example E may be data about the barometric pressure from 2 h

ago. What the barometric pressure was two hours ago is clearly relevant to what the

barometric pressure will be in the next hour, so if we are good Bayesians, we will

update each prior pðHjÞ to a posterior pðHjjEÞ to take into account this new

information. If we do, then the new ‘‘posterior’’ expected utility of An is:

EUðAnjEÞ ¼
X

m

X

j

pðSmjHj;EÞpðHjjEÞUðSm&AnÞ ð5:5Þ

Here, pðSmjHj;EÞ represents the probability that it will rain Sm millimeters in the

next hour, given that the barometric pressure in the next hour is Hj and the baro-

metric pressure two hours ago was E. It is natural to assume here and in many other
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similar cases that E does not give us any information about Sm except insofar as E

provides us with information about Hj.That is, it is natural to assume that

pðSmjHj;EÞ ¼ pðSmjHjÞ.16 If we make this assumption, then the posterior expected

utility of An is simply:

EUðAnjEÞ ¼
X

m

X

j

pðSmjHjÞpðHjjEÞUðSm&AnÞ ð5:6Þ

Now, if we take the difference between the posterior expected utility of An and the

prior expected utility of An, we arrive at the following expression:

DEUðAn;EÞ ¼ EUðAnjEÞ � EUðAnÞ ¼
X

i

X

j

pðSijHjÞ½pðHjjEÞ � pðHjÞ�UðSi&AjÞ

ð5:7Þ

Or, in other words,

DEUðAn;EÞ ¼
X

i

X

j

pðSijHjÞdðHj;EÞUðSi&AjÞ ð5:8Þ

Here, dðHj;EÞ is the confirmation conferred on Hj by E according to the difference

measure pðHjjEÞ � pðHjÞ. Again, the above expressions may look complicated, but

the important thing to note is that the difference between the posterior and prior

expected utility of An depends on the data only through dðHj;EÞ. In the decision

situation, we do not care about which Hj is true; we only care about Hj insofar as it

can help us predict Sm and thereby influence our preference ranking over An. Clearly

the only way our preference ranking can change given x is if DEUðAn;EÞ is non-
zero for some An. But DEUðAn;EÞ depends on the data only through dðHj;EÞ;
hence, in the decision situation, dðHj;EÞ arises as a natural measure of the infor-

mativeness of E with respect to Hn.

But why use the arithmetic difference between the posterior and prior expected

utility to measure the impact that E has on the expected utility of An? Isn’t that a

circular way of arguing in favor of the difference measure? Why not use, say, the

ratio instead?

One answer to this objection17 is that we do not really have a choice, because the

ratio between two expected utilities will in general not be a meaningful quantity.

This is because utility functions are usually only defined up to arbitrary linear

transformations. In other words, if U is the utility function of some agent, then

aU þ b is usually an equally valid representation of the agent’s utilities, for any real

number b and positive real number a. For instance, Savage’s (1954) famous

representation theorem, and its various descendants, only define the utility function

up to arbitrary positive linear transformations. As a result of this, utilities and

expected utilities exist on an interval scale (Stevens 1946). But this means that the

ratio of two utilities is not meaningful, because the ratio will change if you

transform the utility scale with an arbitrary positive linear transformation. As an

16 As has been pointed out to me by Reuben Stern, this assumption does not always hold, but it holds

very widely.
17 I will say a bit more about it in the next section.
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analogy, celsius and fahrenheit are interval scale measurements of temperature: it is

meaningful to say that the difference between 5 and 10 �C is the same as the

difference between 15 and 20 �C, because these differences remain equal if they are

both transformed to the fahrenheit scale. However, it is not meaningful to say that

10 �C is ‘‘twice as large’’ as 5 �C, because the ratio between these temperatures

changes if the temperatures are transformed to the fahrenheit scale.

5.3 Numerical Examples Showing Why the Learning and Decision
Situations Require Different Measures of Confirmation

Neither of the preceding subsections is intended to offer a knock-down argument;

the argument in Sect. 5.1 merely shows the log-ratio measure to be an especially

reasonable confirmation measure in the learning situation, and the argument in Sect.

5.2 just shows the difference measure to be especially reasonable in the decision

situation. Furthermore, the arguments may appear rather abstract. Simple numerical

examples help illustrate and independently bolster the claim that the decision

situation and the learning situation call for different confirmation/information

measures.

In particular, suppose you have just two hypotheses, H and :H and consider two

different scenarios: in the first scenario, the probability of H changes from 0.0001 to

0.1001; in the second scenario, the probability of H instead changes from 0.4 to 0.5.

Which of these changes is more informative?

Suppose, first, that you are in the learning situation, so that your goal is to

figure out which of H or :H is true. According to the odds version of Bayes’s

formula,

pðHjEÞ
pð:HjEÞ ¼

pðEjHÞ
pðEj:HÞ

pðHÞ
pð:HÞ ð5:9Þ

Thus, if the probability of H changes from 0.0001 to 0.1001, then
pðEjHÞ
pðEj:HÞ ¼ 1111. If,

on the other hand, the probability of H changes from 0.4 to 0.5, then by the same

calculation,
pðEjHÞ
pðEj:HÞ ¼ 1:5. Thus, the change from 0.0001 to 0.1001 requires that H

predict the evidence much better than :H, whereas the change from 0.4 to 0.5 does

not.

Let’s make the example more vivid by providing some concrete numbers.

Suppose :H assigns E a probability of 0.0009 and that H assigns E a probability of

0.9999, and suppose E is observed. Intuitively, the observation of E very strongly

suggests that H is true and that :H is false because :H’s prediction was that E was

basically impossible whereas H predicted that E was almost sure to happen. Under

these conditions, if H’s prior probability is 0.0001, then H’s posterior will be

0.1001. Thus, the difference between 0.0001 and 0.1001 is actually extremely large

in this context.

Suppose, on the other hand, that H assigns E a probability of 0.9 and that :H
assigns E a probability of 0.6, and suppose again that E is observed. In this scenario,

the observation of E only weakly suggests that H rather than :H is true. H and :H
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both predicted E as more likely than not, and both also assigned :E a fairly high

probability. Under these conditions, if H’s prior probability probability is 0.4, then

H’s posterior probability will be 0.5. Hence the difference between 0.4 and 0.5 is not

very large in this context.

This numerical example, which has nothing to do with scoring rules and therefore

provides an argument independent of the one provided in the Sect. (5.2), strongly

suggests that the change from 0.0001 to 0.1001 is much more informative regarding

H’s truth value than is the change from 0.4 to 0.5. This is exactly the verdict

delivered by the log-ratio measure.18. The difference measure, on the other hand,

says that these changes in probability are equally informative, which does not seem

reasonable.

But now suppose you are instead in the decision situation, and suppose you are

calculating the expected utility of some action A. Then, as the following calculation

shows, the change in the expected utility of A is the same whether the probability of

H changes from 0.0001 to 0.1001 or from 0.4 to 0.5. For suppose first that the

probability of H changes from 0.0001 to 0.1001. Then:

DEUðA;EÞ ¼
X

m

pðSmjHÞUðSm&AÞ
�
pðHjEÞ � pðHÞ

�

þ
X

m

pðSmj:HÞUðSm&AÞ
�
pð:HjEÞ � pð:HÞ

� ð5:10Þ

¼
X

m

pðSmjHÞUðSm&AÞ
�
0:1001� 0:0001

�

þ
X

m

pðSmj:HÞUðSm&aÞ
�
0:8999� 0:999

� ð5:11Þ

¼
X

m

pðSmjHÞUðSm&AÞ � 0:1�
X

m

pðSmj:HÞUðSm&AÞ � 0:1 ð5:12Þ

Suppose, on the other hand, that the probability of H changes from 0.4 to 0.5; then

the change in the expected utility of A is,

DEUðA;EÞ ¼
X

m

pðSmjHÞUðSm&AÞ
�
0:5� 0:4

�

þ
X

m

pðSmj:HÞUðSm&aÞ
�
0:5� 0:6

� ð5:13Þ

¼
X

m

pðSmjHÞUðSm&AÞ � 0:1�
X

m

pðSmj:HÞUðSm&AÞ � 0:1 ð5:14Þ

The fact that (5.12) to (5.14) are identical implies that the change in the expected

utility of A is the same whether the probability of H changes from 0.0001 to 0.1001

or from 0.4 to 0.5. Thus, in this context, a change in probability from 0.4 to 0.5 is

18 Of course, other confirmation measures also deliver this verdict, such as the log-likelihood ratio, for

example. The argument presented here therefore does not single out—and is not intended to single out —

the log-ratio confirmation measure as better than all other confirmation measures; the argument only

establishes the log-ratio measure of confirmation as a reasonable measure of confirmation.
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exactly as informative as a change in probability from 0.0001 to 0.1001. And this is

the verdict delivered by the difference measure.

On the other hand, the log-ratio measure is not a reasonable measure of

informativeness in the decision situation. In fact, for every �[ 0, no matter how

small, and every B[ 0, no matter how large, it is easy to come up with examples19

such that the degree of confirmation (or disconfirmation) conferred by E according

the log-ratio measure is greater than B, while at the same time, for every n,

jEðAn;EÞ � EðAnÞj\� and jEðAn;EÞ=EðAnÞ � 1j\�, i.e. the difference that

E makes to the expected utility of every action under consideration is arbitrarily

small, regardless of whether you measure the impact that E has on the expected

utility ranking of actions as a difference or as a ratio.

Arguably, in the decision situation, where what you care about is the expected

utility ranking of the actions under consideration, it does not make sense to say that

E provides you with a lot of information if E has essentially no influence on the

expected utility of any action. But that is what you have to say if you measure

informational impact with the log-ratio measure. The log-ratio measure is therefore

not a reasonable measure of informativeness in the decision situation.

6 How to Derive Information Measures From Confirmation Measures

So far, I’ve argued that how informative a piece of evidence is depends on the goal.

In the learning situation, the informativeness of E with respect to H is reasonably

quantified by the log-ratio measure, whereas the difference measure is not

reasonable. However, in the decision situation, the informativeness of E with respect

to H is reasonably quantified by the difference measure, whereas the log-ratio

measure is not reasonable.

However, the ultimate goal of the paper is to show that how much information

there is in a probability distribution depends on how the probability distribution will

be used. The next goal of the paper is therefore to show how information measures

may reasonably be derived from confirmation measures. As before, I do not claim

that the formal choices made are uniquely rational: I only claim that they are

reasonable. There may be other reasonable ways of deriving information measures

from confirmation measures, but the point will still stand that the decision situation

and the learning situation call for different information measures because they call

for different confirmation measures.

6.1 How to Extend a Confirmation Measure to a Partition of Hypotheses,
or: How to Measure the Information Distance Between the Prior
and Posterior Distributions

A confirmation measure tells us how informative E is with respect to some

particular Hj in H. Of course, E will have an impact on each Hj in the partition. How

may we quantify the effect that E has on the partition overall? Or, to put the same

19 For reasons of space, I will omit the details here.
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question in somewhat different terms, how do we measure the ‘‘information

distance’’ between the whole posterior distribution and the whole prior distribution?

One way to do so is to simply add up all the individual confirmation scores,P
j cðHj;EÞ, for each Hj in the partition. This implicitly weighs each confirmation

score as equally significant. An alternative approach that is more appealing from a

Bayesian perspective is to weigh each term in the sum using either the prior or the

posterior. Since the posterior is more well-informed than the prior, it makes more

sense to use the posterior than the prior. Following this idea leads us to quantify the

impact of E on H as
P

j cðHj;EÞpðHjjEÞ.
Plugging in various confirmation measures for c yields different measures of the

information distance between the posterior distribution and the prior distribution.

For example, plugging in the log-ratio confirmation measure for c yields the well

known Kullback–Leibler divergence (Kullback and Leibler 1951), which lends

further credence to the idea that
P

j cðHj;EÞpðHjjEÞ is a reasonable general measure

of the information distance between the posterior and the prior. Quantifying the

impact of E on H in this way is also endorsed by Crupi and Tentori (2014).

Thus, I contend, the following is a reasonable (though not necessarily uniquely

reasonable) quantification of the information distance between the prior distribution

and the posterior distribution, given some piece of evidence E:

The information distance between the posterior and the prior distribution Given a

confirmation measure c, a piece of evidence E, and a probability function p, the

information distance between the prior distribution pðHÞ and the posterior

distribution pðHjEÞ is defined as follows:

InfDisðpðHjEÞ; pðHÞÞ ¼
X

j

cðHj;EÞ � pðHjjEÞ ð6:1Þ

(6.1) tells us the information distance between p and the posterior given some

particular Ek in E. Different Ek’s will, of course, result in different posteriors.

Before we receive the evidence, how much evidence can we expect to receive from

E? Or, put differently, how much information —on average—will E provide us

about H? A reasonable way to quantify the answer to this question is to simply

average InfDisðpðHjEÞ; pðHÞÞ over the partition E (again, this is also suggested by

Crupi and Tentori (2014)):

InfDisðpðHjEÞ; pðHÞÞ ¼
X

i

InfDisðpðHjEÞ; pðHÞÞ � pðEiÞ ð6:2Þ

(6.2) tells us how much information, on average, the partition of evidence E can be

expected to provide us about the partition of hypotheses H. A trick due to Jose

Bernardo (1979) is now all we need in order to derive information measures.20

20 I emphasize that my interpretation of Bernardo’s trick differs significantly from Bernardo’s own. For

more faithful presentations of Bernardo’s views, see Bernardo (1979b), Berger et al. (2009), or Sprenger

(2012).
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6.2 How to Define Information Measures From Measures
of the Information Distance Between the Posterior and the Prior
Distribution

More precisely, a prior is intuitively non-informative to the extent that it is distant

from most posteriors that are heavily influenced by data. To formalize this idea,

imagine that we are going to receive a large amount of evidence E1;E2; . . .. . .En. As

the amount of evidence increases (n ! 1), the posterior distribution will gradually

become increasingly informed by the evidence, and in the limit of infinite evidence,

the posterior distribution will be maximally informed and maximally opinionated;

that is, some hypothesis (we do not know which one) will have a probability of 1.21

A prior distribution is then non-informative in proportion to how informationally

distant, on average, it will be from the maximally informative posterior distribution,

whatever the maximally posterior distribution turns out to be. Using the definition of

InfDis (6.2), we can formally quantify the preceding ideas, and define the

information content of the prior distribution, pðHÞ, as follows:

InfðpÞ ¼ lim
n!1

InfDisðpðHjEnÞ; pðHÞÞ ð6:3Þ

It is very important to note that we do not need an actual sequence of evidence in

order to make sense of (6.3). The imagined sequence of evidence, E1;E2; . . .. . .En,

merely functions as a way of formalizing the idea that the posterior gets increasingly

informed as more evidence comes in. The derivation in Appendix shows that, when

the hypothesis space is finite, properties of the sequence of imagined evidence (e.g.

the distribution of the evidence) do not make a difference to the information content

of PrðHÞ.22
If we plug (6.1) and (6.2) into (6.3), we get the following alternative expression

for Inf(p), which makes the dependence on the choice of confirmation measure

explicit:

InfðpÞ ¼ lim
n!1

X

i

X

j

c Hj;E
n
i

� �
� p Hj;E

n
i

� �
ð6:4Þ

Now we can plug different confirmation measures into (6.4) and get different

information measures. In the case of a finite hypothesis space, it is actually possible

to explicitly calculate (6.4) for several well known confirmation measures, and in

particular for the difference measure and the log-ratio measure. More precisely, if

21 Well known convergence results guarantee that the probability distribution will converge under widely

applicable conditions (see, e.g. Hawthorne (manuscript)).
22 When the hypothesis space is continuous, the situation is a bit more subtle—in this case, the

information content depends on the statistical model in which the hypotheses are situated. This is

reasonable because, in the continuous case, the hypotheses are generally indexed by continuous

parameters, and it is those parameters that are assigned probabilities. But the meaning of a parameter

generally depends on the statistical model of which it is a part. For example, the parameter B in the linear

model Bxþ C picks out the slope of a line; but in the quadratic model Ax2 þ Bxþ C, B does not pick out

the slope of a line. Thus, it is not strange that the information content of PrðBÞ should depend on which

statistical model B is embedded in, since B arguably picks out a different partition of hypotheses if it is

embedded in the quadratic model rather than the linear model.
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we plug in the difference measure and the log-ratio measure, respectively, and

perform the relevant calculations, we arrive at the following two alternative

information measures (see Appendix for the derivations):

The lr information measure Given p defined on a finite hypothesis space, fHig,
The information content of p according to the log-ratio measure is defined as,

InflrðpÞ ¼ �
X

pðHiÞ log pðHiÞ ð6:5Þ

The d information measure Given p defined on a finite hypothesis space, fHig, The
information content of p according to the difference measure is defined as,

InfdðpÞ ¼ 1�
X

pðHiÞ2 ð6:6Þ

Both of the above information measures have a long and rich history, and it is both

surprising and interesting in its own right that these measures have such a close

connection with Bayesian measures of confirmation. �
P

pðHiÞ log pðHiÞ is the

Shannon information of p (Shannon 1948), which has been defended as a measure

of the non-informativeness of probability functions by, among others, Jaynes (2003)

and Williamson (2010). 1�
P

pðHiÞ2 is known to ecologists as the Simpson index

of diversity (Simpson 1949) and to machine learning theorists as the Gini index.

Jaynes discusses 1�
P

pðHiÞ2 as a possible alternative information measure

(Jaynes 2003, p. 345), but rejects it for reasons I will explain later. The diagnosis of

the present paper is that both �
P

pðHiÞ log pðHiÞ and 1�
P

pðHiÞ2 are appropriate
information measures, but that the two measures should be used in different con-

texts: �
P

pðHiÞ log pðHiÞ is appropriate in a learning situation, but in a decision

situation 1�
P

pðHiÞ2 is more appropriate.

7 Two Goal-Relative Non-Informative Priors

The general definition provided in (6.4) gives us a way of selecting maximally non-

informative priors. More precisely, given some confirmation measure, a probability

function that maximizes (6.4) is a natural candidate for a prior that is maximally

non-opinionated. Both (6.5) and (6.6) are maximized by a single prior—namely the

flat prior—so if the hypothesis space is finite, whether you use the log-ratio or the

difference measure as the confirmation measure in (6.4) will not make a difference

to the non-informative prior you select. In the next section, I consider what happens

when (6.5) and (6.6) are maximized relative to constraints; it turns out they can then

yield different priors, and so the confirmation measure you use makes a difference

when you have background information.

However, if the hypothesis space is continuous, the confirmation measure you

use makes a difference even if the maximization is not relative to any constrains.

For concreteness, let us consider the problem of estimating the bias h of a coin given
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n coin flips. In other words, the problem is to estimate the parameter h in the

binomial distribution. Then we have:23

The lr non-informative prior. Given the problem of estimating the parameter h
of a binomial distribution, the maximally non-informative prior density function that

corresponds to the log-ratio measure is

NonInflrðhÞ ¼
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hð1� hÞ

p ð7:1Þ

The above prior is known as ‘‘the Jeffreys prior’’ after its discoverer, Jeffreys

(1946). We also have:24

The d non-informative prior. Given the problem of estimating the parameter h
of a binomial distribution, the maximally non-informative prior density function that

corresponds to the difference measure is

NonInfdðhÞ ¼ 1 ð7:2Þ

The main take-away message here is that the goals you have influence which non-

informative prior it is rational for you to have. Or to put the point differently:

whether a probability function is ‘‘completely non-informative’’ or opinionated

depends on the context. The Jeffreys prior can justifiably be regarded as maximally

non-informative in a learning situation, but in a decision situation it is opinionated.

The reverse is true for the flat prior, which is maximally non-informative in a

decision situation, but opinionated in a learning situation.

8 Goal-Relative Priors Given Objective Background Information

As noted earlier, the information measures �
P

pðHiÞ log pðHiÞ and 1�
P

pðHiÞ2
are both uniquely maximized by the flat prior. However, if we have background

information available, it is reasonable to maximize the two information measures

relative to that background information. This is the procedure recommended by the

objective Bayesians Jaynes (2003) and Williamson (2010), for example.25

If (6.5) and (6.6) are maximized relative to background information, they will in

general not be maximized by the same priors. As a simple illustration, consider

again the example provided in the introduction.26 The example was as follows:

suppose you are about to roll a six-sided die and you want a probability distribution

p(X) over the possible outcomes X ¼ 1; 2; 3; 4; 5; 6. I have rolled the die many times

23 For reasons of space, I’m omitting the proof. However, a proof can be found in Bernardo (1979b).
24 For reasons of space, I again omit the proof. Unfortunately, I’m not aware of any reference where a

proof may be found. However, the proof is straightforward.
25 How are we to understand the learning of ‘‘background information’’? This is a deep question that I do

not have the space to discuss here. But, very briefly, the learning of background information cannot be the

result of conditionalizing because conditionalizing requires that there already be a prior, but background

information is supposed to be a constraint that is used in the construction of the prior and must therefore

be ‘‘prior to the prior.’’ For a discussion of these issues, see chapters 2 and 3 of Williamson (2010).
26 Again, this admittedly artificial example is structurally similar to many real examples.
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already, and I tell you that—on average—the die has landed on 5. Let’s first

formalize the information that I give you. The natural way for you to formalize that

the die has landed on 5 on average is to demand that the expected value of the die

roll according to your prior should be 5. In other words, you should require that
P6

i¼1 XipðXiÞ ¼ 5. The additional constraints are, of course, that
P

i pðXiÞ ¼ 1 and

that pðXiÞ� 0 for each Xi since probabilities must be non-negative and add up to 1.

If you maximize �
P

pðHiÞ log pðHiÞ relative to all of the above three

constraints, you end up with the probability distribution summarized in the

following table:27

Die Probability

1 0.02053

2 0.03853

3 0.07232

4 0.13574

5 0.25475

6 0.47812

The distribution that maximizes 1�
P

pðHiÞ2, on the other hand, is as follows:28

Die Probability

1 0

2 0

3 0.1

4 0.2

5 0.3

6 0.4

Perhaps the most striking difference between the two tables is the fact that the

second table has zeros in it whereas the first table does not.29 This is not incidental

to this example: whereas the prior that maximizes �
P

pðHiÞ log pðHiÞ will never
assign a probability of 0 to any hypothesis unless background information logically

excludes the hypothesis, the prior that maximizes 1�
P

pðHiÞ2 sometimes does

assign 0 to hypotheses. Indeed, it is precisely for this reason that Jaynes rejects

1�
P

pðHiÞ2 as a measure of non-informativeness, because he does not think that

27 I have omitted the very tedious calculation.
28 I have again omitted the tedious calculation.
29 Another thing that may strike the reader is how nice the numbers look in the second table; however,

that is incidental to this specific example and will not happen in general.
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any hypothesis should ever be assigned a probability of 0 unless the hypothesis is

logically excluded (Jaynes 2003, p. 346).

The requirement that a prior never assign 0 to any outcome or hypothesis is

reasonable in the learning situation. After all, the goal in the learning situation is to

learn the truth, and if you assign probabilities of 0 to hypotheses, you run the risk of

assigning a probability of 0 to the truth, which would ruin your chances of learning

what the truth is. However, in the decision situation, the requirement that every

hypothesis receive a non-zero probability is unmotivated. After all, the goal in the

decision situation is not to learn the truth; therefore, accidentally assigning a

probability of 0 to the truth is not necessarily a bad thing. Thus, the learning

situation is inherently a more ‘‘risk-averse’’ setting than the decision situation, and

this is reflected in the fact that 1�
P

pðHiÞ2 is maximized by ‘‘riskier’’ priors than

the priors that maximize �
P

pðHiÞ log pðHiÞ.
The reader may object that assigning a probability of 0 to a hypothesis implies

that you would be willing to accept absurd bets. For example, assigning a

probability of 0 to H apparently implies that you would be willing to pay USD

1,000,000,000 for a bet that pays 1 cent if H is false. That does not seem rational.

However, this objection implicitly assumes that every probability is a betting

probability. But this assumption begs the question against the arguments made in

this paper. In fact, as soon as I offer you a bet over a partition of hypotheses, your

goal becomes to identify which hypothesis in the partition is true. In other words,

you enter the learning situation with respect to that partition. However, according to

the arguments presented here, you should only ever assign 0 to a hypothesis if you

are in the decision situation, i.e. if you do not care about which of the hypotheses is

true, but rather aim to use the hypotheses as a predictive tool in order to predict

something else.

We may call the probabilities you assign to hypotheses in the decision situation

‘‘predictive probabilities’’; thus, the predictive probability you assign to Hi reflects

how much trust you put in Hi’s prediction. Crucially, you can have trust in the

predictions of a hypothesis, even if you are certain that the hypothesis is false. On

the other hand, your betting probability in Hi is a reflection of the bets you would be

willing to accept on whether Hi is true. Clearly you would not be willing to accept

any bets on a hypothesis you are certain is false; your betting probability in a

hypothesis you are certain is false is 0. Hence, predictive probabilities and betting

probabilities are very different. In general, you should not use predictive

probabilities as your betting probabilities.30

9 Wider Implications for Bayesianism

The arguments in the preceding sections have important upshots for both objective

and subjective Bayesians, as I hope to make clear in the following two subsections.

30 I thank a referee for pressing me to be clearer in this paragraph.
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9.1 Upshots for Objective Bayesianism

According to most versions of objective Bayesianism, a probability function is

rational for an agent if and only if the probability distribution is maximally

uninformative while still being consistent with the agent’s background information.

Because most objective Bayesians have assumed that there is only one correct way

of measuring the informativeness of a probability function, most objective

Bayesians have accepted the Uniqueness Thesis (see Feldman 2007 and White

2005). According to the Uniqueness Thesis (applied to the case of prior probability

functions), given any body of background information, there is a unique rational

prior probability function. However, if the arguments presented in this paper are

sound, the Uniqueness Thesis, as stated, is clearly false and can only be salvaged if

it is relativized to goals. Thus, a version of the Uniqueness Thesis consistent with

the arguments presented in this paper is as follows: given any body of background

information, and given a fixed goal, there is a uniquely rational prior probability

function.

However, modifying the Uniqueness Thesis in this way makes apparent the

second consequence for objective Bayesians: if the arguments that have been

presented are sound, then objective Bayesians must apparently admit that pragmatic

factors systematically influence which prior it is rational to use.

9.2 Upshots for Subjective Bayesianism

Whereas the upshots for objective Bayesians are, I think, relatively clear, the

upshots for subjective Bayesians are likely to be more controversial. In contrast to

objective Bayesians, subjective Bayesians do not think there are substantial rational

requirements that agents’ probability distributions need to satisfy. Rather, an agent’s

probability distribution is supposed to accurately reflect the agent’s epistemic state.

Hence, for subjective Bayesians, the construction of a prior is not a search for the

rationally ideal prior probability function; instead, it is the search for a probability

distribution that will faithfully capture the agent’s actual opinions. Since agents do

not literally have probability functions in their heads, the epistemic state of the

agent must somehow be translated into a probability function, either by the agent

herself or by others. But how this translation exercise is to be solved will in general

depend on the goals of the agent.

This is perhaps most easily seen in cases where you want to represent

probabilistically a lack of opinion. Suppose, for example, that you are trying to

determine which probability distribution most faithfully represents your opinions

regarding the bias of some coin, and suppose, moreover, that you consider yourself

completely uninformed and unopinionated, so that you would like your probability

distribution over the possible biases of the coin to reflect your lack of an opinion.

According to the calculation in Sect. 7, the probability distribution that is maximally

unopinionated and that therefore most accurately reflects your epistemic state is

relative to whether you are in the learning situation or the decision situation. If you

are in the learning situation, the Jeffreys prior is the most faithful probabilistic
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representation of your lack of an opinion, but if you are in the decision situation, the

flat prior more faithfully represents your epistemic state.

Of course, it is possible that you are in both the learning situation and in the

decision situation simultaneously with respect to a single partition of hypotheses. In

that case, both probability distributions will be accurate representations of your

epistemic state, but the two probability distributions should be used for different

purposes. The predictive probability distribution—appropriate in the decision

situation—should be used and updated (given evidence) whenever your goal is to

use the partition of hypotheses to predict the future. But the learning probability

distribution should be used and updated (given evidence) when you are interested in

identifying the true hypothesis in the partition. If you have both goals at the same

time, both probability distributions should be used and separately updated. Note that

your epistemic state is the same in both situations—you are completely unopin-

ionated. But how you should best represent your lack of an opinion over the set of

hypotheses probabilistically depends on why you care about the set of hypotheses.

More generally, suppose you consider yourself both epistemically risk-averse and

empirically-minded and that you therefore want your epistemic state to be as

unopinionated as possible given objective background information, such as, e.g.,

publicly available frequency data. Naturally, you will want your probability

distribution to accurately reflect your epistemic risk-averseness. According to the

results in Sect. 6, you will need to take into account your goals when you are

deciding how to translate your epistemic state into a probability distribution,

because whether a probability distribution counts as unopinionated given back-

ground information can only be determined once a goal has been specified. Thus the

upshots we saw for objective Bayesians also carry over to at least some agents,

namely those agents who see themselves as epistemically risk-averse.

10 Conclusion

I will end by briefly summarizing what I take to be the main novel contributions and

conclusions of the paper. First, I have argued that the decision situation and the

learning situation require different confirmation measures in order to accurately

quantify the informational impact that a piece of evidence has on the probability of a

hypothesis. Thus, I have argued for a version of ‘‘confirmation measure pluralism.’’

Second, I have shown how various information measures may reasonably be derived

from confirmation measures, and I have shown that how opinionated a probability

distribution is for an agent therefore depends on whether the agent is in the decision

situation or in the learning situation. Thus, I have also argued for a kind of

‘‘information measure pluralism.’’ Finally, I have argued that the goal-relative

nature of information has important upshots for both objective and subjective

Bayesians. Most importantly, objective Bayesians must concede that whether a

probability distribution is rational is partly determined by pragmatic factors, and

subjective Bayesians must similarly concede that pragmatic factors sometimes

partly determine which probability distribution most accurately represents an

agent’s epistemic state.
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Appendix: Derivations of (6.5) and (6.6)

The first goal is to show that InflrðpÞ ¼ �
P

pðHiÞ log pðHiÞ under the condition

that the posterior mass converges on some Hi as n ! 1, for any imagined sequence

En of evidence. In other words, for any En, we require that there exists an Hi such

that limn!1 PðHijEnÞ ¼ 1. To avoid clutter, I will suppress n in the notation

henceforth. Now, definition (6.4) with c ¼ lr yields,

InflrðpÞ ¼ lim
n!1

X

E

X

i

log
pðHijEÞ
pðHiÞ

pðHi;EÞ ð10:1Þ

¼ lim
n!1

X

E

X

i

log pðHijEÞpðHjEÞpðEÞ � lim
n!1

X

E

X

i

log pðHiÞpðHi;EÞ ð10:2Þ

¼
X

i

lim
n!1

X

E

pðEÞlog pðHijEÞpðHjEÞ �
X

i

log pðHiÞpðHiÞ ð10:3Þ

For each term of the form pðEÞlog pðHijEÞpðHjEÞ, by assumption, either pðHijEÞ !
1 as n ! 1, in which case pðEÞlog pðHijEÞpðHijEÞ ! 0; or else pðHijEÞ ! 0, in

which case pðEÞlog pðHijEÞpðHijEÞ ! 0 again.31 Thus,

InflrðpÞ ¼ �
X

i

log pðHiÞpðHiÞ ð10:4Þ

Which was the first thing to be proven. Note that no assumptions were made about

the sequence of evidence in the above derivation. This shows that the derivation

does not depend on any such assumptions.

Now suppose that we instead plug c ¼ d into definition (6.4). Then the

calculation becomes:

InfdðpÞ ¼ lim
n!1

X

E

X

i

�
pðHijEÞ � pðHiÞ

�
pðHi;EÞ ð10:5Þ

¼ lim
n!1

X

E

X

i

pðHijEÞpðHi;EÞ � lim
n!1

X

E

X

i

pðHiÞpðHi;EÞ ð10:6Þ

31 This latter limit can be shown by an application of l’Hopital’s rule.

668 O. B. Vassend

123



¼ lim
n!1

X

E

X

i

pðHijEÞ2pðEÞ �
X

i

pðHiÞ2 ð10:7Þ

By assumption, there is a unique term of the sum
P

i pðHijEÞ2 such that pðHijEÞ !
1 as n ! 1; moreover, for all of the other members of the sum, pðHijEÞ ! 0.

Therefore, as n ! 1, the entire sum
P

i pðHijEÞ2 converges to 1. Consequently,

InfdðpÞ ¼ lim
n!1

X

E

pðEÞ �
X

i

pðHiÞ2 ð10:8Þ

¼1�
X

i

pðHiÞ2 ð10:9Þ
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