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Abstract It is well known that the process of quantization—constructing a quantum

theory out of a classical theory—is not in general a uniquely determined procedure.

There are many inequivalent methods that lead to different choices for what to use

as our quantum theory. In this paper, I show that by requiring a condition of

continuity between classical and quantum physics, we constrain and inform the

quantum theories that we end up with.

1 Introduction

The process of quantization—constructing a quantum theory from a classical theory

for some system—is full of technical and conceptual problems. Philosophers of

physics have recently created a stir because there appear to be many inequivalent

quantization procedures for theories of great physical interest, including quantum

field theory and quantum statistical mechanics. And if there are many inequivalent

quantization procedures, how are we supposed to know which to use to construct

our quantum theories? The purpose of this paper is to argue that careful attention to

the mathematical tools of classical physics can help us narrow the playing field and

choose from among the different quantization methods.

Both classical and quantum theories come equipped with topologies on their

classes of physical observables. These topologies are used, for example, to represent

how an observable can be approximated in a certain limit, with different topologies

corresponding to different notions of approximation. One can constrain the

construction of quantum theories by requiring that the topology on classical
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observables be preserved in a quantization procedure. Inequivalent quantizations

appear in standard approaches to even the quantization of nonrelativistic particle

systems, which only require that a particular topology—called the norm topology—

is preserved. But there are other topologies on the algebras of observables that we

can use—in particular weak topologies. I will argue that requiring preservation of

the weak topologies1 rules out one source of inequivalent quantizations.2

Quantizing a classical theory typically involves two steps: first, one constructs an

abstract algebra of observables, and second, one represents those observables as

operators on a Hilbert space. Philosophers of physics have focused on the ambiguity

inherent in the second step—in quantum field theory and quantum statistical

mechanics, there are many inequivalent Hilbert space representations of the abstract

algebra of observables (see, e.g., Earman and Fraser 2006; Ruetsche 2003, 2011).

But even the first step of this procedure involves some ambiguity (see Ashtekar and

Isham 1992; Emch 1997)—there are in fact many different abstract algebras one

might choose to represent the observables of the theory, although this has played

almost no role in the philosophical discussions. This paper proposes a change in

perspective from the standard philosophical literature by focusing on the construc-

tion of the abstract algebra rather than inequivalent Hilbert space representations. I

claim that this perspective lends some insight to the physical significance of states in

quantum theories and their relation to classical physics.

Philosophers of physics consistently use only one algebra of observables in the

first step of quantization—a structure known as the Weyl algebra. This is for good

reason: the Weyl algebra appears to play a central role in the physics literature as

a standard tool in the mathematical physicist’s toolbox (see, e.g. Petz 1990). In

this paper, I will show that the Weyl algebra has a topology that is, in a certain

sense, incompatible with the classical theory it derives from. Specifically, I will

show that the weak topology on the algebra of observables of a quantum theory

can be understood to have physical significance through its origins in the

manifestly physically significant notion of pointwise approximation from the

weak topology on the classical observables. I will argue that the weak topology on

the Weyl algebra fails to carry this important information about approximation

because it fails to preserve the notion of pointwise approximation from classical

physics, and this is precisely the information that the weak topology is designed to

encode. In other words, the weak topology on the Weyl algebra fails to capture

the physically significant notion of approximation that philosophers of physics

have assumed it represents. Thus, I will argue that topological considerations

count against the Weyl algebra. This demonstrates how certain aspects of current

theories provide methodological tools for the construction of new physical

theories.

1 As we will see later, I specifically propose the requirement that the weak topology on a quantum

algebra of observables preserves the information encoded in the classical topology of pointwise

convergence, which can be understood itself as a weak topology.
2 In particular, this rules out nonregular representations of the Weyl algebra.
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2 Preliminaries

2.1 Algebraic Tools

The bounded observables of a physical theory carry the structure of a C*-algebra.3

This means that one may add and multiply observables, and multiply observables by

scalars. In addition, a C*-algebra has an operation of involution that is a

generalization of complex conjugation. A C*-algebra A comes equipped with a

norm, which is required to satisfy the C*-identity:

jjA�Ajj ¼ jjAjj2

The norm defines a topology, called the norm topology, which is characterized by

the following condition for convergence. A net fAig � A converges to A in the

norm topology4 iff

jjAi � Ajj ! 0

where the convergence is now in the standard topology on R. The C*-algebra A is

required to be complete with respect to this topology in the sense that for every

Cauchy net fAig � A, i.e. for every net such that

jjAi � Ajjj ! 0

as i; j ! 1, there is an A 2 A such that Ai ! A in the norm topology. Standard

results in the theory of normed vector spaces tell us that every normed vector space

has a unique completion.5

Since A is a vector space, we can also consider the dual space A� of bounded

(i.e. norm continuous) linear functionals q : A ! C. States on a C*-algebra A are

particular elements of the dual space A�—namely ones that are positive and

normalized.6 A state is called pure if it cannot be written as a convex combination of

distinct states. Otherwise, a state is called mixed. Pure states represent the possible

states of an individual system while mixed states are typically taken to represent

some sort of probabilistic combination (whether it be via an ensemble interpretation

or mere epistemic uncertainty).

The dual space A� can be used to define an alternative to the norm topology on

A, called the weak topology, which is characterized by the following condition for

convergence. A net fAig � A converges in the weak topology to A 2 A iff for

every q 2 A�,

3 For more on C*-algebras and W*-algebras, see Kadison and Ringrose (1997), Sakai (1971), and

Landsman (1998). For more on algebraic quantum theory, see Haag (1992), Bratteli and Robinson (1987),

and Emch (1972). For philosophical introductions, see Halvorson (2006) and Ruetsche (2011).
4 One could restrict attention here to sequences because the norm topology is second countable, but for

the weak topologies considered later, which are not second countable, one must work with arbitrary nets.
5 A complete normed vector space is called a Banach space. A C*-algebra is thus a Banach algebra

whose norm is, in a certain sense, compatible with multiplication and involution.
6 A linear functional q 2 A� is positive if qðA�AÞ� 0 for all A 2 A and normalized if jjqjj ¼ 1.
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qðAiÞ ! qðAÞ

where the convergence is now in the standard topology on C. The weak topology is

the coarsest topology on A with respect to which all of the linear functionals in A�

are continuous.

A C*-algebra A need not be complete with respect to its weak topology; there

may be nets fAig � A that are Cauchy in the sense that

qðAi � AjÞ ! 0

as i; j ! 1 for every q 2 A� without the net having a limit point A 2 A such that

Ai ! A in the weak topology. However, a C*-algebra can always be completed in

its weak topology to form a W*-algebra.7 A W*-algebra is a C*-algebra R with a

predual i.e. a vector space R� such that ðR�Þ� ¼ R. We can understand the ele-

ments of the predual as canonically embedded in the dual space by q 2 R�7!q̂ 2
R� with q̂ defined by

q̂ðAÞ ¼ AðqÞ

for all A 2 R. The elements of the predual R� define a further topology on R, called

the weak* topology, which is characterized by the following condition for con-

vergence. A net fAig � R converges in the weak* topology to A 2 R iff for every

q 2 R�,

AiðqÞ ! AðqÞ

The weak* topology is the coarsest topology that makes every element of the

predual continuous when considered as a linear functional on R. One can show that

every W*-algebra is complete in its weak* topology.

Of course, more nets converge in the weak* topology on R than in the weak

topology because it only requires convergence of expectation values on a subspace

of the dual space R�. Nevertheless, the weak* topology is a natural generalization of

the weak topology in the special case where the predual of R is itself the dual space

of a C*-algebra. In this case, one has a C*-algebra A, its dual space A�, and a W*-

algebra A�� called the bidual. The original algebra A is canonically embedded in its

bidual as above by A 2 A 7!Â 2 A��, with Â defined by

ÂðqÞ ¼ qðAÞ

for all q 2 A�. With respect to this embedding, the W*-algebra A�� is the com-

pletion of A in its weak topology, which is the subspace topology of the weak*

topology on A��. The weak* topology on the bidual A�� corresponds precisely to

the extension of the condition of convergence for the weak topology on A to the

larger algebra A��. In particular, the weak* topology on A�� is the coarsest topology

on A�� that makes every linear functional in A� continuous (when considered as a

linear functional on A�� by the canonical embedding above).

7 See Feintzeig (2016) for more on the completion of a C*-algebra into a W*-algebra.
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2.2 Classical and Quantum Algebras

The state space (phase space) of a classical theory is represented by a manifold M,

points of which may represent, for example, the positions and momenta of particles.8

The observables of a classical theory are given by functions f : M ! C.9 Each

observable represents a physical quantity, with the value f(x) on any state x 2 M
representing the value of the quantity f in the determinate state x. For simplicity and

concreteness, let us restrict attention to the case of a single particle moving in one-

dimension, with phase space given by M ¼ R2 and canonical coordinates (q, p),

representing the position q and momentum p of the particle. Everything that follows

will also hold more generally for theories with finitely many degrees of freedom, i.e.

for which the phase space M is locally compact and simply connected.

For the observables of the classical theory, one can use the C*-algebra C0ðMÞ,
the collection of continuous functions that vanish at infinity, equipped with

algebraic operations of pointwise multiplication, addition, and complex conjuga-

tion.10 The norm of the algebra is given by the usual supremum function norm:

jjf jj ¼ sup
x2M

jf ðxÞj

Convergence in the norm topology corresponds precisely with the familiar notion of

uniform function convergence.

One can provide at least two considerations in favor of using this algebra of

observables. First, the pure state space of C0ðMÞ coincides with the points of the

manifoldM (Fell and Doran 1988), which are precisely what we would like to call the

pure states of the physical theory. And, as expected, mixed states on C0ðMÞ
correspond to probability measures on M, mapping each observable to the

expectation value or average of the function integrated with respect to that measure.

Second, C1
c ðMÞ, the collection of smooth functions of compact support, is norm

dense inC0ðMÞ. This means that anyone willing to admitC1
c ðMÞ as their observables

will be able to approximate functions in C0ðMÞ arbitrarily well in the norm topology.

And it seems that even an operationalist who insisted that we only ever observe a finite

(compact) region of phase space should admit the elements ofC1
c ðMÞ as observables.

To quantize a classical theory, one looks for a norm continuous surjective linear

‘quantization map’ Q from the observables of the classical theory into a (non-

commutative) C*-algebra A. Norm continuity of Q ensures that the norm topology

on the C*-algebra carries the same physical information about ‘global’ approxi-

mation that the classical norm topology carries. Specifically, norm continuity of Q
guarantees that whenever a net of classical observables ffig � C0ðMÞ converges

uniformly to f 2 C0ðMÞ, it follows that the quantized observables fQðfiÞg � A

converge in norm to Qðf Þ 2 A. Surjectivity of Q ensures that each quantum

8 See Landsman (1998, 2006) for a description of classical and quantum theories in the algebraic

framework and a detailed investigation of quantization.
9 We include complex-valued functions for generality. One typically restricts to the self-adjoint

functions, which are real-valued, for describing observable quantities.
10 Of course there are other possible choices for the algebra of classical observables that one may use if

one wanted to admit, e.g., unbounded observables.
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observable can be given physical significance by tracing its roots back to a classical

quantity we already understand. One can always guarantee that Q is surjective by

restricting attention to the subalgebra that is the range of Q, which constitutes

precisely the collection of quantities whose origin traces back to classical physics.

The non-commutative quantum algebra A is supposed to be the result of

implementing some form of the canonical commutation relations on our classical

observables (see, e.g. Petz 1990), thereby converting them into quantum observ-

ables. The canonical commutation relations are given by11

½Qðf Þ;QðgÞ� ¼ iQðff ; ggÞ

for all f ; g 2 C1ðMÞ, where the classical Poisson bracket f�; �g : C1ðMÞ �
C1ðMÞ ! C1ðMÞ is defined by

ff ; gg ¼ of

oq

og

op
� of

op

og

oq

We can see that the canonical commutation relations transform information encoded

in the classical Poisson bracket into a constraint on the algebraic relations among

the quantum observables.12

We will put the canonical commutation relations in a slightly different form for

the convenience of applying them to a specific collection of bounded observables

(see also Petz 1990; Halvorson 2004; Ruetsche 2011). After all, since both QðpÞ and

QðqÞ are unbounded, neither can belong to a C*-algebra. As such, one typically

considers the exponentiated observables Ua ¼ eiaQðqÞ and Vb ¼ eibQðpÞ (for

a; b 2 R), which are bounded. The canonical commutation relations for q and p

can be put in the (formally equivalent) Weyl form

UaVb ¼ e�iabVbUa

One then searches for a noncommutative C*-algebra A to represent the quantum

observables with the requirement that A contain all the operators Ua;Vb satisfying

the Weyl form of the canonical commutation relations. One choice, used often in the

physics literature and which has now become standard in philosophy of physics, is

the Weyl algebra, which is the smallest C*-algebra W containing all of the oper-

ators Ua;Vb.13 In other words, W is generated from the collection of all finite linear

combinations of Ua;Vb by imposing the Weyl commutation relations and then

completing the resultant algebra in the norm topology.14 As is well known, one can

generalize this construction of the Weyl algebra to an arbitrary classical phase space

carrying the structure of a symplectic vector space.

11 Throughout this paper we work in units such that �h ¼ 1.
12 This definition captures as a special case the usual commutation relations

½QðqÞ;QðpÞ� ¼ i

for the quantized position observable QðqÞ and the quantized momentum observable QðpÞ.
13 The Weyl algebra can also be uniquely characterized through its Hilbert space representations (see

Clifton and Halvorson 2001).
14 The Weyl operators admit a unique maximal C*-algebra norm (Manuceau et al. 1974).
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Before we continue, I would like to make some brief remarks about how this

paper fits into the existing philosophical literature on algebraic methods in quantum

theories. As stated in the introduction, much of that literature focuses on the

problem of inequivalent Hilbert space representations of the quantum algebra of

observables (see, e.g., Ruetsche 2011). Two interpretive positions have arisen in that

literature:15 the Hilbert Space Conservative grants physical significance to only one

irreducible representation of the algebra while the Algebraic Imperialist grants

physical significance to the algebra itself. First, this paper can be seen as supporting

the Algebraic Imperialist’s position by demonstrating how a certain perspective on

algebraic methods helps us to understand theory construction. Second, one might

argue that in precisely the same way that inequivalent Hilbert space representations

pose a problem for the Hilbert Space Conservative, inequivalent observable algebras

pose a problem for the Algebraic Imperialist because we have to choose just one of

these algebras in an ad hoc fashion. This paper shows that while the question of

which algebra to use is obviously an important question for the Algebraic

Imperialist, she can indeed bring appropriate and non-ad hoc considerations to bear

on this question. In particular, I will show that the Imperialist has tools from

classical physics that she can use to constrain, inform, or perhaps even justify her

choice of an algebra of observables to use for some given purpose.

3 Significance of the Weak Topologies

Just as the norm topology on the C*-algebra of classical observables C0ðMÞ
corresponds to a familiar notion of ‘global’ or uniform approximation, so too does

the weak topology on C0ðMÞ correspond to a familiar notion of approximation. The

weak topology on C0ðMÞ is equivalent to the topology of pointwise convergence of

nets with bounded norm. More precisely, a net ffig � C0ðMÞ converges to f 2
C0ðMÞ in the weak topology iff (a) for all x 2 M, fiðxÞ ! f ðxÞ in C and (b) the net

of real numbers fjjfijjg is bounded (Reed and Simon 1980, p. 1112). The weak

topology provides a natural way of capturing this pointwise notion of approximation

within the abstract algebraic framework.16

Completing our C*-algebra C0ðMÞ in the weak topology allows us to include as

observables of our theory functions that can be pointwise approximated by our

original observables. The bidual of the classical algebra of observables is

C0ðMÞ�� ¼ BðMÞ, the collection of bounded Borel functions on M, where a

15 These are not the only interpretive positions available (see Ruetsche 2011). Albeit extreme views, they

are illustrative for the purposes of this paper.
16 One gets this notion of pointwise convergence immediately for abelian C*-algebras of all continuous

functions on a compact Hausdorff space (see Kadison and Ringrose 1997, p. 270). However, when we

consider functions on a locally compact (not necessarily compact) manifold M, the correspondence of

weak convergence and pointwise convergence on M only holds for the algebra C0ðMÞ, rather than the

algebra of all continuous functions, CðMÞ. The reason is that it is only for C0ðMÞ that the pure states

correspond to precisely the points in M. Other algebras of bounded continuous functions allow for ‘states

at infinity’—pure states that cannot be represented as points of M—which forces the weak topology to

diverge from the topology of pointwise convergence on M. Another way to state the main issue of this

paper is as the question of whether these ‘states at infinity’ are physically significant.
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Borel function is a measurable function in the Borel r-algebra generated from the

topology on M. This is just a restatement of the familiar fact that while uniform

limits of continuous functions must always be continuous, pointwise limits of

continuous functions may be discontinuous, as long as they remain measurable. It

immediately follows that the weak* topology on BðMÞ is also precisely the

topology of pointwise convergence of nets with bounded norm. This provides

further reason for using the algebras C0ðMÞ and BðMÞ—their naturally defined

topologies correspond with familiar topologies on classes of functions that represent

notions of approximation that are obviously physically significant.

One might object that not all measurable functions in BðMÞ are physically

significant in the classical theory because this algebra includes many discontinuous

functions. To alleviate this worry, notice that BðMÞ is generated by its projections,

the characteristic functions of measurable sets in M. The usual interpretation of

measurable sets is that they correspond to propositions, or ‘yes-no’ questions, that

have manifest physical or empirical significance (e.g. do the position and

momentum of the particle fall in this range of values?). To the extent that this

interpretation of measurable sets is appropriate, the characteristic functions of such

sets have manifest physical significance as well for representing the very same

propositions. The entire algebra BðMÞ is then generated by composing the

characteristic functions with the usual algebraic relations, which gives an effective

procedure for measuring any observable in BðMÞ: first measure the projection

observables, then compose their values via the well-defined algebraic relations.

Hence, every observable in BðMÞ carries at least a derived physical significance.17

One might think that the weak topology on a quantum algebra also carries physical

significance by encoding a notion of approximation by expectation values. After all,

the very definition of the weak topology encodes a notion of pointwise approximation

of expectation values of states. But this will not do—given a non-commutative C*-

algebra A satisfying some form of the canonical commutation relations, we do not

know a priori that all states on A, and hence all expectation values, are physically

significant. There may be pathological states on A that we want to rule out for the

purposes of physical approximation. If there are such unphysical states, then the

weak topology provides a notion of approximation with respect to these unphysical

states, and so does not carry the physical interpretation we have assumed. To be sure

that one has an appropriate physically significant quantum state space, one can use a

quantization map to connnect the quantum and classical algebras. The following

proposition shows that a quantization map Q can be used to characterize the

physical significance of the weak topology of a quantum algebra of observables.

Proposition 1 Suppose Q : C0ðMÞ ! A is a norm continuous surjective linear

mapping onto a C*-algebra A. Then the weak topology on A is the coarsest

topology that makes continuous every linear functional q : A ! C whose compo-

sition with Q, q 	 Q : C0ðMÞ ! C is continuous in the topology of pointwise

convergence on C0ðMÞ.

17 On the other hand, if we started with a C*-algebra other than C0ðMÞ, then completing in the weak

topology would give rise to functions that cannot even be understood as measurable functions on M
because of their values ‘at infinity’ (cf. footnote 15).
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Proof By the definition of the weak topology, it suffices to show that if a linear

functional q : A ! C has a norm continuous composition with Q,

q 	 Q : C0ðMÞ ! C, then q is norm continuous on A. (The converse is trivial.)

Let O be an open set in C. Since q 	 Q is continuous in the norm topology on

C0ðMÞ, ðq 	 QÞ�1½O� is open in the norm topology on C0ðMÞ. Since Q is a norm

continuous surjective mapping between Banach spaces, by the open mapping

theorem (Reed and Simon 1980, Thm. III.10, p. 82) we know

Q½ðq 	 QÞ�1½O�� ¼ Q½Q�1½q�1½O��� ¼ q�1½O�

is open in the norm topology on A. Hence q is continuous in the norm topology

on A. h

This shows that when a quantum algebra is constructed by a quantization map

Q, then the weak topology on the quantum algebra captures a natural notion of

approximation that respects the structure of the classical theory it derives from.

Recall that the definition of the weak topology ensured that it was the coarsest

topology that made certain maps continuous that ought to be continuous. The above

proposition shows that the maps that are made continuous are precisely the ones that

behave well with respect to the classical algebra and the quantization map.

Of course, the collection of functionals whose composition with Q is

continuous turns out to coincide with the collection of all norm continuous linear

functionals on A, which is why we end up providing simply another character-

ization of the weak topology. But note that it is absolutely crucial that the

quantum algebra be a quantization of C0ðMÞ in order for its weak topology to

gain physical significance from the notion of pointwise approximation of the

classical theory. If we set things up differently, say by letting the classical algebra

to be quantized (the domain of the quantization map Q) be some other algebra of

functions besides C0ðMÞ, then we would allow for many states whose

composition with Q is not continuous in the topology of pointwise convergence.

In other words, as we will see in the next section, if one tries to quantize an

algebra other than C0ðMÞ, one is liable to produce a theory with unphysical states,

whose weak topology does not capture the proper notion of pointwise approx-

imation (cf. footnotes 15 and 16).

It follows immediately from the above proposition that we can also characterize

the physical significance of the weak* topology of a quantum algebra of observables

by reference to the classical theory and quantization map.

Corollary 1 Suppose Q : C0ðMÞ ! A is a norm continuous surjective linear

mapping onto a C*-algebra A. Then the weak* topology on A�� is the coarsest

topology s such that for every linear functional q : A ! Cwhose composition withQ,

q 	 Q : C0ðMÞ ! C is continuous in the topology of pointwise convergence on

C0ðMÞ, the map q̂ : A�� ! C defined by q̂ðAÞ ¼ AðqÞ for all A 2 A is continuous

with respect to s.

This shows that the quantum algebras of observables A and A�� should be

understood as analogous to C0ðMÞ and BðMÞ. A should be understood as a
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restricted subclass of bounded observables, and A�� should be understood as a

larger class of bounded observables that can be approximated by those in A in a

topology analogous to the topology of pointwise convergence from our classical

theory. The problem that I point to in the next section is that one needs to be careful

to ensure this correspondence holds—if one makes an unpropitious choice of the

quantum algebra of observables, then one cannot understand the weak topology of

that algebra as having physical significance, or equivalently, one cannot (at least in

the absence of further argument) understand all states of the algebra as having

physical significance.

Given this physical interpretation of the weak topologies, one can do real theoretical

work by imposing continuity constraints on Q. Namely, one would like to be able to

extend the quantization map Q from C0ðMÞ to its weak completion BðMÞ. This is

important because the projection operators associated with the position and

momentum observables belong to BðMÞ, but not C0ðMÞ. So in order to quantize

the propositions associated with position and momentum measurements, one must

extend the quantization map to these observables. It follows from Kadison and

Ringrose Cor. 1.2.3 (1997, p. 15) that if Q is continuous in the weak topology on

C0ðMÞ and the weak topology on A, then Q has a unique extension ~Q : BðMÞ !
A�� that is continuous in the weak* topology on BðMÞ and the weak* topology on

A��. Of course, this extension is unique only if one imposes the continuity condition;

otherwise one could extend Q in any which way. As a precondition for imposing the

continuity condition, we must already require that Q is continuous in the weak

topologies on C0ðMÞ and A. Thus, it is desirable to use a quantization map that is

weakly continuous. The weak topologies have real import for physics by

constraining which maps Q we use and how we extend them to larger algebras.

4 Against the Weyl Algebra

In this section, we show that if the Weyl algebra W is used as the quantum algebra

of observables A, the quantization map Q fails to be continuous in the appropriate

topologies. Thus, we conclude that the weak topology on W is, in a sense,

incompatible with the classical theory W derives from. However, there are

alternatives that fare better; we show that Berezin quantization, which uses the

algebra of compact operators on a Hilbert space as its quantum algebra, succeeds in

being weakly continuous.

First, notice that the generators of the Weyl algebra were defined (formally) as

functions of position and momentum: Ua ¼ eiaQðqÞ and Vb ¼ eibQðpÞ. We can

consider these operators as the quantization of functions ua; vb : M ! C in the

classical theory, defined analogously by uaðq; pÞ ¼ eiaq and vbðq; pÞ ¼ eibp.18 We

18 Even though Q is only required to be linear and not to be a homomorphism (i.e., it is not required to

preserve multiplication and thus not required to preserve functional relations in general), it seems natural

to expect Q to preserve functional relations on abelian subalgebras of its range. In other words, it seems

natural to expect Qðgðf ÞÞ ¼ gðQðf ÞÞ for f 2 C0ðMÞ and any Borel function g : R ! R, as in the usual

functional calculus.
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should already be wary because neither ua nor vb vanishes at infinity, and thus these

observables lie outside of C0ðMÞ. Instead we have ua; vb 2 BðMÞ n C0ðMÞ. Let us

form the classical analog WC of the Weyl algebra, the smallest commutative C*-

algebra generated by the functions ua; vb for all a; b 2 R.

One especially important feature of the functions ua; vb is that they form

pointwise continuous one-parameter unitary groups in the sense that ua; vb ! 1 in

the topology of pointwise convergence as a; b ! 0, where 1 is the identity element

of BðMÞ, i.e. the constant unit function. This fact allows us to reconstruct the

observables q and p as the generators of the one-parameter families ua; vb. However,

in the Weyl algebra, the one-parameter families Ua;Vb fail to be continuous in the

weak topology. It is well known that there exists a state x on W such that

xðUaÞ9xð1Þ as a ! 0, and similarly there exists a state r on W such that

rðVbÞ9rð1Þ as a ! 0 (see Halvorson 2004). This immediately implies the

following proposition.

Proposition 2 Let Q : WC ! W be a mapping such that

QðuaÞ ¼ Ua and QðvbÞ ¼ Vb

Then Q is not continuous in the topology of pointwise convergence on WC and the

weak topology on W.

This shows that the weak topology on the Weyl algebra fails to capture the notion

of pointwise approximation that was inherent in the weak topology on the classical

algebra C0ðMÞ.
One might object that we should not be looking at the topology of pointwise

convergence, but rather the weak topology on WC, which is distinct. But this would

miss the point—WC is unlike C0ðMÞ in that it contains ‘states at infinity’, which

can be thought of as idealizations from the pure states in M. The weak topology of

WC captures a notion of approximation that includes approximation of values of

these idealized states. Thus, it is not at all clear that the weak topology on WC is

physically significant in the classical case. So I suggest that we ought to at least aim

for a quantum analog to the classical topology of pointwise convergence, which

would capture a notion of approximation of the values of manifestly significant

physical states.

Lack of continuity in the weak topologies poses real problems. When Q fails to

be continuous in the appropriate topologies, we do not have a unique way of

extending Q to the rest of the classical observables. In particular, in the absence of

further constraints, one cannot reconstruct the position and momentum observables

because the one-parameter unitary groups Ua and Vb, failing to be weakly

continuous, do not have generators in arbitrary representations of the algebra.

Similarly, one cannot extend the quantization map in the way described previously

to construct quantized propositions associated with position and momentum. This

provides prima facie reason to look for alternatives to the Weyl algebra that might

yield weakly continuous quantization procedures.

We do have other quantization procedures that stand in contrast by using a

different quantum algebra for the range of Q. In particular, Landsman (1998, 2006)
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explicitly uses as the quantum algebra of observables the C*-algebra A ¼ KðHÞ of

compact operators on the Hilbert space H ¼ L2ðRÞ, i.e. the square integrable

functions on R.19 Landsman (1998, 2006) gives multiple examples of quantization

maps Q : C0ðMÞ ! KðHÞ. Here we prove that one of those procedures, called

Berezin quantization,20 results in a weakly continuous quantization map Q.

Following Landsman (2006, p. 460), Berezin quantization is given by the

mapping QB : C0ðMÞ ! KðHÞ, which is defined as

QBðf ÞUðxÞ ¼
Z
R3

dp dq dy

2p
f ðq; pÞWðq;pÞðyÞUðyÞWðq;pÞðxÞ

for all f 2 C0ðMÞ and UðxÞ 2 H, where Wðq;pÞðxÞ 2 H is a so-called ‘coherent

state’, given by

Wðq;pÞðxÞ ¼ p�1=4e�ipq=2eipxe�ðx�qÞ2=2

The weak topology on KðHÞ is familiar—because the pure states on KðHÞ are

precisely the vector states in H, the weak topology corresponds with the weak

operator topology. In other words, a net fAig � KðHÞ converges to A 2 KðHÞ in the

weak topology iff hw;Aiui ! hw;Aui for all w;u 2 H. We can use this fact to

prove that Berezin quantization is weakly continuous.

Proposition 3 The Berezin quantization map QB : C0ðMÞ ! KðHÞ is continuous
in the topology of pointwise convergence on C0ðMÞ and the weak topology on

KðHÞ.

Proof It suffices to show that if ffig � C0ðMÞ is a net that converges pointwise to

f 2 C0ðMÞ, then QBðfiÞ converges in the strong operator topology to QBðf Þ, which

implies that it converges in the weak operator topology and hence in the weak

topology on KðHÞ. Hence, we will show that for all UðxÞ 2 H, QBðfiÞUðxÞ !
QBðf ÞUðxÞ in the norm topology on H. Straightforward calculation shows that

QBðfiÞUðxÞ ¼
1

2p3=2

Z
R3

dp dq dy fiðq; pÞUðyÞeipðx�yÞe�ðy�qÞ2�ðx�qÞ2=2

¼ 1

2p3=2

Z
R3

dp dq dy fiðq; pÞgðx; y; q; pÞ

where gðx; y; q; pÞ ¼ UðyÞeipðx�yÞe�ðy�qÞ2�ðx�qÞ2=2 is in L2ðR4Þ, and similarly for

QBðf ÞUðxÞ. It follows that

19 This is meant only for the case of finitely many degrees of freedom on a simply connected phase space.

It is well known that for systems with infinitely many degrees of freedom or with superselection rules, one

requires a different algebra.
20 Landsman (1998, 2006) also discusses another quantization map that he calls Weyl quantization. This

map does not have the Weyl algebra as its image, and so it should be distinguished from the quantization

map defined above from WC to W. It is worth reiterating that what is at issue in this paper is the quantum

algebra that is the image of a quantization map, but we have not discussed the details of the different

mappings one might use once we have fixed some quantum algebra.

1206 B. H. Feintzeig

123



jjQBðfiÞUðxÞ�QBðf ÞUðxÞjj2 ¼ 1

2p3=2

Z
R4

dx dp dq dy jfiðq;pÞ� f ðq;pÞj2jgðx;y;q;pÞj2

The dominated convergence theorem for Lp spaces (Simonnet 1996, Thm. 5.2.2, p.

100) implies that the expression on the right hand side approaches zero as i!1,

which shows that QBðfiÞ converges in the strong operator topology, and hence in the

weak topology, to QBðf Þ. h

This shows that the weak topology on KðHÞ preserves the notion of

approximation from the classical theory we began with. Or in other words, this

shows that the states on KðHÞ have physical significance because we can trace the

topology they define back to the topology defined by the manifestly physically

significant classical states in M. Thus, the states on KðHÞ have a much more secure

status than states on W.

Moreover, we can use the weak topology on KðHÞ to do real work. The

completion of KðHÞ in the weak topology is KðHÞ�� ¼ BðHÞ, the collection of all

bounded operators on H. Thus, the quantization map QB extends uniquely to a map
~QB : BðMÞ ! BðHÞ that is continuous in the topology of pointwise convergence

on BðMÞ and the weak operator topology on BðHÞ. This extension of the Berezin

quantization map has in its image the projections associated with the position and

momentum observables, which do not appear in the Weyl algebra. In fact,

representations of the Weyl algebra will not in general contain projections

associated with position and momentum unless one imposes further constraints. But

the Hilbert space of a representation of the compact operators—the image of the

Berezin quantization map—will always contain these projections, and so will

always allow us to reconstruct the position and momentum observables.

This brings us back to the familiar situation for the quantum mechanics of a

single particle, where our bounded observables correspond to all bounded operators

on a Hilbert space. It is my contention that the weak continuity of the quantization

map Q plays a fundamental role in this story of how we construct quantum theories.

My suggestion is that even in more complex quantum theories, including ones with

infinitely many degrees of freedom like field theories, we ought to prefer weakly

continuous quantizations in the absence of arguments to the contrary.

5 Discussion

We have seen that the weak (respectively, weak*) topology on a C*-algebra

(respectively, W*-algebra) of quantum observables can be given physical signif-

cance by connecting it to the manifestly physically significant weak topology on

C0ðMÞ. That is, a quantization map Q allows us to capture the notion of pointwise

approximation on classical states within the quantum algebra. However, the weak

topology on the Weyl algebra fails to capture this notion of approximation, or in

other words fails to be related to the classical theory by an appropriate quantization

procedure. I believe this provides reason to use an alternative algebra for our
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quantization procedures, one in which the preservation of the notion of pointwise

approximation from classical physics ensures that we focus on states that are

physically significant. As we saw, we already possess such an algebra in the form of

the compact operators, which succeeds in capturing the topological information at

issue, and hence the physicality of certain states.

I admit, though, that none of the considerations in this paper are decisive. In

practice, when one uses the Weyl algebra, one restricts attention to Hilbert space

representations satisfying a condition of regularity (see Petz 1990), which in turn

guarantees that the weak operator topology on the Hilbert space has the appropriate

relation to the weak topology of the classical theory. The problem is not that using

the Weyl algebra constitutes some sort of error, but rather that using the Weyl

algebra makes it easy to be misled. For example, one may be misled into thinking

that the regularity condition is an unjustified assumption, as Halvorson (2004)

claims. From the point of view of this paper, Halvorson’s position gets things

backwards. The regularity assumption is necessary to recover the topological

information from the classical theory we began with. Thus, it would be a mistake to

do away with the regularity assumption because one would lose important

topological information, and thus important information about which states are

physical and which are idealizations. Using the algebra of compact operators rather

than the Weyl algebra is a way to safeguard against making this mistake.

I believe that the discussion of this paper demonstrates how mathematical aspects

of our current theories can be used to constrain future scientific theorizing. I have

assumed that the goal of quantization is to alter a classical theory as little as possible

in order to make it into a quantum theory. This means that one should preserve, e.g.

the topological structure of the classical theory, while altering minimally the

algebraic structure by imposing the canonical commutation relations. Of course, one

is free to question this assumption; one might assert that theorists should be free to

explore whatever avenues seem profitable for constructing new quantum theories.

Some have in fact argued that discontinuous quantization procedures are fruitful in

developing theories of quantum gravity (Ashtekar 2009; Corichi et al. 2007). I do

not wish to argue against such approaches—I only wish to point out that they are far

more radical than they might at first seem. Rather than finding unexplored options

already available in the standard approach to quantum mechanics, theorists who

pursue discontinuous quantization procedures are proposing a major departure from

the quantum theories we currently possess.

It should be clear by now that topological considerations are not the only ones

that influence and constrain the construction of quantum theories. The topological

considerations of this paper are intimately tied with positions on what we should

take to be the appropriate state space of our theory. A choice of topology picks out a

collection of continuous states in that topology, which one can then take to be the

privileged collection of physical states. Part of the goal of this paper was to show

that topological constraints can be used to rule out ‘states at infinity’, or non-regular

states and non-regular representations. This can be seen as both a vice and a virtue

of the position taken in this paper (after all, one person’s modus ponens is another’s

modus tollens); advocates of non-regular states may take this very same implication

as reason to reject the topological constraints discussed here. I believe there is much
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more to be said concerning the relationship between algebra, topology, and state

space, but I must save this for future work.

Moreover, there are other types of constraints on the construction of quantum

theories that I have not considered in this paper: for example, the preservation of

classical symmetries, geometry, and symplectic structure.21 While this is not the

place for further discussion of these constraints (although see Landsman

1998, 2006), I hope that this paper has demonstrated that there is much for

philosophers of physics to engage with, learn from, and contribute on these topics.

The fact that the structure of our current physical theories can be used as a

methodological tool for constraining future theorizing, even in the absence of any

data, ought to have implications for general philosophy of science. But there are still

many open questions that need to be discussed to understand these implications.

Does the fact that a future theory is constructed in order to respect the structure of

current physics entail that we ought to put more credence in that new theory? Or

does the fact that our theorizing relies so heavily on current physics only show that

we are more likely to leave important alternatives unconceived? And can new

physical theories constitute Kuhnian paradigm shifts if they are constructed directly

out of the materials of our current theories? I hope that philosophers of science

continue to think about these important questions. I also hope that philosophers of

physics engage with these issues in the context of quantization, where their

conclusions may make a real difference for the future of physics.
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