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Abstract Objective Bayesians hold that degrees of belief ought to be chosen in the

set of probability functions calibrated with one’s evidence. The particular choice

of degrees of belief is via some objective, i.e., not agent-dependent, inference

process that, in general, selects the most equivocal probabilities from among

those compatible with one’s evidence. Maximising entropy is what drives these

inference processes in recent works by Williamson and Masterton though they

disagree as to what should have its entropy maximised. With regard to the

probability function one should adopt as one’s belief function, Williamson

advocates selecting the probability function with greatest entropy compatible

with one’s evidence while Masterton advocates selecting the expected probability

function relative to the density function with greatest entropy compatible with

one’s evidence. In this paper we discuss the significant relative strengths of these

two positions. In particular, Masterton’s original proposal is further developed

and investigated to reveal its significant properties; including its equivalence to

the centre of mass inference process and its ability to accommodate higher order

evidence.

1 Introduction

‘‘How should one form graded beliefs?’’ is a question that has long fascinated

philosophers. The answer to this question is highly relevant throughout science,

law, operational research and policy-making. Intuitively, it is obvious that one’s
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evidence ought to matter when forming beliefs, whether graded or binary. The

best way of caching out this ubiquitous intuition is, however, a matter of lively

disagreement. The main philosophical protagonists in this debate are: the

subjective Bayesians, who can be further subdivided into the radical (de Finetti

1989) and empirical (Lewis 1980) varieties; the objective Bayesians (Jaynes 2003;

Williamson 2010) and those who favour imprecise probabilities (Joyce 2010;

Gaifman 1986).

This paper is concerned with objective Bayesianism. Objective Bayesians, like

their subjective brethren, hold that one’s degrees of belief ought to be consistent

with one’s evidence. However, in cases where the evidential constraints are satisfied

by more than one probability function the objective Bayesians differ from the

subjective Bayesians in holding that the choice of a particular probability function

from those consistent with the evidential constraints ought to made in an

objective—i.e., agent-independent—manner. Typically, such a choice is made by

applying an inference process that picks from among the probability functions

consistent with the evidential constraints that function which is, in some sense,

maximally equivocal.1

Objective Bayesianism is (still!) a minority view with a relatively small but

dedicated group of advocates. Even in this relatively small group there are

disagreements. One such recent disagreement is that between Williamson (2010)

and Masterton (2015) on how to understand maximal equivocation.

We shall herein first rehearse Williamson’s account in Sects. 2.1 and 2.2. Then

we improve on Masterton’s approach by reformulating it, Sect. 2.3. This

reformulation reveals Masterton to be advocating a centre of mass inference

process. This lays bare a previously unknown and unsuspected connection

between the centre of mass inference process and the maximum entropy principle,

Sect. 2.5. This connection not only demonstrates the surprising connection

between these two apparently different approaches, we can also use it to

efficiently calculate the probability function Masterton advocates adopting, see

Sect. 2.6. Furthermore, we overcome the problems of disjunctive evidence and

open evidence which beset Masterton’s original proposal. In Sect. 3 we show how

Masterton’s approach naturally generalises to cases in which an agent possesses

higher order evidence.

In Sect. 4 we study an expansion of the language to include sentence which

enable the agent to express such higher order evidence. If no such higher order

evidence is available, then Masterton’s approach applied to this more expressive

language gives the same degrees of belief on the original language as Masterton’s

approach applied to the original language. Surprisingly, the corresponding

invariance does not hold for Williamson’s approach. We discuss this and further

points of interest in the final part of this paper (Sect. 5).

1 In awkward cases ‘‘maximally equivocal’’ is replaced by ‘‘sufficiently equivocal’’, but for the most part

we shall ignore this subtlety.

142 J. Landes, G. Masterton

123



2 Objective Bayesian Accounts

2.1 The Framework à la Williamson

2.1.1 Language

Throughout, we consider an agent with a fixed language L generated from a finite

set of n propositional variables fA1;A2; . . .;Ang, the standard logical connectives

:; ^; _; ! and $.2 Let SL be the set of all sentences that can be built from L
using the logical connectives. A state (or elementary event) x is a sentence of the

form �A1 ^ �A2 ^ . . . ^ �An, where þAi :¼ Ai and �Ai :¼ :Ai. The set X of such

states (elementary events) has cardinality 2n. The set of the subsets of X, denoted by

PX, is the set of propositions (or events).

2.1.2 Probabilities

The set of probability functions P is identified with

P ¼fP : PX �! ½0; 1� :
X

x2X
PðxÞ ¼ 1

& PðXÞ þ PðYÞ ¼ PðX [ YÞ 8X; Y 2 PXwith X \ Y ¼ ;g:
ð1Þ

Notation is abused in the usual way, writing PðxÞ as shorthand for PðfxgÞ. The

probability of an arbirtrary sentence u 2 SL is then defined as

PðuÞ :¼
P

x 2 X
x � u

PðxÞ.

The set of probability functions P is characterised by the axioms of probability

which require the following for all functions P : SL �! ½0; 1� and all sentences

v;u; h 2 SL:

P1: If � v, then PðvÞ ¼ 1.

P2: If � :ðh ^ uÞ, then PðuÞ þ PðhÞ ¼ Pðu _ hÞ.

2.1.3 Evidence

An agent’s evidence E in some context is whatever they rationally take for granted

in that context; it need not be expressible in the agent’s language, nor even be part

of what the agent knows. We assume that evidence comes in two types:3 all

evidence that ‘‘imposes quantitative equality constraints on rational degrees of

belief that are not mediated by evidence of chances’’ Williamson (2010, p. 47) is

2 To avoid unnecessary complications we here work over a propositional language; rather than a

language of first-order logic.
3 Both ourselves and Williamson freely allow that there may be other types of evidence and that these

will place their own constraints on reasonable credence. Hence, we allow that the calibration norm as

explicated herein may be incomplete. This does not make what is presented here unsound, it merely

means that it may not be the full story on calibration.
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qualitative evidence, all such evidence that is mediated by evidence of chances is

quantitative. For instance, the evidential independence of h and w—

PðhjwÞ ¼ PðhÞ—is a piece of qualitative evidence, whereas the stochastic

independence of these sentences—chðhjwÞ ¼ chðhÞ—is a piece of quantitative

evidence.

At Williamson (2010, pp. 42-43) Williamson gives an account of how to

translate evidence E into constraints on rational belief by computing a set P� � P

consisting of the set of probability functions that are calibrated with the evidence E.

Roughly, this account has P� as the set of probability functions left epistemically

open when one’s evidence is exhausted by E.

2.2 Williamson’s Norms

Williamson put forward three norms that jointly govern the choice of the agent’s

degrees of belief. These norms have appeared in a number of works and have

remained virtually stable. We here refer to their latest published version for

propositional languages, which we take from Landes and Williamson (2013).

Probability The strengths of an agent’s beliefs should satisfy the axioms of

probability. That is, there should be a probability function PE : SL �! ½0; 1� such

that for each sentence h of the agent’s language L, PEðhÞ measures the degree to

which the agent, with evidence E, believes sentence h. Formally:

PE 2 P:

Calibration The strengths of an agent’s beliefs should satisfy constraints imposed

by her evidence E. In particular, if the evidence determines just that physical

probability (aka chance) ch is in some set P� of probability functions defined on

SL, then PE should be calibrated to physical probability insofar as it should lie in

the convex hull hP�i of the set P�. (We assume throughout this paper that chance

is probabilistic, i.e., that ch is a probability function. Furthermore, we restrict

attention to non-empty P�.) Formally:

PE 2 hP�i:

Equivocation The agent should not adopt beliefs that are more extreme than is

demanded by her evidence E. That is, PE should be a member of hP�i that is

sufficiently close to the equivocator function P¼ which gives the same probability

to each x 2 X, where the states x are sentences describing the most fine-grained

possibilities expressible in the agent’s language.

Much explication and justification of these norms has been offered in the

literature. We have nothing to add to this literature here and we feel that both the

probability and calibration norms are fully transparent as presented above. We now

briefly introduce the equivocation norm in more detail.
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2.2.1 Equivocation Norm

The Shannon entropy of a probability function P 2 P is defined by

HðPÞ :¼ �
X

x2X
PðxÞ � logðPðxÞÞ:

A convention we adopt throughout is 0 logð0Þ :¼ 0. According to the Maxent ver-

sion of objective Bayesianism that Williamson adheres to, probability function

P 2 P is more equivocal than probability function Q 2 P if, and only if,

HðPÞ[HðQÞ.
Let + hP�i � hP�i be the set of sufficiently equivocal E-calibrated probabilities.

Sufficiently equivocal E-calibrated probability functions P are those whose Shannon

entropy H(P) is greatest or, if such do not exist, those whose entropy meets some

pragmatically decided threshold. Thus, if

# hP�i ¼ PE 2 hP�i : HðPEÞ ¼ �
X

x2X
PEðxÞ logðPEðxÞÞ is maximized

( )
6¼ ;;

then + hP�i ¼ # hP�i.
If # hP�i ¼ ;, then + hP�i is decided pragmatically by setting a level of entropy

that is sufficiently exclusive. Then the equivocation norm in our setting is formally:

PE 2+ hP�i:

This recipe may fail to determine a unique PE —+ hP�imay not be a singleton—and

to the extent that this is so, some room for subjective preference remains Williamson

(2010, p.158) even where credences are relativised to evidence and language.

Arguably, the objective Bayesian can accept this by maintaining that objectivity is not

binary, but rather comes in degrees, and that objective Bayesianism is simply a more

objective version of Bayesianism than its rivals. This is how Williamson responds to

this failure of the equivocation norm to specify a unique credence function in all cases.

If PE is unique, then we denote this probability function by Py.

2.3 Masterton

For the time being, we follow Masterton (2015) by working within the same formal

framework as Williamson: i.e., we work on a propositional language and accept the

Probability Norm as formulated above. Furthermore, we apply Williamson’s approach

to what constitutes evidence and how to turn evidence into constraints on degrees of

belief: i.e., how to compute P�.4 Generally speaking, disagreement arises between

these parties with respect to how to understand equivocation, and to a lesser degree,

calibration.

The most substantial difference between Masterton and Williamson is over what

one should equivocate; Williamson advocates equivocating over the probability

4 Nothing important hinges on this, we are happy with every approach to evidence as long as it results in

a set of calibrated functions P�.

Invariant Equivocation 145

123



functions P 2 P� while Masterton advocates equivocating over the probability

densities . 2 C1
P� consistent with P�, soon to be described. We shall revisit this

disagreement in due course, Sect. 5, but first we turn to Masterton’s account.

2.3.1 A Reformulation of Masterton’s Approach

Instead of reiterating Masterton’s original formulation, we give a more efficient and

essentially equivalent formulation.

First, we introduce calibrated density distributions . on the set of probability functions

P�. That is, a calibrated density distribution . is a map from P� to R	 0 such that:
Z

P2P�
.ðPÞ � P dP 2 P: ð2Þ

The set of such evidence calibrated density distributions . is denoted by C1
P� ,

C1
P� :¼ . : P� ! R	 0 :

Z

P2P�
.ðPÞ � P dP 2 P

� �
:

The meaning of the superscript in C1
P� shall become clear in Sect. 4.

The above recipe may fail to be well-defined, ifP� is not Lebesgue measurable or if

the dimension ofP� is strictly less than the dimension ofP. To address these technical

difficulties we will always take the Lebesgue measure used for integration to be of the

same dimension as P�. For example, if P� is convex and contains more than a single

point, then the integral is with respect to the Lebesgue measure of dimension dimðP�Þ.
For continuum-sized P�, we let a denote the maximal natural number, such that there

exists a set U � P� of dimension a which is open in the standard topology of Ra. We

will also always assume thatP� is properly Lebesgue measurable in this sense: i.e., the

integral
R

P2P� dP is well-defined and strictly between zero and þ1. So, if P� is the

union of a line segment and a triangle, then a ¼ 2. We can think of no real life scenarios

where theP� fails to be properly Lebesgue measurable, so we deem that this limitation

is of negligible practical consequence.

Finally, for finite P� we interpret (2) in this natural sense:
X

P2P�
.ðPÞ � P 2 P: ð3Þ

That is, we interpret convex combinations of the P 2 P� with the density . speci-

fying the weights for the calibrated probability functions.

The set of density distributions C1
P� plays a crucial role within Masterton’s

account. Masterton’s equivocation norm requires that one selects the density from

this set with greatest entropy. The entropy of a density5 . is given by

5 Two different densities .; .0 2 C1
P� which only differ on a null-set of P� have the same entropy.

However, the expected probabilities with respect to .; .0 are equal: i.e.,R
P2P� .ðPÞ � PdP ¼

R
P2P� .0ðPÞ � PdP. Null-sets of P� are thus of no interest to us. With some abuse of

language we say that the calibrated density with greatest entropy .y equals the uniform density on P�. We

do this in spite of the fact that there exist densities with the same entropy as .y.
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Hð.Þ ¼ �
Z

P2P�
.ðPÞ logð.ðPÞÞ dP:

According to Masterton, degrees of belief on L have then to be set to

P
y
MðuÞ :¼

Z

P2P�
.yðPðuÞÞPðuÞ dP; ð4Þ

for all sentences u 2 SL where .y is the density in C1
P� with greatest Shannon

entropy. (4) is a well known consequence of the theorem of total probability and

Miller’s (1966) principle. It implies that the probability of a sentence is the expected

probability of that sentence relative to some density function. Masterton’s equivo-

cation norm merely asserts that the density function in question should be that

calibrated density over P� which is most equivocal. The subscript M of P
y
M stands

for ‘‘Masterton’’.

In essence, the Lebesgue integral is an ingenious tool to compute weighted

combinations of the points of a Lebesgue measurable set. By canonically

embedding P� into P as a subset, we can thus simply read-off that

P
y
M 2 hP�i:

Thus Masterton, like Williamson, endorses the calibration norm, but does so for

different reasons. Williamson endorses the norm because it is the weakest constraint

that minimises worst case expected logarithmic loss6 that also offers a non-arbitrary

solution to the problem of disjunctive evidence.7 Masterton endorses the calibration

norm because it is a consequence of (4).

2.3.2 Alternative Densities?

At this point, we want to point out that there is another natural way of setting up

densities and equivocating over them. This alternative way is inconsistent with the

axiom of probability and hence forbidden in the present Bayesian setting.

One could define densities over the sentences of L, rather than over the

probability functions on L. One then defines the entropy of a density in the obvious

way and computes for all sentences of L the density with greatest entropy. The

degree of belief in a sentence u of L is then set to the expectation of this density.

6 Williamson’s (2010, pp. 64–65) argument here is as follows: If an agent’s probability function P is not

in the convex hull of the P� determined by their evidence, then there is some other probability function

P0 2 hP�i which has a strictly better worst case expected logarithmic loss than P as shown by Grünwald

and Dawid (2004); see also Landes (2015); Landes and Williamson 2013).
7 This problem is best exemplified by considering a sentence h that, according to our evidence, is settled

one way or the other; so that P� ¼ fP : PðhÞ 2 f0; 1gg. Arguably, restricting credence to any subset of

hP�i other than P� would be arbitrary, but restricting credence to P� would, by Williamson’s

equivocation norm, yield the conclusion that one should either be certain of h or else be certain of its

negation. This is highly counterintuitive, as typically one would think that in such a situation one should

be as certain in the sentence as its negation, which is the result one obtains by applying the equivocation

norm to hP�i. Thus no, non-arbitrary, subset of hP�i avoids the issues posed by disjunctive evidence,

while hP�i does avoid those issues.
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For P� ¼ P and all contingent sentences u of L it holds that every value in [0, 1]

is possible for PðuÞ. Thus, the density for u with greatest entropy is the uniform

density over [0, 1]. It follows that the degree of belief in u equals 1
2
. If X contains

three or more states, then the so-obtained degrees of belief violate the axioms of

probability,
P

x2X PðxÞ ¼ 1
2
� jXj[ 1.8

2.4 Placing Masterton’s and Williamson’s Objective Bayesianism
in Context

Before moving on to the relationship between Masterton’s Objective Bayesianism

and Center of Mass Objective Bayesianism it is useful to reflect on the similarities

and differences between Masterton’s Bayesianism and Williamson’s and how they

both differ from other variants of Objective Bayesianism. First, the two positions are

similar in that they assume the same formal framework, with the sole exception that

Masterton includes chance hypotheses in the agent’s language. Second, as stated

previously, both Masterton and Williamson are in complete agreement on the

probability and calibration norms, though they differ in their reasons for accepting

the latter. Third, they both agree that equivocation is about maximising entropy,

though they disagree about just what should have its entropy maximised.

An important point with respect to the wider debate is that Masterton’s and

Williamson’s endorsement of the calibration norm makes their versions of objective

Bayesianism entirely kinematic. There are no prior or posterior credences in their

respective Bayesianisms; no new or old evidence. There is simply the evidence the

agent has at time t, which determines the (set of) credence function(s) that it is

reasonable/rational for the agent to have at t. If at time t þ 1 the agent’s evidence has

changed, then this will typically mean that a different (set of) credence function(s) will

be reasonable/rational for the agent at t þ 1. No functional relationship between the

reasonable credence function of the agent at t and her credence function at t þ 1 is

assumed. This makes Masterton’s and Williamson’s versions of objective Bayesian-

ism substantially different from those dynamic versions, such as Jaynes (1968), that

seek to identify objective prior probabilities to then conditionalize on new evidence to

get objective posterior probabilities. Perhaps most significantly, the problem of old

evidence cannot arise in purely kinematic Bayesianism for there is no old or new

evidence, just evidence at each moment in time for each agent.9

8 Degrees of belief in tautologies in L are one and degrees of belief in contradictions are zero; which is

consistent with the axioms of probability.
9 While Masterton and Williamson avoid the unique probability objection raised by Bandyopadhyay and

Brittan (2010), nothing in their previous writings deals with Bandyopadhyay’s et al criticism that often in

science hypotheses are accepted on the strength of the evidence despite their posterior probability in the

light of such evidence being very low. While Masterton and Williamson do not have posterior

probabilities in their accounts, it is the case that significant evidence for a hypothesis may fail to result in

high credence in that hypothesis in their frameworks. Masterton’s response to this concern is that while a

high degree of belief in a hypothesis is a sufficient condition for its acceptance, it is not a necessary one.

Thus, he allows that a hypothesis’ acceptance by an agent may be warranted by, e.g., a significant

experimental result even when the reasonable degree of belief for that agent on the basis of that evidence

is low. That is Masterton, much like (van Fraassen 1980), holds acceptance and belief to be two entirely

distinct doxastic states where warranted acceptance is easier to come by than warranted belief.
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Another agreement between Masterton’s and Williamson’s objective Bayesian-

ism is that while they agree that the ideal is that an agent’s language and evidence

should force a unique probability function upon them as reasonable, they both allow

that this can fail to happen. The sources of potential failure in this regard are different

for the two authors; the source in Williamson’s case is that there may be no unique

sufficiently equivocal evidence calibrated probability function, while the source in

Masterton’s case is that there may be no unique sufficiently equivocal evidence

calibrated density function. However, both agree that the possibility of such failure in

their respective inference processes entails that their Objective Bayesianism is not

fully objective. This seems to imply that both Masterton’s and Williamson’s versions

of Objective Baysianism do not fit well in any of Bandyopadhyay’s et al.

(Bandyopadhyay and Brittan 2010) 4 categories of Objective Bayesianism. Neither

position is technically ‘strongly’ objective as they both allow that the inference

process may fail to deliver a unique probability (though they are arguably strongly

objective in spirit), but nor is either position ‘moderately’ objective because they do

not envisage scientific inference as a problem of deciding between competing

theories Bernardo and Ramón (1998). Certainly, neither position is a version of a

Carnapian (Carnap 1950) style of logical/‘necessary’ objective Bayesianism. Finally,

they are not ‘quasi’ objective as simplicity plays no role in the inference process and

though Masterton and Williamson also allow that the inference process may result in

a number of probability functions being equally reasonably they do not condone this

fact but rather see it as an unavoidable evil.

2.5 Masterton’s Approach and the Centre of Mass Inference Process

We now show how to frame Masterton’s approach in terms of the centre of mass

inference process. Slightly generalising the definition at Paris (1994, p. 69) we define

an inference process to be a map from non-empty sets of probability functions to P.

The centre of mass inference process, (CM), applied to P�, picks out the

probability function P
y
CM at the centre of mass of P�. P

y
CM is usually defined as

follows:

P
y
CM :¼

R
P2P� P dPR
P2P� dP

:

Since .y is the uniform density satisfying
R

P2P� .yðPÞ dP ¼ 1 it follows that

P
y
M ¼

Z

P2P�
.yðPÞ � P dP

¼
R

P2P� P dPR
P2P� dP

¼P
y
CM :

Thus, Masterton unwittingly advocated adopting the same probability function as

the centre of mass inference process picks out.
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Unsurprisingly, given the agreement demonstrated above, the basic intuitions

cited in support of these inference processes are very similar.

treat all probability functions that satisfies the constraints as equally likely. [..]

immediately suggests approximating, or estimating, the true probability by

taking the ’average’ of all probability function satisfying the constraints. Paris

(2005, pp. 276–277)

Where there is a maximally equivocal element in the evidence-calibrated set

of densities over chances, then the reasonable credence to have in h, according

to this approach, is the expected chance of h relative to [...] that most

equivocal density function Masterton (2015, p. 422).

2.6 Examples

With the centre of mass formulation of Masterton’s approach in place we are now in

position to compute P
y
M straight-forwardly using only elementary geometry.

2.6.1 P� is finite

Example 1 There are only finitely many pairwise different probability functions

P1; . . .;Pq which are calibrated to the agent’s evidence. We have

P� ¼ fP1; . . .;Pqg

.yðPÞ ¼
1

q
; if P 2 fP1; . . .; Pqg

0 ; else:

:

8
><

>:

P
y
M is then simply the arithmetic mean of the Pi

P
y
M ¼ P1 þ P2 þ . . .þ Pq

q
:

2.6.2 Disjunctive Evidence

Example 2 Let L contain only a single variable A1 and let

P� :¼ fP 2 P : PðA1Þ 2 ½0:1; 0:3� [ ½0:5; 0:8�g:

The density with greatest entropy .y (see Fig. 1) thus assigns every P 2 P� the

value 2. The centre of mass of P�, P
y
MðA1Þ, then has to satisfy

3 � ð0:65 � P
y
MðA1ÞÞ ¼ 2 � ðPy

MðA1Þ � 0:2Þ:

We find that this constraint is uniquely solved by P
y
MðA1Þ ¼ 0:47.
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2.6.3 A Trapezium

Example 3 Let L ¼ fA1;A2g and let

P� ¼ fP 2 P : Pðx1Þ 2 ½0:7; 0:9�&Pðx4Þ ¼ 0g:

P� is a trapezium T with vertices P1 ¼ ð0:9; 0:1; 0; 0Þ;P2 ¼ ð0:9; 0; 0:1; 0Þ;P3 ¼
ð0:7; 0:3; 0; 0Þ;P4 ¼ ð0:7; 0; 0:3; 0Þ.

Letting P0 ¼ ð1; 0; 0; 0Þ we find that the area of the trapezium T is the area of the

equilateral triangle D3 :¼ hP0;P3;P4i minus the area of the equilateral triangle

D1 :¼ hP0;P1;P2i, see Fig. 2.

For the area of T we now easily find

areaðTÞ ¼
ffiffiffi
32

p

4
0:32 �

ffiffiffi
32

p

4
0:12 ¼ 0:02 �

ffiffiffi
3

2
p

:

P †
M (A1)

P (A1)

†Fig. 1 The most equivocal

density over P�, with P
y
MðA1Þ

marked in the figure

P0P3 P1

P2

P4
P=

T

Δ0

Fig. 2 Projection of trapezium
onto the plane with Pðx4Þ ¼ 0.
The dotted lines are axis of
symmetry

Invariant Equivocation 151

123



By the symmetry of P� we can infer that the most equivocal density is invariant

under permuting x2 and x3. We thus infer P
y
Mðx2Þ ¼ P

y
Mðx3Þ and also that

P
y
Mðx4Þ ¼ 0. We are thus looking for the point X ¼ ð1 � x; x

2
; x

2
; 0Þ 2 T on the line

segment h connecting (0.9, 0.05, 0.05, 0) and (0.7, 0.15, 0.15, 0) which is the

centre of mass of T.

Note that X is not the midpoint of h. Rather, X needs to lie on the line segment

which connects Px :¼ ð1 � x; x; 0; 0Þ and Px :¼ ð1 � x; 0; x; 0Þ which cuts T into two

equally large trapeziums T1 and T2

T1 ¼ hP1;P2;Px;Pxi
T2 ¼ hP3;P4;Px;Pxi

areaðT1Þ ¼ areaðhPx;Px;P0iÞ � areaðD0Þ
areaðT2Þ ¼ areaðD3Þ � areaðhPx;Px;P0iÞ:

The geometry is depicted in Fig. 3.

We thus obtain the following constraint on x

areaðT1Þ ¼x2

ffiffiffi
32

p

4
� 0:12

ffiffiffi
32

p

4
¼ 0:32

ffiffiffi
32

p

4
� x2

ffiffiffi
32

p

4
¼ areaðT2Þ

¼ areaðTÞ
2

¼ 0:01 �
ffiffiffi
3

2
p

;

which is uniquely solved by x ¼
ffiffiffiffiffiffiffiffiffi
0:052

p

 22:36%.

We thus find P
y
M as follows

P
y
M ¼ 1 �

ffiffiffiffiffiffiffiffiffi
0:05

2
p

;

ffiffiffiffiffiffiffiffiffi
0:052

p

2
;

ffiffiffiffiffiffiffiffiffi
0:052

p

2
; 0

 !

 ð77:64%; 11:18%; 11:18%; 0Þ:

The entropy maximiser Py is Py ¼ ð0:7; 0:15; 0:15; 0Þ. P
y
M and Py are plotted in

Fig. 4.

P0P3 P1

P2

P4

Px

P x

T2
T1

Δ0

P=

Fig. 3 Geometry of the
trapeziums T1 [ T2 ¼ T ,
T1 [ D0 ¼ D1
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3 Non-uniform Equivocation

We now further develop Masterton’s account. Let us first consider a simple-minded

example.

3.1 Biased Coins

Consider an agent which rationally grants that the coin about to be flipped has been

produced by one of three machines:

A Machine A produces fair coins, PAðHeadsÞ 2 ½0:48; 0:52� ¼ P�
A

B Machine B produces coins which are slightly biased in favor of heads,

PBðHeadsÞ 2 ½0:54; 0:72� ¼ P�
B and

C Machine C produces coins which are strongly biased in favor of heads,

PCðHeadsÞ 2 ½0:68; 0:84� ¼ P�
C.

We assume that the agent does not have any further evidence; in particular, the

agent does not have any further evidence on the chances of heads from coins from a

particular machine. What ought the agent’s degrees of belief be?10

Williamson’s account gives PyðHeadsÞ ¼ 0:5, since hP�i ¼ ½0:48; 0:72� and in

Williamson’s account one ought to adopt the Shannon entropy maximiser in hP�i.
Masterton’s answer is

P
y
MðHeadsÞ ¼ 4 � 0:5 þ 20 � 0:69

24
¼ 15:8

24
¼ 65:8�3%:

P0P3 P1

P2

P4

Px

P x

P=

P †
P †
M

Fig. 4 Py and P
y
M for P� ¼ T

10 To keep the example simple, we restrict ourselves here to the case in which there is no information as

to how likely any given situation is. If such information is available, then it ought to be taken into

account, in an appropriate manner. For example, if situation i is taken to be twice as likely as situation k,

then situation i should be given double the weight of situation k. We shall come back to higher order

evidence in Sect. 4. Lewis describes a similar procedure at Lewis (1980, p. 266).
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According to Masterton (2015) the problem with Williamson’s account is that his

answer PyðHeadsÞ ¼ 0:5 is not influenced by the possibility of the coin being

produced by Machine B or Machine C.

A similar problem besets Masterton’s own account. Let us modify our example

such that there are now fifty machines of type C, one single machine of type A and

one single machine of type B. Masterton’s, as well as Williamson’s, account

advocate adopting the same belief function in both examples. This seems peculiar.

The coin to be tossed has, with overwhelming likelihood, been produced by a

C-type machine. Yet, P
y
MðHeadsÞ ¼ 0:658�3 and PyðHeadsÞ ¼ 0:5 are incompatible

with the possibility that the coin was produced by a C-type machine.

The number of machines of type C ought to influence rational degrees of belief,

we claim. We now turn to a suggestion for how this might be.

3.2 Scenario Equivocation

In this concrete example with 52 coin-producing machines we want to suggest the

following approach. First, the agent equivocates over the possibilities regarding

which machine produced the coin. Then the agent equivocates over the probability

functions in P�
A, respectively P�

B and P�
C. We obtain

P
y
MþðHEADSÞ ¼ 1

52
� 50%þ 1

52
� 63%þ 50

52
� 76%

¼ 50 þ 63 þ 50 � 76

5200
¼ 3913

5200

¼ 0:7525:

As expected, P
y
Mþ is not only calibrated to P�

C but P
y
Mþ is close to the centre of P�

C.

In general, we want to suggest the following: if all the agent takes for granted is

that she is in one of t mutually exclusive scenarios, then she ought first to equivocate

over this set of possible scenarios. That is, the agent ought to have a degree of belief 1
t

for each of those scenarios that it is her scenario. Then, in each scenario i the agent

calculates the set of epistemically open probability functions, P�
i for 1� i� t. Next,

the agent calculates the maximally equivocal function in P�
i à la Masterton. Finally,

the agent adopts the arithmetic mean of these maximally equivocal functions.

With this picture in mind, we now find

P
y
Mþ ¼ 1

t
�
Xt

i¼1

P
y
CMðP�

i Þ

¼ 1

t
�
Xt

i¼1

R
P�

i
P dP

R
P�

i
dP

¼ 1

t
�
Z

P2P�
P �
�Xt

i¼1

qyi ðPÞ
�

dP

¼
Z

P2P�
P � qyðPÞ dP;

154 J. Landes, G. Masterton

123



where the last formulations are well defined, if and only if all P�
i have the same

dimension. qyðPÞ for Heads in our coin machine example is given in Fig. 5.

For t ¼ 1 this agrees with Masterton’s approach, while generally:

P
y
Mþ ¼ 1

t

Xt

i¼1

P
y
Mi
:

An alternative equivocation norm results if one takes the maximally equivocal

function in P�
i for each i à la Williamson:

P
y
þ :¼ 1

t

Xt

i¼1

P
y
i :

In the coin machine example,

1

t

Xt

i¼1

P
y
i ¼

0:5 þ 0:54 þ 50 � 0:68

52
¼ 0:674 6¼ 0:7525 ¼ 1

t

Xt

i¼1

P
y
Mi:

Indeed, we find that P
y
þðHeadsÞ is incompatible with the coin being produced by

Machine C. Thus, this approach does not overcome the concern we raised for

Williamson’s and Masterton’s inference principles.

3.3 Centre of Mass Infinity

A possible complication at this point is that centre of mass CM equivocation over

the P�
i may be found objectionable on the grounds that such inference is not

language invariant. That is, an agent with a larger language L0—obtained from L by

adding further propositional variables—with the same evidence would draw

different inferences about the sentences u 2 SL than the present agent. General

representation dependence of inference is well-known to be virtually unavoidable

(see Halpern and Koller 2004) but language invariance is achievable, and has been

achieved by Williamson and those of his ilk.

P †
M+P † P †

M

P (HEADS)

LikelihoodFig. 5 Likelihoods of biases
and the value of maximum

entropy functions Py, P
y
M and

P
y
Mþ for HEADS
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To the extent that one finds this objection serious one might be tempted to return

to equivocating in Williamson’s fashion despite the previously identified concerns.

However, there is another response; namely, using centre of mass infinity (CM1)

(Paris and Vencovská 1992) equivocation over the P�
i instead of straight CM.11,12

This solves any concerns about language invariance as it has been shown (ibid) that

CM1 is a language invariant inference process. It follows that if CM1 replaces CM

as the form of equivocation over each P�
i , then the result of the new norm is a

convex combination of language invariant processes, which will itself be language

invariant. For a longer discussion on these issues see Paris (2005, Section 4).

For convex and closed P�, the function picked out by CM1 maximises
X

x 2 XI

logðPðxÞÞ ð5Þ

where XI is the subset of states x such that PðxÞ[ 0 is consistent with P�, see Paris

(1994, page 74).13 The probability function picked out by this inference process is

denoted by P
y
CM1

. We argue in Sect. 5 that this option is ultimately unappealing

despite it satisfying the desideratum of language invariance.

3.4 An Objection of Feasibility

An opponent of the above suggested scenario equivocation might object that it is not

always possible for the agent to determine whether her epistemic situation can be

neatly split into finitely many distinct scenarios. For example, an agent might take it

rationally for granted that P� 2 P�
A [ P�

B [ P�
C but be unsure about why exactly that

is. The objection is that we have not spelled out how the agent ought to proceed.

Williamson’s account is, of course, immune to this objection.

We concede the point that we have not put forward an approach which covers

such cases. We would like to make two points. First, in many applications it will be

clear whether there are such scenarios or not. We claim that at least in these cases

scenario equivocation is appropriate. Second, a case as in the above objection is

simply an epistemically ‘‘hard’’ case. We do not have a general approach to ‘‘hard’’

cases at this time. In general, we suspect that the appropriate course of action in

such cases is dependent on the exact epistemic situation of the agent; hence a single,

general inference process for all such cases is likely a pipe dream.

Before moving on, we consider one related objection which we feel has less merit

than the above. An agent faced with the situation we describe in Sect. 3.1 might

split the world into 4 scenarios (rather than three) as follows: in Scenario 1

P� 2 ½0:48; 0:5�, Scenario 2 P� 2 ½0:5; 0:52�, Scenario 3 P� 2 ½0:54; 0:72� and

Scenario 4 P� 2 ½0:68; 0:84�. This agent would assign P� 2 ½0:48; 0:52� a likelihood

11 Another approach satisfying language invariance, via marginalisation of Dirichlet priors, has been

taken in Lawry and Wilmers (1994).
12 Interest in CM1 has waned in recent years until it very recently resurfaced in Adamčı́k (2014) and

Wilmers (2015).
13 If x 2 X n XI , then PðxÞ ¼ 0 for all P 2 P�. Hence, logðPðxÞÞ ¼ �1. So, would the above sum

contain such an x, then the entire sum would have value �1.
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of 0:5 6¼ 1
3
. So, our approach gives two different answers. We would argue that in

this case the agent’s evidence determines how to spilt the world into scenarios.

Therefore, our approach only gives one answer. We shall revisit such ‘‘problems’’ of

language dependence in Sect. 5.2.

4 Chance Invariance

One criticism of CM is the dependence of inferences on the underlying language,

i.e., CM is not language invariant. While Williamson’s equivocation procedure is

language invariant it suffers from a related problem. It matters whether one

equivocates over probability functions or over probability densities. As we saw

earlier, equivocation over densities requires one to adopt the centre of mass

probability function P
y
CM and not the Shannon entropy maximiser Py.

We here show that Masterton’s approach does not suffer from a related problem.

If one equivocates over densities of some order greater or equal than the order one

has evidence for, then one adopts the same probability function for decision making.

That is, decisions do not depend on the agent’s language as long as the language is

sufficiently rich to allow the formalisation of the agent’s total evidence. To allow for

this richer language we now enrich L to include densities.

4.1 The Base Case

Let us first consider the case in which the agent does not have any higher order

evidence. That is, the agent has no evidence which favors one of the P 2 P� over

the others.

We define densities of higher order n	 1 as follows:

C0
P� :¼ P�

C1
P� :¼ f1 : P� ! R	 0 :

Z

P2P�
f1ðPÞ � P dP 2 P

� �

C2
P� :¼ f2 : C1

P� ! R	 0 :

Z

f12C1
P�

f2ðf1Þ � f1 df1 2 C1
P�

( )

and so on:::

Cnþ1
P� :¼ fnþ1 : Cn

P� ! R	 0 :

Z

fn2Cn
P�

fnþ1ðfnÞ � fn dfn 2 Cn
P�

( )
:

Intuitively, the fnþ1 specify how likely the densities fn are. We have already

encountered the densities of order 1 in C1
P� in Sect. 2.3.1. In Sect. 2.6, we gave a

geometric interpretation of these densities.

We now go on to show that the Cn
P� are Lebesgue measurable. For the remainder

of this paper we will always take it that densities are well-enough behaved that the
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above integrals exist, i.e., are well-defined. We cannot envision a practical

application in which densities are not Lebesgue measurable.

Proposition 1 Cn
P� is convex for all n	 1.

Proof We proceed by induction. For n ¼ 1 and f1; f 01 2 C1
P� we have

Z

P2P�

f1 þ f 01
2

ðPÞ � P dP ¼ 1

2

�Z

P2P�
f1ðPÞ � P dP þ

Z

P2P�
f 01ðPÞ � P dP

�
:

Since P is convex, this function is in P.

For general n þ 1 and fnþ1; f 0nþ1 2 Cnþ1
P� we have

Z

fn2Cn
P�

fnþ1 þ f 0nþ1

2
ðfnÞ � fn dfn

¼ 1

2

�Z

fn2Cn
P�

fnþ1ðfnÞ � fn dfn þ
Z

fn2Cn
P�

f 0nþ1ðfnÞ � fn dfn

�
:

By definition of Cnþ1
P� , both integrals are members of Cn

P� . Since Cn
P� is convex by

the induction hypothesis, the function on the right hand side of the equality symbol

is a function in Cn
P� . h

Following the template of Shannon Entropy we define the entropy of higher order

densities. The Shannon Entropy of P is its negative expected logarithmic utility

where P is summed over all states x 2 X. Arguably, the entropy of a density f nþ1

can be measured by computing its negative expected logarithmic utility. As a

ðn þ 1Þ-density applies to n-densities, so the underlying space is Cn
P� . Since this

space is infinite and continuous, the sum is replaced by a uniform integral. Since

convex sets are Lebesgue integrable the expressions below are well-defined.

We define the entropy of an fnþ1 2 Cnþ1
P� by

Hðfnþ1Þ :¼ �
Z

fn2Cn
P�

fnþ1ðfnÞ � logðfnþ1ðfnÞÞ dfn: ð6Þ

Though this notion of entropy on a continuous domain might be rather arcane to the

formal epistemologist, it is widely used in the applied sciences.

The density f
y
nþ1 with maximal entropy (modulo null-sets) is constant, i.e., it

assigns every density fn 2 Cn
P� the same value. This is in-line with the intuition that

maximum entropy functions are maximally equivocal, i.e., assign the same value to

all members of the underlying domain.

Computing the expected n-density with respect to f
y
nþ1 we obtain

Z

fn2Cn
P�

f
y
nþ1ðfnÞ � fn dfn: ð7Þ

By definition, this is a density fn 2 Cn
P� . Furthermore, f

y
nþ1ðfnÞ is constant on Cn

P� .

So, it must be equal to jjCn
P� jj�1

. Hence,
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Z

fn2Cn
P�

f
y
nþ1ðfnÞ � fn dfn ¼ 1

jjCn
P� jj

Z

fn2Cn
P�

fn dfn ð8Þ

is the centre of mass of Cn
P� , CMðCn

P� Þ.
On the other hand, we can understand (8) as a function from Cn�1

P� to R	 0 which

is constant on Cn�1
P� . But this means that (8) is equal to f yn . We thus obtain

CMðCn
P� Þ ¼

Z

fn2Cn
P�

f
y
nþ1ðfnÞ � fn dfn ¼ f yn : ð9Þ

So, the expected n-density relative to the most equivocal ðn þ 1Þ-density is the most

equivocal n-density. More informally, taking expectations with respect to the

maximally equivocal ðn þ 1Þ-density yields the centre of mass of Cn
P� which equals

the maximally equivocal n-density.

We already saw a special case of this phenomenon in Sect. 2.3.1. CMðP�Þ can be

obtained by computing expectation with respect to the maximally equivocal

function in C1
P� , if no first (nor any higher) order evidence is available.

We now find

P
y
CM ¼

Z

P2P�
f
y
1 ðPÞ � P dP ð10Þ

¼
Z

P2P�

�Z

f12C1
P�

f
y
2 ðf1Þf1 df1

�zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{
f
y
1

ðPÞ � P dP
ð11Þ

¼
Z

P2P�

�Z

f12C1
P�

�Z

f22C2
P�

f
y
3 ðf2Þf2 df2

�zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{
f
y
2

ðf1Þf1 df1

�

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
f
y
1

ðPÞ � P dP: ð12Þ

The upshots are twofold. On whatever density order one equivocates, as long as one

computes expectations as above, one always obtains P
y
CM . A phenomenon we term

chance invariance.

Furthermore, the centre of mass of Cn
P� and the density with greatest entropy in

Cn
P� are one and the same function for n	 1.

4.2 Higher Order Evidence

Let us now consider the case in which the agent does have higher order evidence.

We already considered such a case in the above 52 machine example, see Fig. 5. To

tackle the general case, we first have to define the sets of evidence calibrated density

functions. We define:
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D0
P� :¼ P�

D1
P� :¼ ff1 2 C1

P� : f1 consistent with the agent0s evidenceg
D2

P� :¼ ff2 2 C2
P� : f2ðf1Þ ¼ 0 for all f1 62 D1

P� & f2 consistent with the agent’s evidenceg
and so on:::

Dnþ1
P� :¼ ffnþ1 2 Cn

P� : fnþ1ðfnÞ ¼ 0 for all fn 62 Dn
P� & fnþ1 consistent with the agent’s evidenceg:

Note that Dn
P� � Cn

P� , so we immediately obtain that the entropy of densities in Dn
P�

is also well-defined.

For example, in the situation depicted in Fig. 5 we have

D1
P� :¼ f1 2 C1

P� : f1 ¼ 1

52
fA þ 1

52
fB þ 50

52
fC

�

for some fA 2 C1
P�

A
; fB 2 C1

P�
B
; fC 2 C1

P�
C

o

D2
P� :¼ ff2 2 C2

P� : f2ðf1Þ ¼ 0 for all f1 62 D1
P�g

and so on:::

Dnþ1
P� :¼ ffnþ1 2 Cnþ1

P� : fnþ1ðfnÞ ¼ 0 for all fn 62 Dn
P�g:

We plotted the density in D1
P� with greatest entropy in Fig. 5.

In practical applications, there will be a finite upper bound on the order of the

agent’s evidence. Let N 2 N be that bound. Since the agent does not have any

higher order evidence, the agent does not have a reason to favor one of the densities

in DN
P� over another such density. Hence, an agent ought to equivocate over these

densities.

So, an agent computes the density f
y
Nþ1 2 DNþ1

P� with maximum entropy. Again,

the maximum entropy density assigns all fN 2 DN
P� the same weight. Hence, the

expected N density with respect to f
y
Nþ1 is the centre of mass of DN

P� . Armed with

this density it is then straight forward to compute the probability used for decision

making by computing expectations:
Z

f12D1
P�

�Z

f22D2
P�

. . .
�Z

fN2DN
P�

f
y
Nþ1ðfNÞfNdfN

�
. . .ðf2Þf2df2

�
ðf1Þf1df1 2 P:

Now suppose the agent equivocated over some higher order N þ k with k[ 1. The

agent would then compute the density in DNþk
P� with maximum entropy, f

y
Nþk, being

fully indifferent towards these densities. Computing expectations over DNþk�1
P� with

respect to f
y
Nþk yields the centre of Mass of DNþk�1

P� since f
y
Nþk is constant on

DNþk�1
P� . Repeating this step k � 1-many further times, the agent obtains f

y
Nþ1. Thus

Masterton’s approach generalised to higher order’s has the nice property that

equivocating on any order greater than that immediately above the order for which

one has evidence ([N þ 1) has no impact on the inference process.

We now apply the above recipe to our 52 machines examples. Observe that the

centre of mass of any object can be found by (1) decomposing the object into
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disjoint parts, (2) compute the centre of mass of every part and (3) multiply each

centre of mass of a part with the relative weight of this part and then (4) sum all

these weighted centres of mass. We apply this well-known recipe here.

The centre of mass of C1
P�

A
, f

y
A, assigns every P 2 P�

A the same weight. We thus

obtain by following the recipe

f
y
AðPÞ ¼

0 ; if PðHEADSÞ 62 ½0:48; 0:52�
1

0:04
; if PðHEADSÞ 2 ½0:48; 0:52�

8
<

:

f
y
BðPÞ ¼

0 ; if PðHEADSÞ 62 ½0:54; 0:72�
1

0:18
; if PðHEADSÞ 2 ½0:54; 0:72�

8
<

:

f
y
CðPÞ ¼

0 ; if PðHEADSÞ 62 ½0:68; 0:84�
1

0:16
; if PðHEADSÞ 2 ½0:68; 0:84�;

8
<

:

and obtain overall

f
y
1 ðPÞ¼

0 ; if PðHEADSÞ 62 ½0:48;0:52�[ ½0:54;0:84�
1

52
� 1

0:04

 0:48 ; if PðHEADSÞ 2 ½0:48;0:52�

1

52
� 1

0:18

 0:11 ; if PðHEADSÞ 2 ½0:54;0:68�

1

52
� 1

0:18
þ50

52
� 1

0:16

 6:12 ; if PðHEADSÞ 2 ½0:68;0:72�

50

52
� 1

0:16

 6:01 ; if PðHEADSÞ 2 ½0:68;0:84�;

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

which is plotted in Fig. 5.

5 Discussion

5.1 The right Inference Process?

We have discussed three distinct ways of maximally equivocating: Williamson’s

approach, and two refinements of Masterton’s approach – applying CM respectively

CM1. The natural question to ask is: ‘‘So, which way is the right way?’’ The

answer, invariably, depends on the exact nature of our normative enterprise.

If our goal is to set subjective common-sensical probabilities as does Jeff Paris in

Paris (2014):

The probabilities assigned by Maxent (in this context) are subjective

probabilities, quantified expressions of degrees of belief. What they are not is

estimates of objective probabilities. emphasis original

Invariant Equivocation 161

123



then Williamson’s account (Maxent in Paris’s terms) seems to be the clear objective

Bayesian frontrunner, see Paris and Vencovská (1989, 1990, 1997).

Common sensicality is cached out in terms of satisfying intuitively right (or so it

is claimed) common sense principles. While each principle is, in its own right,

intuitive to some degree; taken all together they are clearly not intuitive. Who in

her/his right mind sets intuitive subjective degrees of belief equal to the unique

function Py 2 hP�i which maximises �
P

x2X PðxÞ logðPðxÞÞ? So, if rationally is

construed as an explication of intuitive rationality in Carnap’s sense (see Carnap

1950), then Maxent clearly fails.

A significant number of writers, Lewis (1980) for example, have defended

chance-credence coordination principles that require agents to set degrees of belief

equal to the chances as they know, or justifiably believe, them to be. If these writers

are right, then rational agents do aim at estimating chances (objective probabilities

in Paris’s terminology). Maxent picks a probability function from among those left

epistemically open by one’s evidence of chances, so it meets this desideratum. It is

not alone in this, however; centre of mass inference processes do likewise. As we

have shown, this means that inference processes—like Masterton’s—that pick a

density function from among those left epistemically open by one’s evidence of

chances also meet the desideratum. But Maxent, CM, and CM1 pick out different

functions generally. Hence, the importance of the question as to which is the right

inference process. Indeed, the conditions under which Maxent and CM agree are

very specific and occur only rarely. We now establish what those conditions are.

Proposition 2 Let f : P ! ½0;þ1� be a strictly concave function which has a

unique global maximum at P¼. If P� is convex, closed and P¼ 62 P�, then

arg supP2E f ðPÞ contains a unique element, Pþ
f , and Pþ

f is an element of the

boundary of P� facing P¼.

Proof For P� as above and for every point P 2 P� it holds that f ðPÞ\f ðP¼Þ. By

strict concavity of f, f ðkP¼ þ ð1 � kÞPÞ strictly decreases with decreasing k� 1 as

long as f ðkP¼ þ ð1 � kÞPÞ is defined, that is, as long as kP¼ þ ð1 � kÞP 2 P. For

all Q in the interior of P� there exists a point PQ in the boundary of P� (P� is

closed!) which is a convex combination of Q and P¼. Hence, f ðQÞ\f ðPQÞ. So, the

maximum of f over P� cannot obtain at Q. h

Corollary 3 Let I be an inference process which picks out the probability function

which maximises some strictly concave function f with a unique maximum at P¼.

Let P� be convex and closed.

• If P¼ 2 P�, then Pþ
f ¼ P¼.

• If P¼ 62 P�, then Pþ
f is an element of the boundary of P� facing P¼.

The requirement that the unique maximum of f obtains at P¼ ensures that the

inference process satisfies the principle of indifference: If P� ¼ P, then Pþ
f ¼ P¼.

Corollary 4 Let P� be convex and closed.
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• If P¼ 2 P�, then Py ¼ P
y
CM1

¼ P¼.

• If P¼ 62 P�, then Py and P
y
CM1

are elements of the boundary of P� facing P¼.

Proof It suffices to note that the two functions
P

x2XI
logðPðxÞÞ and HðPÞ ¼

�
P

x2X PðxÞ logðPðxÞÞ are strictly concave on P with a unique maximum at P¼.h

Proposition 5 If P� is convex and closed and if P� is of the same dimension as P,

then the following are equivalent

1. P
y
CM ¼ Py

2. P
y
CM ¼ P¼

3. P
y
CM ¼ P

y
CM1

.

Proof 1 implies 2: We show that not 2 implies not 1. Suppose that P
y
CM 6¼ P¼.

There are two mutually exclusive and exhaustive cases.

Case 1 P¼ 2 P�.

Then Py ¼ P¼. But since P¼ 6¼ P
y
CM we obtain Py ¼ P¼ 6¼ P

y
CM .

Case 2 P¼ 62 P�.

Then Py lies on the boundary of P�, on the other hand P
y
CM is in interior point of

P�.14 Hence, Py 6¼ P
y
CM .

2 implies 1: If P
y
CM ¼ P¼, then P¼ 2 P�. But then Py ¼ P¼.

2 implies 3: If P
y
CM ¼ P¼, then P¼ 2 P�. But then P

y
CM1

¼ P¼.

3 implies 2: We show that not 2 implies not 3. Suppose that P
y
CM 6¼ P¼. There are

two mutually exclusive and exhaustive cases.

Case 1 P¼ 2 P�.

Then P
y
CM1

¼ P¼. But since P¼ 6¼ P
y
CM we obtain P

y
CM1

¼ P¼ 6¼ P
y
CM .

Case 2 P¼ 62 P�.

Then P
y
CM1

lies on the boundary of P�, on the other hand P
y
CM is in interior point

of P�. Hence, P
y
CM1

6¼ P
y
CM . h

So, Py agrees with P
y
CM , if and only if the centre of mass of P� is the equivocator

function P¼; this is quite a rare case.15 Not only do they rarely agree, they are quite

different in a great number of cases:

Corollary 6 If P� is convex and closed and if P� is of the same dimension as P,

then Py and P
y
CM1

are on the boundary of P� facing P¼. P
y
CM is an interior point of

P�.

For a graphical illustration see Fig. 4.

14 Interior and exterior are here understood in the induced topology on P�. If P� has a lower dimension

than P�, then P
y
CM is not necessarily an interior point of P�.

15 The same holds mutatis mutandis for P
y
CM1

.
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Convex, closed and non-empty sets P� are the paradigm examples in our

setting.16 In such a paradigm case with P¼ 62 P� Maxent selects a point on the

boundary of P�. The most basic intuition for the purposes of estimating an objective

probability or at least tracking objective probabilities to the best as one can is, we

would argue, to pick an interior point of P�.17 We conclude that Maxent fails as an

explication everyday scientific estimation of objective probabilities because it either

singles out the equivocator or a probability function on the boundary of (a convex,

closed and non-empty set) P� as uniquely rational.

5.2 The Role of Language

It is well-established and accepted (Halpern and Koller 2004; Paris 2014) that

inferences have to depend in some way on the underlying language. However, the

number of possible worlds depends on the agent’s evidence and thus the dependence

of inferences on the underlying language is rooted in the agent’s epistemic state and

not in the agent’s whimsicality.

Language invariance on the other hand is a desideratum that can be satisfied, and

indeed is satisfied, by Maxent but is not satisfied by CM. This clearly tells against

the approach we expounded here.

As we saw in Sect. 3, including probability densities in the agent’s language allows

the agent to take higher order evidence into account. In Williamson (2014),

Williamson expresses the worry that, in principle, agents might be required to take

information on an ever higher order into account and that inference would not become

eventually stable. A phenomenon he calls uncertainty escalator. We think that higher

order information, if available, ought to be taken into account and that, in every-day

practise, information is only available up to a certain order. Undoubtedly, an inference

process should be stable in the sense that the result of that process is the same no

matter which order above that for which one has evidence one begins the inference

process, but we have shown that our approach meets this desideratum. That is, we

argue that our approach is not vulnerable to (the) uncertainty escalator for, we argue,

one should ride that escalator at least as far as is warranted by one’s evidence and we

have shown that riding it further has no impact upon the probabilities one will infer.

Williamson is not (yet?) on the record as to how exactly an agent with densities

in her language sets degrees of belief. All we have to go by is his recipe to

equivocate maximally (or at least sufficiently) over the most basic propositions the

agent can express. We feel that it is reasonable to measure the degree of

equivocation of a density distribution by (6). If this is right and Williamson

acknowledges the force of expert principles such as Lewis’s Principal Principle;

then Williamson’s agent would be forced to adopt CMðP�Þ as her belief function in

the absence of higher order evidence, if her language includes chance hypotheses. In

16 Non-convex P� are notoriously hard cases. The study of note in this case which does not simply

consider the convex hull of P� is Paris and Vencovská (2001).
17 Paris & Vensovská have, of course, also found a natural way in which Maxent is uniquely rational for

the purposes of estimating objective probabilities (Paris and Vencovská 1989). In a later paper (Paris

2005, pp. 275–276), Jeff Paris is somewhat more sympathetic towards CM for estimating objective

probabilities.
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the same situation, but with a language that does not contain such chance

hypotheses, this agent would adopt Williamson’s original Py as her belief function.

Clearly, Williamson’s approach fails to satisfy what we have termed chance

invariance. That is, expanding the agent’s language by adding chance hypotheses

while keeping the evidence base the same will alter the outcome of Williamson’s

version of Maxent, given some rather mild assumptions. This is not the case with

our approach, though the outcome of our favoured inference process is susceptible

to simple extension of the agent’s language with the evidence held fixed.

Thus, considerations concerning the invariance of the results of these process to

extensions of the underlying language, far from deciding the issue, have rather

produced an interesting (qualified by language dependence) scoreline of 1 : 1.

5.3 Non-convex Evidence

As we saw in the second example (Sect. 2.6.2), in certain cases P
y
M 62 P�. I.e., the

belief function Masterton advocates adopting is ruled out by the agent’s evidence.

Note however, that P
y
M 62 P� can only happen in case of non-convex P�.

Furthermore, for some non-convex P
y
M 2 P� does hold, see Sect. 3.1. Finally, one

should further note that this can also occur in Williamson’s framework.

Overall, we feel that P
y
M 62 P� for some non-convex P� is not a serious flaw, if it

is a flaw at all, in Masterton’s account or, for that matter, Williamson’s. It is simply

a result of a less than ideal evidential state.

5.4 Concluding Remarks

In the debate as to what is the right way of equivocating between probability

functions CM and Maxent are often given prominence. Indeed, often the debate is

characterised as straight choice between the two. Aside from unfairly failing to

recognise other alternatives, we judge this characterisation to be unhelpful because

it fails to recognise that CM is itself a Maxent inference process. Both CM and

Maxent are processes that select a probability function from those left

epistemically open by one’s evidence by maximising entropy, where they differ

is in the entropy they are maximising. We have shown that the centre of mass of

the probability functions left open by one’s evidence is the expected function

relative to the density compatible with that evidence with greatest entropy. This

allows Masterton’s proposal to be formulated as a centre of mass inference

process, but it also allows the centre of mass of those probability functions

compatible with one’s evidence to be understood as the expectation relative to the

evidence calibrated density with greatest entropy. Viewed in this way, we were

able to generalise the centre-of-mass/Masterton’s inference process to accommo-

date higher order evidence and to show this generalisation to be invariant to

choice of starting order for such inference so long as one begins above the highest

order for which one has evidence. Thus much has been gained from the discovery
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that the centre of mass inference process is a maximising entropy inference

process of the type outlined by Masterton.

What we have not been able to achieve is a conclusive argument for CM against

Maxent. Both inference processes have virtues and both have weaknesses. Maxent is

arguably unintuitive in many situations, often picking out a probability function in

the boundary of P�. Furthermore, it is not chance-invariant nor does it accommodate

higher order evidence easily. CM is arguably more in line with scientific practice

and more intuitive, and accommodates higher order evidence with aplomb.

However, CM is not language invariant and lacks an elegant characterisation in

terms of common sense principles. We have to entertain the idea that an intuitive,

language invariant, chance invariant inference process which picks interior points is

still to be discovered. Our recommendation in lieu of such a discovery is to adopt

the Objective Bayesian inference process that best fits the prevailing circumstances,

though we anticipate that this will mostly result in inference according to CM as

presented herein.

We would like to end with quoting (Paris 2014, p. 6193) noting that we could not

agree more:

Most of us would surely prefer modes of reasoning which we could follow

blindly without being required to make much effort, ideally no effort at all.

Unfortunately, Maxent is not such a paradigm; it requires us to understand the

assumptions on which it is predicated and be constantly mindful of abusing

them.
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