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Abstract It is customary practice to define ‘x is composed of the ys’ as ‘x is a sum

of the ys and the ys are pairwise disjoint (i.e., no two of them have any parts in

common)’. This predicate has played a central role in the debate on the special

composition question and on related metaphysical issues concerning the mereo-

logical structure of objects. In this note we show that the customary characterization

is nonetheless inadequate. We do so by constructing a mereological model where

everything qualifies as composed of atoms even though some elements in the

domain are gunky, i.e., can be divided indefinitely into smaller and smaller proper

parts.

Following van Inwagen (1990: 29), the binary mereological predicate ‘is composed

of’ is generally defined as follows

(1) x is composed of the ys = df x is a sum of the ys and the ys are pairwise disjoint

(i.e., no two of them have any parts in common),

where

(2) x is a sum of the ys = df the ys are all parts of x and every part of x has a part in

common with at least one the ys.
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This predicate1 has played a central role in the debate on the special composition

question and on related metaphysical issues concerning the mereological structure

of objects. In this note we show that the characterization in (1) is nonetheless

inadequate. We do so by constructing a mereological model M where everything

qualifies as composed of atoms even though some elements in the domain are

gunky, i.e., can be divided indefinitely into smaller and smaller proper parts.

To this end, let G be a nonempty open interval on the real line, R, and let A be a

countably infinite set of points of R such that G \ A = [. For definiteness, we may

identify G with the open interval ð0; 1Þ ¼ fx 2 R : 0\x\1g and A with the set of

all natural numbers, N. Next, define two functions a and b as follows:

(i) for every open subinterval I = (x, y) of G, let a(I) = (x, (x ? y)/2) and

b(I) = ((x ? y)/2, y);

(ii) for every infinite subset P of A, let a(P) = {n [ P: fP(n) is even} and

b(P) = {n [ P: fP(n) is odd}, where fP is the mapping of P into N such that

fP(n) = m if and only if n is the m-th element of P (relative to the natural linear

ordering induced by B).

Thus, intuitively, given an open interval I ( G, a(I) and b(I) are the two disjoint

open subintervals corresponding to the left and right halves of I, respectively,

separated by I’s midpoint. Similarly, given a countably infinite set P ( A, a(P) and
b(P) are the two disjoint countably infinite subsets corresponding to the even-valued
and the odd-valued halves of P, respectively, relative to fP. See Fig. 1 for an

illustration of the progressive ‘‘splitting’’ of G = (0, 1) and A ¼ N resulting from

repeatedly applying a and b.

Fig. 1 Progressive ‘‘splitting’’ of G and A by repeated application of a and b

1 Or, if one wishes to avoid plural quantification and stick to a standard first-order syntax, the analogous

but weaker predicate ‘x is composed of the us’, where ‘u’ is an open formula.
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Third, for every n C 0, define the set Dn by induction:

D0 ¼fG [ Ag
Dkþ1 ¼faðIÞ [ aðPÞ : I � G;P � A; I [ P 2 Dkg

[ fbðIÞ [ bðPÞ : I � G;P � A; I [ P 2 Dkg:

Thus, each Dk?1 will contain exactly 2k?1 elements, half of which will be of the

form a(I) [ a(P) and the other half of the form b(I) [ b(P) for all I and P such that I

[ P is an element of Dk. With G = (0, 1) and A ¼ N, the beginning of the sequence

will look like this:

D0 : ffx2R :0\x\1orx2Ngg ¼ fð0;1Þ[f0;1;2;...gg
D1 : ffx2R :0\x\1=2orx¼2y for somey2Ng; ¼ fð0;1=2Þ[f0;2;4;...g;

fx2R :1=2\x\1orx¼2yþ1forsomey2Ngg ð1=2;1Þ[f1;3;5;...gg
D2 : ffx2R :0\x\1=4orx¼4y for somey2Ng; ¼ fð0;1=4Þ[f0;4;8;...g;

fx2R :1=4\x\2=4orx¼4yþ2forsomey2Ng; ð1=4;2=4Þ[f2;6;10;...g;
fx2R :2=4\x\3=4orx¼4yþ1forsomey2Ng; ð2=4;3=4Þ[f1;5;9;...g;
fx2R :3=4\x\1orx¼4yþ3forsomey2Ngg ð3=4;1Þ[f3;7;11;...gg

..

. ..
.

Finally, we construct a mereological structure M as follows:

(i) the domain of M, DM, is the set {{a}: a [ A} [ UnC0 Dn;

(ii) the parthood predicate is interpreted in M as set inclusion, i.e., as the binary

relation {hx, yi [ DM 9 DM: x ( y}.

Now, it is easily checked that M has the following two properties. On the one

hand, every element x [ DM has some singletons from the set {{a}: a [ A} as parts.

This means that M satisfies the Atomicity axiom, as usually formulated:

(3) Atomicity Everything has atomic parts,

where

(4) y is atomic = df y has no proper parts (i.e., no parts other than itself).

On the other hand, every non-atomic element x [ DM can be divided indefinitely

into proper parts of the form c0(…(cn(G))…) [ c0(…(cn(A))…), where each ci is
either a or b. Thus, every such element has gunky parts, too, where:

(5) y is gunky = df every part of y has proper parts.

This is unpleasant. It is tempting to say that M shows the inadequacy of (3) vis-à-

vis the atomistic intuition that this principle is meant to express. However, note that

any non-atomic x [ DM does in fact count as being composed of atoms in the sense

of (1). This follows directly from the fact that, as long as parthood is reflexive and

transitive, (3) logically entails
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(6) Everything is composed of atoms.

(See Varzi 2015, §3.4.) But the truth of (6) inM can also be checked directly against

the definitions in (1) and (2). For let x be an element of DM of the form I [ P and let

the ys be the singletons of the points in P. Clearly, each of the ys is part of

x. Conversely, if z is any part of x, then either z is one of the ys or z is an item of the

form I0 [ P0, with I0 ( I and P0 ( P, and in either case it follows that z overlaps at

least one of the ys. This means that x is a sum of the ys in the sense of (2). And since

the ys are pairwise disjoint (trivially), it follows that x counts as composed of the ys

in the sense of (1). Thus—here is the moral we wish to draw—not only is M a non-

atomistic model of the Atomicity axiom (3), which is bad enough.2 M is also a

counterexample to the classical definition of composition in (1), since its domain

contains elements that count as composed of atoms even though the atoms are not

enough to generate them.

We leave it to the reader to determine whether the culprit is, as it often happens,

the relevant notion of mereological sum, as defined in (2). For our part, we prefer to

conclude with a remark concerning the sort of mereology that is needed to block the

problem. To this end, note first of all that M satisfies the following principle:

(7) Strong supplementation If x is not part of y, then x has a part that is disjoint

from y.

(Proof: Pick any x, y [ DM and suppose x * y. By definition of DM, either x = {a}

for some a [ A, or x [ Dn for some n C 0. In the first case, it follows immediately

that {a} ( x and {a} \ y = [. In the second case, x must be a subset of G [ A

obtained by applying a and/or b. Since x * y, it follows that either x \ G * y or

x \ A * y. But the inductive definition of Dn implies that x \ G ( y if and only if

x \ A ( y.3 Thus, x \ A * y, which means that we can again pick some a [
A such that {a} ( x and {a} \ y = [. In both cases, we have found an atom

{a} [ DM that is a part of x and disjoint from y.)

It is a known fact that (7) together with the partial-order properties of parthood

(all of which are satisfied in M) entails

(8) Extensionality If x and y are non-atomic and have the same proper parts, then

x = y.

(See Simons 1987, pp. 28–29.) It follows, therefore, that so-called Extensional

Mereology—the theory obtained by adding (7) to the partial-order axioms—is not

strong enough to block the problem, i.e., to guarantee that Atomicity and

Composition behave as intended. By contrast, it is easy to see that M does not

satisfy the following principle:

2 Worse, in fact, than the cases discussed in Cotnoir (2013) and Shiver (2015), which involve non-well-

founded atomistic models that allow for infinite descending proper-parthood chains.
3 This is because any element in DM of the form I [ P is such that the position of I in the binary tree

rooted at G is exactly the same as the position of P in the binary tree rooted at A. For, suppose

x \ G ( y. Then x \ G must be in the sub-tree rooted at y \ G. But then x \ A will be in the sub-tree

rooted at y \ A. Hence x \ A ( y \ A ( y. Similarly, if x \ A ( y, we must have

x \ G ( y \ G ( y.
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(9) Universalism For any ys there is a z that is a sum of the ys.

(For instance, given any two points a1, a2 [ A, the atoms {a1}, {a2} are in DM but

their sum {a1} [ {a2} is not.) Principle (9) is also known as Unrestricted

Composition, and together with (7) yields the theory known as General Extensional

Mereology, also known as Classical Mereology (from Leśniewski 1927–1930 and

Leonard and Goodman 1940, modulo plural quantification). Such a theory is,

therefore, strong enough to do the job, and it is easy to see why. For, given (9), any

element x [ DM of the form I [ P can be split into its gunky and atomistic parts:

one can first form the sum, z, of the atoms in P and then take the difference of

x minus z, i.e., effectively, the sum of all parts of x that are disjoint from z, which is

precisely the gunky part I of x.

It is an open question whether models like M can also be ruled out by weaker

theories, i.e., theories properly included between Extensional Mereology and

Classical Mereology. What is clear, however, is that short of some principle

governing mereological summation, the notion of ‘composition’ that has shaped the

recent debate on atomism and on other fundamental mereological issues is

defective.
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