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Abstract In this paper we analyze the relation between the notion of typicality and

the notion of probability and the related question of how the choice of measure in

deterministic theories in physics may be justified. Recently it has been argued that

although the notion of typicality is not a probabilistic notion, it plays a crucial role

in underwriting probabilistic statements in classical statistical mechanics and in

Bohm’s theory. We argue that even in theories with deterministic dynamics, like

classical statistical mechanics and Bohm’s theory, the notion of probability can be

understood as fundamentally objective, and that it is the notion of probability rather

than typicality that may (sometimes) have an explanatory value.

1 Introduction

It is well known that in the state space of a classical mechanical system there are

evolutions that induce entropy-increasing behavior in accordance with the Second

Law of thermodynamics, but there are also evolutions that give rise to non-

thermodynamic behavior. In our experience it seems that the actual evolutions of

thermodynamic systems are of the first kind. And one of the most puzzling questions

at the foundations of statistical mechanics is why this is so. The standard answer in

statistical mechanics is given in terms of probability, namely that thermodynamic

behavior is highly likely. But classical mechanics is a completely deterministic
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theory, and this means that a Laplacian demon could predict with complete certainty

the evolution of any mechanical system, given the system’s microstate. This holds

for thermodynamic systems no less than for other systems. Therefore, when one

introduces the notion of probability into statistical mechanics in order to predict the

future state of a thermodynamic system, one expresses ignorance with respect to the

microstate of the system, and ipso facto with respect to the macrostate determined

by the unknown microstate.1 And put in this way, one of the central questions at the

foundations of statistical mechanics is how can the notion of ignorance in statistical

mechanics be made physical or objective, and have empirical significance. In other

words, since what we wish to explain in statistical mechanics is thermodynamic

behavior which is as physically objective as anything can be, the probabilities in

statistical mechanics must be understood in the same way. We will show in this

paper how this can be done.

Recently it has been argued that typicality considerations play a crucial

explanatory role in deterministic theories in physics (e.g. classical statistical

mechanics and Bohmian mechanics). In this approach a sharp distinction is made

between typicality and probability. We analyze the relation between the notion of

typicality and probability, the question of the choice of measure in deterministic

theories in physics, and the way in which probability and typicality arise and should

be understood in such theories. We will argue that even in theories with

deterministic dynamics, like classical statistical mechanics and Bohm’s theory, it

is the notion of probability rather than typicality that may (sometimes) have an

explanatory value.

The paper is structured as follows. In Sect. 2 we explain how the choice of the

probability measure should be done in statistical mechanics on the basis of transition

probabilities. In Sect. 3 we consider the meaning of measure-1 theorems in

mechanics. In particular, we focus on the significance of Lanford’s theorem as a

theorem about typical behavior. In Sect. 4 we analyze the so-called typicality

approach in statistical mechanics and we argue that on some prevalent ways of

understanding it, the approach is wanting. In Sect. 5 we consider the implications of

our discussion for Bohmian mechanics, a deterministic theory of quantum

phenomena, which reproduces the statistical predictions of standard quantum

mechanics. Section 6 is the conclusion.

2 Probability and the Choice of Measure

To fix the ideas let us consider the paradigmatic example of a gas expanding in a

container after the removal of a partition (see Fig. 1). As can be seen in Fig. 1 at

time t0 the gas occupies the left hand side of a container. The gas evolves such that

at t1 it occupies three quarters of the volume of the container and at t2 the gas fills

1 Determinism is compatible with probability that does not involve ignorance provided that certain

conditions hold. For example, the set of predicted events should be infinite (the frequency interpretation

of probability), or the events should be independent (satisfying the conditions for the Law of Large

Numbers to hold). These conditions do not hold in the case discussed in this paper. Here we refer to

predictions for finite sets of events in sequences where the events are dependent.
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the entire volume. This is a special case of the thermodynamic Law of approach to

equilibrium. It is well known that in classical mechanics there are so-called non-

thermodynamic initial microstates compatible with the gas’s not evolving to

equilibrium. For this reason, there can be no general deterministic account of the

Law of the approach to equilibrium which explains the gas’s behavior, and one must

appeal to probability. This can be done as follows.

In statistical mechanics the phase space of a classical system is partitioned into

sets of microstates, which are indistinguishable by an observer; these sets are called

macrostates (see Fig. 2).2 Let M0 denote the initial macrostate of the gas, M1

intermediate macrostate and M2 the final macrostate in which the gas fills the entire

volume of the container. Suppose that at time t0 the system S is in some low entropy

macrostate M0. Each microstate in M0 evolves along a trajectory segment from t0 to

t1. We call the set of the end points of all such trajectory segments the dynamical

blob B(t1) of S at t1 (given that it was in M0 at t0). B(t1) partly overlaps with M1 and

partly with M0. These trajectory segments evolve further such that at time t2 their

end points make up the dynamical blob B(t2) which overlaps with M1 and M2 (see

Fig. 2).

Fig. 1 Approach to
equilibrium

2 For the notion of macrostates in statistical mechanics, see Hemmo and Shenker (2012, Ch. 5).
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In general, the region covered by a dynamical blob B(t) overlaps with several

macrostate regions; for instance, B(t1) partially overlaps with M0 and M1. This

means that, in this case, some of the initial microstates of the gas at t0 that belong to

M0 may evolve such that they remain in M0 at t1 and others may evolve such that

they arrive into M1 at t1. If the system S, which started out in M0 at t0, actually

happened to remain in M0 at t1 then the microstate of S at t1 is in the intersection of

B(t1) and M0; and if the system S, which started out in M0 at t0, actually happened to

evolve to macrostate M1 at t1, then the microstate of S is at some point in the

intersection between the macrostate M1 and the blob B(t1). The question is now

what is the probability for each of these two evolutions given the initial macrostate

(and a similar question can of course be posed with respect to B(t2) at time t2). For

example: what is the probability that S will end up in M1 (or in M0) at t1, given that

it started out in M0 at t0?

Each point in the dynamical blob B(t) is a possible microstate of the system at

time t, and therefore the macrostates with which B(t) overlaps at time t are possible

macrostates Mi of the system at t. It is therefore plausible that the relative

frequencies of microstates in the different regions of overlap between B(t) and the

Mi yield the probabilities for these macrostates at t. And since the state space is

continuous, these relative frequencies must be given in terms of the relative sizes of

the regions of overlap between the dynamical blob B(t) and the macrostates Mi.

Determining these sizes requires a measure on the phase space, and the question

then becomes: what is the right measure with which one should determine the size

of overlaps between the dynamical blobs and macrostates, in order to determine the

probability that S will end up in a given macrostate at a given time (given that it

started out in M0 at t0)? In other words, what is the correct choice of measure for

calculating the probabilities of macrostates? According to the orthodox wisdom in

statistical mechanics the answer is invariably the Lebesgue measure. We will now

show that in general the measure for calculating probabilities need not be the

Lebesgue measure, and we will describe the special case in which the Lebesgue

measure is the right choice.

If we run the same experiment many times we will find that at t1 S will be in M0

with some relative frequency F0 and in M1 with relative frequency F1 (and similarly

M1 M2

B( 2t )

B t1)(

0MM

Fig. 2 Macrostates and
dynamical evolution of a blob
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with respect to t2). These relative frequencies are the empirical basis on which the

probabilistic statements in statistical mechanics can be based, and on the basis of

which these statements can be tested or justified.

The next step is a conjecture on the basis of our experience that this statistical

behavior will be repeated (more or less) in the future. This means that the relative

sizes of the regions of overlap between B(t) and the macrostates Mi should reflect

the relative frequencies of the macrostates Mi found in experience. However, in

order to determine the relative sizes of subsets of the phase space one needs to

impose a measure over the phase space. It is well known that since the phase space

is continuous there are infinitely many measures which yield different relative sizes

of its subsets. To motivate the choice of the measure that is suitable for determining

the probabilities of macrostates on the basis of the sizes of the overlaps, we suggest

the following consideration. We identify the set of probability measures that, if

applied to the continuous phase space of S, yield a measure of the regions of overlap

of the blob B(t1) with the macrostates M0, and M1 that are (to a satisfactory

approximation) identical with the relative frequencies F0 and F1. There are many—

possibly infinitely many—such measures, and all of them are empirically adequate.

Among them we choose one measure, using pragmatic criteria such as simplicity,

convenience, meshing with other theories, etc. Call this measure l. The

(normalized) measures of the regions of overlap are then given by l B t1ð Þ \ M0Þð Þ �
F0; l B t1ð Þ \ M1ð Þ � F1: This measure l provides the basis for predicting the

evolution of systems of type S in terms of the two-time transition Probability Rule as

follows:

Probability Rule: The transition probability that S evolves to macrostate Mi at

t0 ? Dt given that it was in macrostate M0 at t0 (under the conditions of the above

experiment) is equal to

l B t0 þ Dtð Þ \ MijM0ð Þ � Fi:

That is, the transition probability from the macrostate M0 at t0 to Mi at t0 ? Dt is

equal to the (normalized) measure l of the region of overlap of the blob B(t0 ? Dt)

with the macrostates Mi. This is the content of probability statements in statistical

mechanics. Note that in general l(Mi)/l(Mj) need not be equal to

l B tð Þ \ Mið Þ=l B tð Þ \ Mj

� �
: This implies that the transition to a given macrostate

need not be equal to the entropy of that macrostate, even if both are measured by the

same measure l.3

The above construction of transition probabilities brings out two central issues in

the understanding of statistical mechanics. First, it is important to note that the

transition probabilities given by the above rule supervene entirely on the interplay

between the structure of trajectories in the phase space and the partition of the phase

space into macrostates. In statistical mechanics, both of these notions are objective:

the structure of trajectories is fixed by the dynamics, and the partition to macrostates

is determined by the structure of the accessible region in the phase space. For this

reason, the transition probabilities above can be understood as entirely objective,

3 See Hemmo and Shenker (2012, Ch. 6–7) for more details about the notions of probability and entropy

in statistical mechanics.
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despite the fact that the underlying dynamics is deterministic. In this sense, one may

say that in statistical mechanics the probabilities describe objective ignorance,

regardless of whether or not the underlying dynamics is deterministic (for further

details see Hemmo and Shenker 2012, Ch. 5–6).

The second issue we wish to focus on concerns the justification of the choice of

measure and what justifies probabilistic statements in classical statistical mechan-

ics. As we saw, probabilistic statements are grounded in the experience of relative

frequencies, and therefore the choice of measure is based on inductive reasoning

from the observed relative frequencies. In our view the fit with the observed relative

frequencies is the only compelling argument for the choice of measure in statistical

mechanics. In particular, it follows from the above construction of the transition

probabilities that the measure chosen to express the probabilities of macrostates

need not be the Lebesgue measure. However, it may happen that the Lebesgue

measure is the most convenient measure among all the measures compatible with

the relative frequencies of macrostates, and in this case the Lebesgue measure

should be taken to express the transition probabilities in statistical mechanics.

In the literature the Lebesgue measure is used to express probabilities over initial

conditions rather than transition probabilities. There are various attempts to justify the

choice of the Lebesgue measure over initial conditions. We consider some of these

attempts in Sect. 4. Herewe focus on how to account for this choice in our framework. It

is important to emphasize that in our framework the notion of transition probabilities is

more fundamental than the notion of a probability distribution over initial conditions.

That is, the notion of a probability distribution over initial conditions is derivative.

Moreover, this notion has an empirical content only because it can be derived from the

transition probabilities between macrostates. Let us see why.

Suppose that the measure l in terms of which we express the transition probabilities

turns out to be invariant under the classical dynamics. Suppose for example, that the

measure l happens to be the Lebesgue measure. Then one can map, backwards (as it

were), the Lebesguemeasure of regions over the blob at later times to the corresponding

regions over the initial mactostate. That is, in this case the Lebesgue measure of a set of

points in M0 is equal to the Lebesgue measure of the union of the time evolved set of

points to which this set is mapped by the dynamics. Once the (normalized) invariant

measure is fixed in this way (by the transition probabilities) one can distribute uniform

probabilities relative to the Lebesgue measure over the initial macrostate.4 On the basis

of this probability distribution over the initial conditions, which in our construction can

be derived from the transition probabilities, one can construct all the probabilistic

statements in statistical mechanics. Note that in order to use the probability distribution

over initial conditions for predictions of future macrostates, one must know the

evolution of the blob B(t) at the relevant finite times. For some cases this may be

relatively easy (for example if the dynamics yields ergodic-like behavior for finite

times), but at any rate the probability distribution over the initial conditions is never

sufficient by itself for making the right predictions, which require knowing the

4 Of course one can translate the transition probabilities to statements about a probability distribution

over initial conditions also in cases where the measure is not invariant under the dynamics. But this is

more complicated and perhaps less natural; see also Sect. 4.
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dynamics. The probability distribution over initial conditions together with the

dynamics yield the transition probabilities as given by our Probability Rule. In suitable

cases this rule will entail that initial conditions that belong to sets with large measure

have high probability of occurring. For example, if a set of initial conditions of a

thermodynamic system that has measure one evolves to equilibrium in some time

interval, then we shall say that with high probability the system satisfies the laws of

thermodynamics.

However, as we said, this interpretative move is derivative. One can understand

the meaning of a probability distribution over initial conditions in this derivative

way, namely as a shorthand of the Probability Rule (in suitable cases), and thus

make sense of a notion that seems otherwise to be empirically meaningless. The

measure l that appears in the Probability Rule is chosen so as to fit our observations

of relative frequencies of macrostates. Whether or not this measure happens to be

the Lebesgue measure, or more generally a measure that is invariant under the

dynamics, is a contingent matter that depends on the observed relative frequencies.

This shows that the two issues, of the choice of measure, and of the primacy of the

transition probabilities over probabilities of initial conditions are closely linked.

3 Measure-1 Theorems

The above account of probability in statistical mechanics has implications for the

significance of measure-1 theorems. We focus here as an example on Lanford’s

theorem.5 Lanford proved on the basis of the classical equations of motion, that,

roughly, given some specific initial macrostate, and some specific kind of

Hamiltonian, a subset of Lebesgue measure one of the microstates in that

macrostate will evolve to a macrostate with larger entropy, after a certain short

time.6 What is the significance of Lanford’s theorem given the above account of

probabilities in statistical mechanics?

In terms of our transition probabilities Lanford’s theorem proves that the

Lebesgue measure of the overlap between the blob B(t0 ? Dt) and the macrostate

E of equilibrium (or some other high entropy macrostate) is 1. Of course, as we said

above, since the Lebesgue measure is conserved under the dynamics, one may

interpret Lanford’s theorem as referring to the Lebesgue measure of subsets of the

initial macrostate M0 at t0. However, inferring anything about the measure of

subsets of the initial macrostate is an artifact of the contingent fact that the Lebesgue

measure matches the observed relative frequencies.

To appreciate this point, note that if the measure l that matches our experience

were not the Lebesgue measure, but some other measure (that may not be absolutely

continuous with Lebesgue measure) then Lanford’s theorem would have a

completely different significance: for instance, it could happen that by the measure

5 For details concerning Lanford’s theorem see (Uffink 2007; Uffink and Valente 2010).
6 The fact that a Maxwellian Demon is compatible with classical statistical mechanics demonstrates that

there can be no theorem in mechanics that implies a universal entropy increase. See Albert (2000, Ch. 5)

and Hemmo and Shenker (2010, 2011, 2012, Ch. 13).
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l the number of systems that go to equilibrium given Lanford’s Hamiltonian would

be small. The theorem that a set of Lebesgue measure one has a certain property

(such as approaching equilibrium after some finite time interval) would be

empirically insignificant—unless this fact is supplemented by the additional fact

that the Lebesgue measure happens to correspond (to a useful approximation) to the

observed relative frequencies.

4 The Typicality Approach

The above account of probability in statistical mechanics differs from a tradition in

the literature (which we shall call the typicality approach) in the way in which the

choice of measure is justified (see for example Dürr 2001; Goldstein 2012).

According to the typicality approach the choice of the Lebesgue measure in

statistical mechanics is justified because the Lebesgue measure is natural. Of course

the main issue here is what is meant by ‘natural’. If by ‘natural’ one means that the

Lebesgue measure matches the observed relative frequencies of macrostates, then

our above account (in Sect. 2) coincides with the typicality approach. But this is not

what is usually meant by ‘natural. We shall now list a few senses of ‘natural’ that

are brought up in the literature and argue very briefly that none of them can justify

the choice of measure in statistical mechanics.

(1) It is sometimes said that the Lebesgue measure in statistical mechanics is

preferred since it is invariant under the classical dynamics as expressed by

Liouville’s theorem. Invariance of the measure under the dynamics means that the

measure of a given set of points in the state space is equal to the measure of the set

to which it is mapped by the time evolution equations for all times. In the case of an

ergodic dynamics this idea receives further support due to a theorem according to

which the Lebesgue measure is the only measure that is invariant under the

dynamics amongst the set of all measures that give measure zero to all the Lebesgue

measure zero sets (the so-called measures absolutely continuous with the Lebesgue

measure).

Of course a measure that is invariant under the dynamics has very attractive

properties (simplicity, elegance, etc.). We already saw in Sect. 2 that if the measure

l that expresses the transition probabilities is taken to be the Lebesgue measure,

then it is simple and maybe natural to translate the transition probabilities to

statements about a probability distribution over initial conditions. In the typicality

approach the measure is used to determine the sizes of subsets of initial conditions,

but in this approach the fact that the measure is invariant under the dynamics (even

if uniquely) is taken to be a merit in itself. As we said in Sect. 2, the fact that the

measure is invariant under the dynamics does not entail that this measure is

necessarily the measure that justifies probabilistic statements, unless one grounds

this choice in the transition probabilities between macrostate.

(2) In the case of an ergodic system the Lebesgue measure is related to the

relative frequencies of macrostates via the ergodic theorem (proved by Birkhoff and

von Neumann), and this seems to give further justification for using the Lebesgue

measure to determine probabilities. According to the ergodic theorem the Lebesgue
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measure of a macrostate is equal to the relative frequency of that macrostate in the

infinite time limit (for a Lebesgue measure-1 of initial conditions).

Here the main7 problem (in relying on the ergodic theorem to justify the choice

of the Lebesgue measure as the one that determines the probabilities in statistical

mechanics) is the clause in the brackets: namely the relative frequency of a

macrostate in the infinite time limit is equal to the Lebesgue measure of that

macrostate only for a set of initial conditions of Lebesgue measure one. The

measure l that defines ergodicity, although formally may be interpreted as a

probability measure (since it is a normalized sigma additive measure), need not be

interpreted as probability. Therefore, in understanding the ergodic theorem as a

theorem about probability one must identify from the outset that a set of Lebesgue

measure one has probability one. But such identification is not part of the ergodic

theorem. Any attempt to use measure one theorems in statistical mechanics as

grounding probability statements will be subject to the same criticism (see our

discussion of Lanford’s theorem in the previous section).

(3) Another argument sometimes given for taking the Lebesgue measure as the

natural measure of probability in statistical mechanics is that the Lebesgue measure

of a macrostate corresponds to the thermodynamic entropy of that macrostate. Even

if this argument were generally true,8 it would not entail that the measure of entropy

(which is the measure of the macrostate of the system) should be the same as the

measure of probability. Indeed, if the probability of a macrostate would invariably

be its Lebesgue measure, then systems would evolve with high probability from any

low entropy state directly to equilibrium, and not via a sequence of macrostates of

gradually increasing entropies.9

5 Typicality in Bohmian Mechanics

The question of typicality has been considered extensively and explicitly not only in

classical statistical mechanics, but also in the context of Bohm’s theory by Dürr

et al. (1992, hereafter DGZ). DGZ prove that a typical Bohmian trajectory exhibits

relative frequencies of measurement outcomes that conform to the quantum

mechanical Born rule. Here is what they say about their proof:

7 Other issues that come up in the context of ergodic dynamics are that: (1) Since the sequences of states

of a mechanical system are not strictly independent, the ergodic theorem does not satisfy the weak low of

large numbers so that arbitrarily long but finite relative frequencies of macrostates need not approach their

probabilities; and (2) real life thermodynamic systems are often non-ergodic, although some such systems

may be empirically indistinguishable from ergodic systems; e.g. in the case of KAM dynamics. For

further considerations, see Frigg et al. (2011).
8 We show in Hemmo and Shenker (2012, Ch. 7) that the measure of entropy need not in general be the

Lebesgue measure.
9 Moreover, the notion of entropy, in the thermodynamic sense of the degree in which the energy in the

system is exploitable to produce work, may be interpreted in statistical mechanics by the measure of the

macrostate only if the Second Law of thermodynamics (in its probabilistic version) is true (see Hemmo

and Shenker 2012, Ch. 1). But as we argue elsewhere (see our 2010, 2012, Ch. 13 and Albert 2000, Ch. 5)

the Second Law of thermodynamics is not universally true in statistical mechanics.

Probability and Typicality in Deterministic Physics 583

123



…To demonstrate the compatibility of Bohmian mechanics with the

predictions of the quantum formalism, we must show that for at least some

choice of initial universal W and q, the evolution [given by Bohm’s velocity

equation] leads to apparently random pattern of events, with empirical

distribution given by the quantum formalism. In fact we show much more.

We prove that for every initial w this agreement with the predictions of the

quantum formalism is obtained for typical – i.e. for the overwhelming

majority of – choices of initial q. And the sense of typicality here is with

respect to the only mathematically natural – because equivariant – candidate at

hand, namely, quantum equilibrium.10

Thus, on the universal level, the physical significance of quantum equilibrium

is as a measure of typicality, and the ultimate justification of the quantum

equilibrium hypothesis is, as we shall show, in terms of the statistical behavior

arising from a typical initial configuration. (DGZ 1992, p. 859)

In other words, DGZ argue that for every initial universal wavefunction and for a

typical initial global configuration, the probability distribution over the Bohmian

position of subsystems of the universe is given by the absolute square of the

effective wavefunction of the subsystems (when an effective wavefunction exists).

From this result they show that the conditions sufficient for the laws of large

numbers to hold are satisfied in Bohmian mechanics with probability distribution

that recovers the predictions of standard quantum mechanics as given by Born’s

rule. Here the notion of a typical global configuration is understood relative to the

quantum mechanical measure, i.e. the absolute square of the universal

wavefunction.

What is the role of the typicality assumption in this argument? Typicality is

meant to replace here the notion of a probability distribution over the initial

conditions of the universe, and thus explain the initial conditions while avoiding the

fairy tale concerning the random or probabilistic choice of initial conditions (see

Goldstein 2012). As we argued above, there are two problems with this approach.

First, if the notion of typicality is non-probabilistic, it is unclear why a condition

which is true of most initial conditions (relative to the measure) should obtain for a

given system. The problem is to justify the choice of the measure of typicality (in

this case, the absolute square of the universal wavefunction) in a non-circular way.

The argument given by DGZ for preferring the quantum mechanical measure as

natural is that it is equivariant under the dynamics of the wave function and the

10 The term ‘quantum equilibrium’ means that the evolution of the configuration q (as given by the

‘guiding’ equation) is probablistically equivariant with the evolution of the wavefunction (as given by the

Schroedinger equation) in the following sense: if the probability distribution over the configuration q is

given by the the absolute square of the wavefunction at some time t, then it is equivariant under the

dynamics in the sense that the distribution is given by the absolute square of the wavefunction at all other

times.
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Bohmian dynamics of the initial q.11 However this argument is irrelevant just as the

classical Liouville’s theorem is irrelevant as an argument for preferring the

Lebesgue measure as the measure of probability in the case of ergodic dynamics.

It is important to stress that this criticism concerning the notion of typicality does

not in anyway undermine the important results by DGZ concerning the probabilistic

content of Bohm’s theory. In fact, it seems to us that one can retain all these results

by making the simpler assumption that the initial condition of the universe just is—

as a matter of fact—of the kind that yields the quantum mechanical predictions. It

seems to us that this assumption yields the strongest support for justifying the

probabilistic content of Bohm’s theory. No further justification is needed. Moreover,

no further empirical justification is possible, and the reason is that we have no

empirical access to the initial configuration of the universe and to the universal

wavefunction. Rather, we construct the set of initial conditions and the wavefunc-

tion for subsystems of the universe in a way that yields the quantum mechanical

Born rule distribution (the absolute square of the (effective) wavefunction of

subsystems of the universe in Bohm’s theory), where the Born rule itself is subject

to empirical tests in our experience. We then find a measure of typicality over the

set of all possible configurations of the universe—the absolute square of the

amplitude of the universal wavefunction—according to which the right sort of initial

universal conditions turn out to be typical. But evidently in so far as explanation is

concerned, such a procedure is viciously circular since we choose the measure in a

way that the properties in which we are interested are the same for the vast majority

of the admissible initial conditions. And this leads us to the same questions we

encountered in the case of statistical mechanics in the previous section.

6 Conclusion

Typicality considerations appear in a variety of contexts in physics. Here are two

further examples. One is Einstein’s (1905) account of Brownian motion, as

developed by Wiener (see Pitowsky 1992). As is well known, Wiener has proved

that the so-called Wiener measure of trajectories in the phase space of a Brownian

particle, which are continuous but nowhere differentiable, is one. The explanation of

the actual behavior of Brownian particles is based on the assumption that their

actual trajectories belong to this set of measure one. Avogadro’s number is derived

from this assumption. Another more recent example in quantum mechanics is an

argument by Popesecu et al. (2005) and (independently) by Goldstein et al. (2006)

according to which the near uniform (or maximally mixed) state of a subsystem is

explained by the fact that almost all pure states in the Hilbert space of the universe

induce on a small enough subspace a relative state which is very close (in trace

norm) to the maximally mixed state (see also Pitowsky 2012).

11 The quantum mechanical absolute squared measure is essentially the only measure that is invariant

under the dynamics in Bohm’s theory (see Goldstein and Struyve 2007). This theorem in our view is not

relevant to the issue of how typicality considerations may justify probabilistic statements in the same way

that Liouville’s theorem is not relevant in the case of classical statistical mechanics.
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We argued that typicality considerations are not justified as grounding probability

statements in statistical mechanics and in Bohmian mechanics. These theories,

however, are deterministic. The question remains whether the above criticism is

applicable in stochastic approaches to understanding quantum mechanics. In such

approaches, it might be that the choice of measure that yields the right statistical

mechanical probabilities for thermodynamic systems (for example) is invariably

dictated by the probabilities in the stochastic dynamics. This may have interesting

implications for the idea of typicality.12 We leave this question open for future

research.
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Petruccione, & N. Zanghi (Eds.), Chance in physics: Foundations and perspectives, lecture notes in

physics (pp. 115–132). Verlag: Springer.
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