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Abstract The majority of the currently flourishing theories of actual (token-level)

causation are located in a broadly counterfactual framework that draws on structural

equations. In order to account for cases of symmetric overdeterminiation and pre-

emption, these theories resort to rather intricate analytical tools, most of all, to what

Hitchcock (J Philos 98:273–299, 2001) has labeled explicitly nonforetracking

counterfactuals. This paper introduces a regularity theoretic approach to actual

causation that only employs material (non-modal) conditionals, standard Boolean

minimization procedures, and a (non-modal) stability condition that regulates the

behavior of causal models under model expansions. Notwithstanding its lightweight

analytical toolbox, this regularity theory performs at least as well as the structural

equations accounts with their heavy appliances.

1 Introduction

Theories of token-level or actual causation are currently flourishing like hardly ever

before. Many of these theories operate within a broadly counterfactual framework that

draws on structural equations (cf. e.g. Hitchcock 2001, 2007; Woodward 2003; Halpern

and Pearl 2005; Halpern 2008; Halpern and Hitchcock 2010). In order to account for

recalcitrant problem cases, such as cases of symmetric overdetermination or preemp-

tion, theories employing structural equations resort to rather intricate analytical tools,

most of all, to what Hitchcock (2001, 275) has labeled explicitly nonforetracking

counterfactuals. These nonforetrackers have antecedents in which causes are counter-

factually set to non-actual values without their effects changing accordingly. That is,

nonforetracking counterfactuals presume counterfactual configurations of causes and
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their effects that are excluded by the very causal structures under scrutiny. Apart

from raising the question to what degree relations of actual causation in the actual

world can be clarified by considering non-actual worlds where these relations do not

hold, Hall (2007) has pointed out that nonforetrackers create new problem cases for

counterfactual accounts, such as cases of switching or short-circuiting (cf. also Hall

and Paul 2003).

This paper presents an approach to analyzing actual causation that is located in a

broadly regularity theoretic framework. Regularity theorists have repeatedly suggested

that their accounts could efficiently capture cases of symmetric overdetermination or

preemption (cf. Mackie 1974; Graßhoff and May 2001; Strevens 2007; Baumgartner

2008). However, as the primary target of many regularity theories is causation on the

type-level, actual causation is frequently a mere side issue for regularity theorists.1

Accordingly, rather than developing in detail how their accounts could be adapted to the

token-level, they too often content themselves with hinting at the potential of regularity

theories of actual causation by means of a few standard examples (e.g. Mackie 1974, 44).

This paper intends to make up for the lack of theoretical detail in the regularity theoretic

literature on actual causation. It will turn out that the regularity theoretic framework is

capable of accounting for structures of overdetermination, preemption, switching, and

short-circuiting on the mere basis of material (non-modal) conditionals, standard

Boolean minimization procedures, and a (non-modal) permanence or stability condition

that regulates the behavior of causal models under model expansions.

The main reason why the vast majority of authors working on actual causation

have chosen not to go the regularity theoretic way, of course, is that the standard

opinion in the literature has it that regularity theories already fail for their primary

analysandum: type causation (cf. e.g. Lewis 1973; Armstrong 1983; Cartwright

1989, 25–29; Hitchcock 2010). In particular, it is claimed that regularity theories

cannot distinguish between spurious regularities that hold, for instance, among

parallel effects of a common cause and regularities that stem from causal

dependencies. While that is indeed the case for Mackie’s (1974) well-known INUS-

theory or Wright’s (1985) NESS-approach, the regularity theoretic literature has, in

the meantime, overcome the deficiencies of the INUS- and NESS-theories. Modern

regularity theories of type causation, as presented in Graßhoff and May (2001) and

Baumgartner (2008) (cf. also Psillos 2009), successfully meet the traditional

challenges.

Another reason for the neglect of regularity accounts might be that an intuition

apparently shared by many suggests that whether two events are related in terms of

actual causation depends on the intrinsic properties of the corresponding sequence

of events only (cf. e.g. Lewis 1986; Menzies 1996; Hall and Paul 2003). By contrast,

a regularity theory entails that whether an event a is an actual cause of another event

b, among other things, depends on how a and b relate to other events of the

1 There are some regularity theoretic proposals that consider token causation to be primary (e.g. Mackie

1965), but the criticism raised against these token-level accounts (e.g. Kim 1971), in my view, shows that

these accounts are beyond repair. I shall not pursue the singularist thread in the regularity theoretic

literature here.
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corresponding event types A and B.2 That is, a regularity theory makes actual

causation an extrinsic property of an event sequence. I shall not try to argue over

intuitions here. Rather, I will simply introduce the theoretical ease with which a

regularity theory handles cases of preemption, overdetermination, switching, short-

circuiting and the like, as an incentive to reconsider the intrinsicness intuition.

In the end, this paper’s argument in favor of a regularity theoretic approach to actual

causation will be of pragmatic nature. Glymour et al. (2010) justifiably doubt that, in

light of the unmanageable amount of possible counterexamples and of the muddy

intuitive background against which theories of actual causation are typically assessed, an

entirely satisfactory theory will ever be available. Accordingly, I am not going to claim

that a regularity theory is beyond doubt in all conceivable cases. Rather, I am going to

argue that it performs at least as well as modern counterfactual accounts. Furthermore,

contrary to the latter, a regularity theory achieves its goal by implementing

uncontroversial and straightforward conceptual and technical resources.

Section 2 reviews the basics of a modern regularity theory of type causation and

indicates how standard objections can be dealt with. Section 3 then presents the

details of a regularity theory of actual causation and illustrates the potential of that

theory by applying it to the standard problem cases. Finally, Sect. 4 relativizes the

theory to a context-sensitive distinction between typical and atypical scenarios.

2 Regularity Theory of Type Causation

As anticipated above, many regularity theories focus on causation on the type-level

as their primary analysandum and take material regularities among event types as

their primary analysans.3 Moreover, regularity theories only aim to analyze

deterministic causation. The metaphysical question as to the deterministic nature of

all causal processes shall be sidestepped here. For our purposes it suffices to note

that all causal processes discussed in the structural equations literature on actual

causation are explicitly or implicitly assumed to be of deterministic nature, and thus

fall into the domain of regularity theories.

To introduce the details of a regularity theory of type causation, some conceptual

preliminaries are required. Event types or factors, as I call the relata of type

causation for short, can be seen as sets of event tokens. If, and only if, a member of

such a set occurs, the corresponding factor is said to be instantiated. However, not

any set of event tokens constitutes a factor that can be involved in causal

dependencies. Factors that can be causally related are suitable or appropriate for

type causation (or for causal modeling), and the factors that can be contained in

complex causal structures constitute suitable factor sets. Unfortunately, rendering

2 Hall (2004) shows that counterfactual theories do not respect intrinsicness either (cf. also Maudlin

2004).
3 There are some analyses of causation referred to as ‘‘regularity theories’’ that draw on such modal

notions as nomic sufficiency (Hausman 1998, 42–43) or counterfactual conditionals (Hall 2004). This

terminology, however, blurs the important distinction between empiricist and modal analyses. As this

distinction will be of particular importance for this paper, I subsequently reserve the label ‘‘regularity

theory’’ for non-modal analyses.
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the relevant notion of suitability precise is a notoriously difficult task, which is often

sidestepped in the literature (cf. e.g. Spirtes et al. 2000, 21, 91–92). There exist a few

negative suitability standards: for instance, suitable factors do neither correspond to

gerrymandered nor gruelike properties (cf. Lewis 1999; Fodor 1997); and different

members of a suitable factor set are not related in terms of logical dependence or other

forms of dependence that are metaphysically stronger than causation, such as

supervenience, constitution, or mereological containment (cf. Hitchcock 2007, 502;

Halpern and Hitchcock 2010). And there exist some positive suitability standards: for

example, suitable factors correspond to (imperfectly) natural properties and all of their

instances mutually resemble each other (cf. Lewis 1999), i.e. suitable factors are

similarity sets of event tokens. Plainly, most of these conditions are vague and only

yield suitability by degree.4 In what follows, the problem of sharpening the relevant

suitability standards shall be bracketed. I am simply going to assume that all

subsequently employed (sets of) factors meet those standards.

Factors are symbolized by italicized capital letters A, B, C, etc., with placeholders

Z1; Z2; . . . representing any factors. Their instances are symbolized by italicized

lowercase letters a, b, c, etc., with x, y,… representing any instances. As absences are

often causally interpreted as well, factors shall be negatable. The negation of a factor A

is written thus: A. A simply represents the absence of an instance of A. Controversial

questions as to the ontological makeup of the instances of factors or as to what

instantiates absences are deliberately ignored in the present context.5 To avoid these

questions the structural equations framework has a very handy terminology on offer:

both occurrences and non-occurrences of events are simply understood as random

variables taking one of their respective values. Thus, alternatively, factors can be seen

as binary variables that take the value 1 whenever a token of the corresponding type

occurs and the value 0 whenever no such token occurs.

Clearly, there are certain connections between deterministic causal dependencies

and material conditionals. For instance, if it is assumed that factors A and B are the

two alternative deterministic causes of E, as depicted in Fig. 1, it follows that for

every instance of type A or B there exists an event of type E and for every event of

type E there exists an event of type A or B. Moreover, these A- or B-type events

differ from the E-type event (no self-causation) and they occur spatiotemporally

proximately or in the same situation (locality). What the relation ‘‘x occurs in the

same situation as y’’ amounts to depends on the causal process under investigation

and is notoriously vague. For simplicity, I am going to assume that the processes

discussed in this paper are sufficiently well known that this relation is properly

interpretable.6 If we introduce the relation Rxy representing ‘‘x occurs in the same

4 Often the suitability of factors is also rendered dependent on such context-sensitive conditions as

salience (Handfield et al. 2008) or farfetchedness (Hitchcock 2001, 287; Woodward 2003 86–91; Halpern

and Pearl 2005, 871). I prefer to first propose a context-independent notion of causation and to postpone

all considerations of context-sensitivity to Sect. 4.
5 For an interesting suggestion as to how to handle instantiations of absences within an event ontology cf.

Handfield et al. (2008, sect. 2.2).
6 Even though locality is relevant for all theories of causation, it is usually sidestepped in the literature.

For more details on the problem of suitably interpreting spatiotemporal proximity for a given causal

process cf. Baumgartner (2008).
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situation as y’’, we can express the regularities entailed by the deterministic

structure in Fig. 1 as follows:

8xððAx _ BxÞ ! 9yðEy ^ x 6¼ y ^ RxyÞÞ^
8xðEx! 9yððAy _ ByÞ ^ x 6¼ y ^ RxyÞÞ

ð1Þ

Since I shall not be concerned with the requirement as to the non-identity of causes

and effects nor with their spatiotemporal proximity, I am going to conveniently

abbreviate first-order regularities such as (1) by means of propositional expressions.

As a shorthand for (1) I use:

A _ B$ E ð2Þ
I take it to be uncontroversial that A and B being the two deterministic causes of E

entails that events of type E occur in a situation x if and only if there is an event of either

type A or of type B in x. Of course, deterministic causal structures in the actual world are

not as simple as in Fig. 1. Single factors do not cause their effects in isolation. Rather,

deterministic causes amount to complex conjunctions of co-instantiated factors, i.e. of

factors that are instantiated in the same situation and only jointly determine their effect.

Moreover, on the type-level, effects can be brought about by several alternative complex

causes. That is, regularities entailed by deterministic structures typically are signifi-

cantly more complex than the one stated in (2). To adequately represent the complexity

of regularities induced by real-life deterministic structures we thus need to somewhat

extend our shorthand notation. I follow Mackie (1974, 66–71) in symbolizing

conjunctions of factors by mere concatenation and in introducing variables X1;X2; . . .
that stand for open factor conjunctions and variables Y1, Y2,… that stand for open

disjunctions X1 _ X2 _ . . . _ Xn: Furthermore, Mackie (1974, 34–35, 63) relativizes

deterministic regularities to what he calls a causal field, i.e. to a constant configuration

of background conditions. These conventions allow for representing regularities

entailed by deterministic structures of greater complexity. A more realistic scenario

than the one given in (2) is that A and B are mere parts of alternative causes of E within a

field F; from which it follows:

in F : AX1 _ BX2 _ Y1 $ E ð3Þ

In words: in the field F; events of type E occur in a situation x if, and only if, either

A is co-instantiated with other factors X1 in x or B is co-instantiated with other

factors X2 in x or further factors Y1 are instantiated in x. For brevity, I abstain from

making the field-relativity of deterministic regularities explicit in the following.

Subsequent regularity statements are, hence, to be understood as implicitly rela-

tivized to a given setting of background conditions.

Fig. 1
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As regularity theorists want to analyze deterministic causation in terms of

regularities, they not only need a way to infer regularities from deterministic causal

structures, but also a way to infer back to causation on the basis of regularities.

Contrary to the former direction of entailment, however, the latter is far from

straightforward. Most regularities of type (2) or (3) are spurious (cf. e.g. Cartwright

1989, 25–29). Therefore, the core task for regularity theorists is to impose

constraints on material regularities such as (2) and (3) such that the subset of

regularities that meet those constraints are those that are non-spurious and, thus,

allow for inferring back to causation, i.e. those that are causally interpretable.

Modern regularity theories essentially impose two such constraints: (I) causally

interpretable material regularities do not feature redundancies, and (II) they are

permanent (or stable). Let us take these constraints in turn.

The most important condition regularities have to satisfy in order to be causally

interpretable is what may be called a principle of non-redundancy. Causal structures

do not feature redundancies. Every cause contained in a type-level causal structure

makes a difference to at least one effect in the structure in at least one situation.

However, material conditionals—the core analytical tool of regularity theories—are

monotonic and, accordingly, tend to feature a host of redundancies. If AB is

sufficient for E, so is ABZ (i.e. AB! E ‘ ABZ ! E), and if A _ B is necessary for

E, so is A _ B _ Z (i.e. E ! A _ B ‘ E ! A _ B _ Z). In both cases, Z may be

interpreted to stand for any arbitrary factor. That means sufficient and necessary

conditions can only be causally interpreted if all redundancies are removed from

them, i.e. if they are rigorously minimized. To this end, modern regularity theories

draw on the notions of a minimally sufficient condition and of a minimally

necessary condition (cf. Graßhoff and May 2001; Baumgartner 2008). AX1 is a

minimally sufficient condition of E iff AX1 ! E and for no proper part a of AX1 :
a! E; where a proper part of a conjunction is that conjunction reduced by at least

one conjunct. AX1 _ BX2 _ Y is a minimally necessary condition of E iff E !
AX1 _ BX2 _ Y and for no proper part b of AX1 _ BX2 _ Y :E! b; where a proper

part of a disjunction is that disjunction reduced by at least one disjunct.

Minimizing sufficient and necessary conditions amounts to systematically testing

whether they contain sufficient and necessary proper parts and to eliminating

redundant parts. Such systematic redundancy testing requires sufficient and

necessary conditions to be given in a particular syntactic form: disjunctive normal

form.7 To have a handy label for the resulting minimally necessary disjunctions of

minimally sufficient conditions, I (following Graßhoff and May 2001) introduce the

notion of a minimal theory.

Minimal Theory: A minimal theory U of a factor E is a minimally necessary

disjunction of minimally sufficient conditions (in disjunctive normal form) of

E, such that (i) the conjuncts in each disjunct of U are instantiated in the same

situation, (ii) E is instantiated in the same situation as its minimally sufficient

7 There exist several Boolean procedures that algorithmically minimize sufficient and necessary

conditions, the most well known being Quine-McCluskey optimization (cf. Quine 1959). For an

alternative cf. Baumgartner (2009).
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conditions, and (iii) the instances of E differ from the instances of its

minimally sufficient conditions.

To illustrate, reconsider the simple structure depicted in Fig. 1. In this structure,

A and B each are sufficient for E and, as they do not contain proper parts, they do not

contain sufficient proper parts. Hence, A and B each are minimally sufficient for E.

The disjunction A _ B, in turn, is necessary for E and neither of its proper parts is

itself necessary for E, for according to the structure in Fig. 1, A and B are alternative

causes of E, which is only the case if neither A nor B is redundant to account for all

instances of E. That is, there are circumstances such that A makes a difference to E

independently of B, and vice versa. It hence follows that there exist instances of E

without instances of A, i.e. instances of E that are caused by instances of B only, and

there exist instances of E without instances of B, i.e. instances of E that are caused

by instances of A only.8 Overall, the structure in Fig. 1 not only entails (1), but

moreover (4):

8xððAx _ BxÞ ! 9yðEy ^ x 6¼ y ^ RxyÞÞ^
8xðEx! 9yððAy _ ByÞ ^ x 6¼ y ^ RxyÞÞ^
:8xðEx! 9yðAy ^ x 6¼ y ^ RxyÞÞ^
:8xðEx! 9yðBy ^ x 6¼ y ^ RxyÞÞ

ð4Þ

To suitably abbreviate the formal expression of minimal theories in our shorthand

notation, I introduce the operator ‘‘)’’, which does not only state regularities

among factors as expressed in (1) but moreover determines sufficient and necessary

conditions to be minimal. This allows for abbreviating (4) in terms of (5):

A _ B) E ð5Þ

(5) is the minimal theory over the set {A, B, E} expressing the minimized deter-

ministic dependencies regulating the behavior of E as induced by the deterministic

structure in Fig. 1. A _ B is the antecedent of the minimal theory (5) and E its

consequent. A factor Z is said to be part of a minimal theory U of E iff Z is a

conjunct of at least one disjunct in the antecedent of U.

The notion of a minimal theory takes us a long way towards identifying the

subset of material regularities that allow for inferring back to causation, for it turns

out that minimal theories do not state spurious regularities. That is, if the causally

interpretable regularities are restricted to minimal theories, spurious regularities are

precluded from a causal interpretation. To see this, consider the deterministic

structure depicted in Fig. 2. In this structure, C and E are two parallel effects of the

common cause A. In addition, there exists one further alternative cause for C and E

each: D for C and B for E. Even though this structure is again artificially simple, it

suffices for our current purposes, for it yields spurious regularities. For instance, it

entails that C in combination with the absence of D, i.e. CD; is minimally sufficient

for E without CD being a complex cause of E. Whenever CD is instantiated, A is

8 Plainly, the non-redundancy principle does not require relevant difference-making circumstances to

exist in the past or the present of a particular causal analysis. These circumstances simply need to exist in

a tenseless sense (in the domain of quantification).
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instantiated as well, for no effect occurs without any of its causes. Hence, if D is

absent, A must be present to account for C. Furthermore, since A determines E in

structure 2, it follows that CD is sufficient for E as well. Of course, CD is moreover

part of a necessary condition of E:

CD _ A _ B$ E ð6Þ
As CD is composed of INUS-conditions of E (cf. Mackie 1974, 62), Mackie’s

INUS-theoretical variant of a regularity theory is forced to interpret CD as complex

cause of E, which, according to the structure in Fig. 2, is false. Structures as this one

are ubiquitous—the most famous concrete example being the so-called Manchester

Factory Hooters example, in light of which Mackie (1974, 83–87) ultimately

abandoned the attempt to provide a genuine regularity theoretic analysis of type

causation. However, (6) is not a minimal theory of E, for CD _ A _ B is only

necessary but not minimally necessary for E. It contains one necessary proper part:

A _ B. Whenever E occurs, A or B occur as well. The left-hand side of (6) has no

other necessary proper part. CD _ A is not necessary for E, because according to

Fig. 2 E may occur without CD and A—say, when CD is given along with A and B.

Neither is CD _ B necessary for E: E may occur without CD and B—for example,

when CD is given in combination with B and A. Among the elements of the

necessary condition of E in (6) the following asymmetry holds, which allows for

eliminating CD : CD is sufficient for A _ B, while A _ B is not sufficient for CD:

That means, while A _ B makes a difference to E independently of CD; the converse

does not hold. The minimal theory of E entailed by Fig. 2 is not (6) but (5).

These considerations reveal the principal deficiency of Mackie’s INUS-theory

and Wright’s NESS-account. Both of these theories do not minimize material

regularities rigorously enough. Mackie and Wright only call for a minimization of

sufficient conditions. Yet, necessary conditions may contain redundancies as well.9

By contrast, causal structures do not feature any redundancies whatsoever. By

rigorously minimizing both sufficient and necessary conditions those factors are

filtered out that under some circumstances actually make a difference to the

outcome. Thereby it becomes possible to distinguish between regularities that stem

from causal dependencies and regularities that are spurious.

Minimizing necessary conditions also prevents a causal interpretation of so-

called accidental regularities, e.g. of regularities that exist because involved factors

have only very few instances that, by chance, happen to coincide with specific

effects (cf. Armstrong 1983, 15–17). To illustrate, assume that Harold Bride, the

Fig. 2

9 For this reason, recent attempts to reanimate Wright’s NESS-test for the analysis of actual causation, as

can be found in Baldwin and Neufeld (2004) or Halpern (2008), are bound to fail.
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junior wireless operator on the Titanic, for the first (and only) time in his life lit a

Havana cigar moments before the ship hit the iceberg. Suppose, moreover, that we

define a factor H that has Harold’s lighting of a cigar as its only instance. Then, if

we let W stand for the occurrence of a shipwreck, the conditional H ! W is true

and, moreover, the instances of its antecedent and consequent differ and are

spatiotemporally proximate. As H does not comprise proper parts, it is not only

sufficient, but also minimally sufficient for W. H is not the only minimally sufficient

condition of W. Shipwrecks are regularly preceded by storms (S) or fires (F) or

collisions with icebergs (I) etc. The particular instance of W constituted by the

sinking of the Titanic was preceded by an instance of I. Nonetheless, there is a

necessary condition of W that contains H, viz. H _ S _ F _ I _ Y1. Yet, that

condition, analogously to the necessary condition of E given in (6), is not minimal,

for it holds that H ! I and :ðI ! HÞ: Hence, H makes no difference to E

independently of I and is therefore redundant.

Causal models are always relativized to the set of factors considered. This

relativization is of particular relevance to proper minimizations of sufficient and

necessary conditions, for the elimination of all redundancies essentially hinges on

the diversity of that factor set. In contexts of epistemic limitation, notably in

contexts of causal discovery, the factor set of an analysis may well not be diverse

enough to allow for complete minimizations. Therefore, material regularities that

are maximally minimized relative to such a context cannot be unconditionally

interpreted causally. As indicated above, the non-redundancy requirement (I) is not

sufficient to guarantee the causal interpretability of material regularities in all

circumstances. We additionally need to impose a permanence constraint (II).

What that supplementary constraint amounts to can again be illustrated by means

of the structure in Fig. 2. Suppose the scientific discipline investigating the causal

structure depicted in Fig. 2 starts by considering the factors in the set F 1 ¼
fB;C;D;Eg: Relative to F 1 it is discovered that CD and B are each minimally

sufficient for E. At the same time, the scientists investigating the behavior of E are

confronted with instances of E in situations where both CD and B are absent. That

is, the set F 1 does not feature a necessary condition of E. In consequence, the

researchers infer the existence of further unmeasured causes of E outside of F 1:
They hence conjecture the validity of the following minimal theory (with Y1 running

over the unmeasured causes):

CD _ B _ Y1 ) E ð7Þ
Now suppose that after a while of further investigation the initial set F 1 is

expanded to F 2 ¼ fA;B;C;D;Eg: Relative to F 2; it is then discovered that the

formerly unmeasured factor A constitutes an additional minimally sufficient

condition of E. Moreover, now the scientists can account for all instances of E:

whenever E is instantiated, there is an instance of CD or A or B. Thus, a necessary

condition of E has been discovered. This finding raises the question whether that

necessary condition is minimal. As we have seen above, that is not the case. The

discovery of A renders CD redundant, which, accordingly, drops out of a minimized

necessary condition. That CD appeared to make a difference to E turns out to have
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been a mere by-product of the limited diversity of F 1: Expanding F 1 to F 2 reveals

that the regularity CD! E is spurious. Accordingly, CD is no longer part of a

minimal theory of E over F 2:
In order to reveal the spuriousness of regularities and the corresponding

redundancy of elements of minimal theories, expansions of factor sets must be

suitable. A suitable expansion F j of a factor set F i is a superset of F i; i.e. F i � F j;

which is the result of introducing factors into F i that are all suitable for causal

modeling and that are logically independent of the elements of F i and do not

introduce relationships of supervenience, of constitution, or of mereological

containment. A suitable expansion F j of F i reveals that a factor Zi 2 F i which is

part of a minimal theory Ui of Zn over F i is redundant to account for an effect Zn if,

and only if, Zi is not part of a minimal theory Uj of Zn over F j: If there does not exist

a suitable expansion F j that reveals the redundancy of Zi, I shall say that Zi is

permanently non-redundant for Zn. That is, a material regularity Zi ! Zn is causally

interpretable only if it permanently satisfies the non-redundancy principle, i.e. if Zi

is permanently non-redundant for Zn. More generally, a minimal theory Ui of a

factor Zn over a factor set F i is causally interpretable only if for all suitable

expansions F j of F i there exists a minimal theory Uj of Zn over F j such that all

factors Zi that are part of Ui are also part of Uj: Or inversely put: a minimal theory is

causally interpretable only if none of its members are rendered redundant by

suitably expanding the corresponding factor set.10

It must be emphasized that eliminating spurious regularities by systematically

extending analyzed factor sets and rigorously removing redundancies presupposes

that causal structures are of a certain minimal complexity. Take an almost empty

universe that only comprises events of types A, C, and E such that these factors

correspond to fundamental properties, i.e. properties that cannot be further analyzed.

Moreover, assume, for the sake of the argument, that A is a common cause of C and

E. It follows that any of those three factors is instantiated if, and only if, any other of

those factors is instantiated. A, C, and E are mutually biconditionally dependent. As

no other factors are involved in this structure, it cannot be extended; nor can it be

modeled on a more fine-grained level to enhance complexity via specification.

Hence, the dependency between C and E is spurious and both free of redundancies

and permanent. Indeed, the most well-known counterexamples to regularity theories

are exactly of this simplistic form. Figure 2, however, shows that if there exists only

one further alternative cause for each of C and E, dependencies among C and E are

rendered redundant and, thus, identifiable as spurious on regularity theoretic

grounds. Accordingly, deterministic structures that are amenable to a regularity

theoretic treatment must feature at least two alternative causes for each effect. This

does not mean that analyzed factor sets must actually include two alternative causes

10 Due to the universal (or negative existential) nature of this permanence requirement its satisfaction

may be difficult to establish in contexts of epistemic limitations. Plainly though, such uncertainties are a

trademark problem encountered in contexts of causal discovery. May (1999, 74) has shown that spurious

regularities have certain features that allow for their identification even prior to complete expansions of

corresponding factor sets. Halpern and Hitchcock (2010) have recently emphasized that acquiring

structural stability across expansions of causal models is of utmost importance for the structural equations

framework as well.
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for each effect; it just means that factor sets must be extendable to include two

causes. In light of the enormous causal complexity of the world we live in, it is fair

to assume that all type-level causal structures de facto exhibit that minimal

complexity. In fact, I would want to claim that determinate causal dependencies

only exist in complex worlds, for permanent biconditional dependencies among

three factors, in principle, cannot be unambiguously interpreted causally. Yet, even

if somebody wants to insist that toy worlds, as the one described above, may feature

causal dependencies, these worlds do not show that regularity theories fail to

adequately account for type causation as found in the actual world. At best, these

simplistic toy examples indicate that regularity theories are not conceived for toy

worlds.

With this caveat in mind, I propose the following analysis of type causation (in

the actual world):

Type causation (TC): A factor A is a type-level cause of a factor E iff there

exists a factor set F i; where A;E 2 F i; such that (i) A is part of a minimal

theory Ui of E over F i; and (ii) for all suitable expansions F j of F i; there

exists a minimal theory Uj of E over F j such that A is part of Uj—in short, iff

A is permanently non-redundant for E.

For simplicity of exposition and as my primary concern here is not with contexts of

causal discovery, regularities expressed by a minimal theory Ui over a set F i shall

be assumed to satisfy the permanence constraint (TC.ii) by default in the following.

Before we turn to actual causation, let me emphasize a few features of (TC) that

will be important for the ensuing discussion of actual causation. First, contrary to

what critics of regularity theories have often claimed (cf. e.g. Armstrong 1983, ch.

2), material regularities may allow for distinguishing between causes and effects,

i.e. for identifying the direction of causation. To see this, reconsider the minimal

theory (5) which exhibits the alternative causes of E in the structure of Fig. 2. The

regularities among E and its alternative causes A and B that are entailed by this

structure exhibit an important non-symmetry: A and B each determine E, but E does

neither determine A nor B, but only the disjunction A _ B. A complete instantiation

of a (complex) cause determines the corresponding effect factor, but the latter does

not determine which of its alternative type-level causes is responsible for its

instantiation in a particular situation. This is the non-symmetry of determination (cf.

Baumgartner 2008).11 Distinguishing between causes and effects on the basis of this

non-symmetry, of course, presupposes that an analyzed factor set comprises at least

two complete causes for a corresponding effect.12 If a factor Z1 is both necessary

and sufficient for another factor Z2 relative to a given factor set F i; i.e. if it holds in

F i that Z1 $ Z2; conditional dependencies are symmetric and do not permit a

11 One might be inclined to argue that some causes may also have alternative effects and that, in such

cases, the direction of determination is reversed. However, note that causes that bring about one effect in

one situation and another effect in another situation are not deterministic. In deterministic structures,

which constitute the domain of regularity theories, there are no causes with alternative effects.
12 Similarly, to orient edges in causal Bayes nets at least two alternative paths are required that have a

common end node, so-called unshielded colliders (cf. especially Pearl 2000, 51–57).
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distinction between cause and effect. In that case, identifying one of Z1 and Z2 as

effect (or cause) requires either imposing some external non-symmetry, as most

commonly the direction of time, or extending F i until another condition is found

that is minimally sufficient for one of Z1 and Z2, and independent of the other.

Second, by conjunctively concatenating minimal theories, causal structures of

arbitrary complexity can be represented on regularity theoretic grounds. For instance,

(8) represents a causal chain such that A and B are causes of C which, in turn, is a cause of

E; or (9) exhibits a common cause structure in which B is a common cause of C and E:

ðAX1 _ BX2 _ Y1 ) CÞ ^ ðCX3 _ DX4 _ Y2 ) EÞ ð8Þ
ðAX1 _ BX2 _ Y1 ) CÞ ^ ðBX3 _ DX4 _ Y2 ) EÞ: ð9Þ

Third, over one set F i; there may exist several minimal theories for one effect.

To see this, consider the neuron diagram in Fig. 3. As such diagrams are

omnipresent in the actual causation literature (cf. Collins et al. 2004; Hall 2007;

Hitchcock 2009), their graphical features do not need explaining. Suffice it to say

that, contrary to the graphs in Figs. 1 and 2, a neuron diagram does not represent a

type-level but a token-level structure. The diagram in Fig. 3 exhibits a switching

process where the firing of neuron A triggers B to fire, which in combination with a

firing of the switch F stimulates C and, finally, E. Still though, this token-level

process instantiates an underlying type-level structure, which e.g. rules that

in situations where F does not fire the stimulatory influence of A on E is transmitted

via D: If we model this underlying type-level structure relative to the factor set

F 3 ¼ fA;B;C;D;E;Fg; where each element simply represents the firing of the

respective neuron, we find four minimally sufficient conditions for E: A, B, C, D.13

A disjunctive concatenation yields a necessary condition of E: if E fires there is also

firing of A or B or C or D: Overall, it holds:

A _ B _ C _ D$ E ð10Þ

(10) is not a minimal theory because the necessary condition on its left-hand side

contains three proper parts that are themselves necessary for E:

A) E ; B) E ; C _ D) E: ð11Þ

That is, the type-level structure of which the process in Fig. 3 is an instance yields

three different minimal theories for E over F 3:

Fig. 3

13 F is not part of a minimally sufficient condition of E because the firing of the switch F can be

eliminated from every sufficient condition without sufficiency for E being lost.
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In general, the behavior of an outcome of a deterministic structure can be

expressed as a function of its direct causes or of indirect causes further up on a

causal chain. Of course, the mere regularities stated by the minimal theories in (11)

are not sufficient to determine which of these theories exhibits the direct causes of

E. Moreover, the regularities in A) E and B) E do not even distinguish between

causes and effects. But if we assume that we have some way of orienting these

dependencies, say, because Fig. 3 only depicts a substructure of a more complex

neuron diagram that features at least two alternative causes for each effect or

because we impose a temporal ordering on the firings of these neurons, the minimal

theories in (11) can be oriented and grouped into direct and indirect theories of E

over F 3 : C _ D) E is the direct minimal theory, and A ) E and B ) E are

indirect theories. Similarly, there is one direct and one indirect minimal theory for

each of C and D: BF ) C, AF ) C; BF ) D; AF ) D:
A type-level structure is completely characterized by direct minimal theories

only. The indirect theories are mere logical consequences of a complete

characterization on the basis of direct theories. Nonetheless, as will become

apparent shortly, indirect minimal theories are important to evaluate the non-

redundancy of factors for effects further down on a causal chain. For transparency, I

subsequently label indirect theories with an index: (X1) Z1)i. In sum, the complex

minimal theory over F 3 representing the type-level structure underlying the neuron

diagram in Fig. 3 is this:

ðA) BÞ ^ ðBF ) CÞ ^ ðBF ) DÞ ^ ðC _ D) EÞ^
ðAF ) CÞi ^ ðAF ) DÞi ^ ðA) EÞi ^ ðB) EÞi

ð12Þ

Finally, it is important to note that (TC) yields a non-transitive notion of type

causation. Factors may make a difference to their direct effects and no difference to

effects that are located further down on a causal chain. A factor Z1 may be part of a

minimally sufficient condition of Z2 which, in turn, is part of a minimally sufficient

condition of Z3, without Z1 being contained in a minimally sufficient condition of

Z3. The structure characterized in (12) provides an example. In this structure, F

makes a difference to whether the stimulatory impulse is transmitted via instances

of C or D, but E is instantiated independently of the way of transmission.

Correspondingly, F is part of a minimal theory of C and C is part of minimal theory

of E, but F is not part of a minimal theory of E. That is, according to (TC), F is a

cause of C and C is a cause of E, but F is no cause of E. The non-transitivity of (TC)

is the reason why indirect minimal theories are needed to assess non-redundancies

in difference-making along causal paths.

3 Regularity Theory of Actual Causation

Let us now apply that type-level theory to analyzing actual causation. To avoid

intricate questions regarding the ontological makeup of the relata of actual

causation, I shall simply use the neutral term ‘token’ to refer to the relata of actual

causation. The basic idea behind a regularity theoretic analysis of actual causation
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can then be stated very simply: two tokens are causally related if, and only if, they

properly instantiate an underlying type-level structure. Actual causation, hence, is a

secondary relation that hinges on how corresponding tokens relate to other tokens of

the same types and on how these types relate to each other. To spell this basic idea

out in more detail, we first have to clarify what it means for two tokens to properly

instantiate a type-level structure. To this end, one auxiliary notion is required that I

borrow from Hitchcock (2001) and adapt to the regularity theoretic context: the

notion of an active causal route. Roughly, an active causal route is a causal path of a

type-level structure that is instantiated in a concrete situation. More specifically:

Active causal route: Relative to a factor set F i; Z1 is connected to Zn by an

active causal route in a concrete situation x iff there is a sequence hZ1; . . .; Zni
in F i such that for each i, 1 B i \ n: (i) Zi is contained in a direct minimal

theory Uiþ1 of Zi?1 over F i; and (ii) in x, Zi is co-instantiated with all factors

Xi constituting a minimally sufficient condition ZiXi of Zi?1 in Uiþ1.

To illustrate, reconsider the scenario depicted in Fig. 3 along with the correspond-

ing complex minimal theory (12) over F 3: In (12), A is part of a direct theory of B

which is contained in a direct theory of C which, in turn, is part of a direct theory of E.

Moreover, in Fig. 3, A is co-instantiated with all other factors constituting a minimally

sufficient condition AX1 of B—in this case, of course, X1 amounts to the empty set

because A is itself minimally sufficient for E—, B is co-instantiated with F, and

C, which is itself minimally sufficient for E, is instantiated as well. Hence, in that

neuron firing process, A is connected to E by an active causal route. Note that the notion

of an active route is relativized to a factor set. As a consequence, two factors may be

connected by an active route relative to one factor set, but not relative to another.

Overall, that two tokens properly instantiate an underlying type-level structure means

that those tokens connect two corresponding types by an active causal route relative to

a setF i and relative to all suitable expansions ofF i; i.e. that those tokens permanently

connect the corresponding types by an active route.

The notion of an active causal route now enables us to define actual causation on

the basis of (TC):

Actual causation (AC): A token a is an actual cause of a different token e iff

there exists a factor set F i that contains two factors A and E such that (i) A is

part of minimal theory Ui of E over F i and A is permanently non-redundant

for E, i.e. A is a type-level cause of E according to (TC); and (ii) for all

suitable expansions F j of F i (which include F i itself), A is on an active causal

route to E relative to F j such that a and e are the instances of A and

E, respectively, on this route.

As in case of (TC.ii), the permanence constraint (AC.ii) is of universal form and

may, hence, be difficult to establish in contexts of causal discovery. In order not to

get entangled in intricate questions of causal discovery, I shall simply assume that—

if not explicitly stated otherwise—the subsequently discussed neuron diagrams

completely represent corresponding causal processes, i.e. no further causes or causal
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intermediaries are left out. This greatly limits the extendability of relevant factor

sets and yields that (AC.ii) can be visibly (in)validated.

The remainder of this section demonstrates the potential of (AC) by applying it to

the standardly discussed structures that create problems for counterfactual accounts:

switching, preemption, overdetermination, and short-circuiting. For reasons of

space, I have to focus on applying (AC) to these types of structures and cannot

discuss in detail the problems they generate for counterfactual accounts. Yet, all of

these problems are well-documented in the literature, most of all, in a recent

exchange by Hall (2007) and Hitchcock (2009).

As Hall (2007, 117–118) shows, structural equations accounts that draw on

explicitly nonforetracking counterfactuals identify the firing of F as actual cause of

the firing of E in the switching process of Fig. 3. However, in light of the fact that

switch F de facto makes no difference whatsoever to whether neuron E fires, this

result conflicts with causal intuitions. (AC), in turn, correctly captures those

intuitions. It yields that the firing of F does not count as an actual cause of the firing

of E; because the corresponding factor F is not part of a minimal theory of E (over

any suitable factor set) and, thus, is no type-level cause of E. By contrast, the firings

of A; B; and C in Fig. 3 all come out as actual causes of the firing of E: As exhibited

in (12), the factors these tokens instantiate are all type-level causes of E and they are

connected to E by active causal routes relative to all suitable expansions of F 3 (for,

in light of the above completeness assumption, F 3 contains all type-level causes of

E). Hence, (AC) correctly mirrors the relations of actual causation that are exhibited

by the switching process of Fig. 3.

Next, let us consider the case of early preemption shown in Fig. 4a: the firing of

neuron C triggers E to fire (via D) and, at the same time, suppresses the stimulation

of E by A (via B).14 In this situation, the actual causes of E’s firing are the firings of

C and of D: Nonetheless, had C not fired, E would have fired anyway because it

then would have been stimulated by A via B: If we model the underlying type-level

structure relative to the set F 4 ¼ fA;B;C;D;Eg and—as in the previous section—

assume orientability of deterministic dependencies, we get the following complex

minimal theory:

ðAC ) BÞ ^ ðC ) DÞ ^ ðD _ B) EÞ ^ ðA _ C ) EÞi ð13Þ

(a) (b) (c)

Fig. 4

14 Inhibitory signals are represented by ‘ ’. They always override stimulatory signals.
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(AC) entails that the instances of C and D in Fig. 4a are actual causes of the instance

of E. By contrast, the instance of A does not come out an actual cause of E.

Although A is part of a minimal theory of E and, thus, a type-level cause of E, A is

not connected to E by an active route relative to F 4 in 4a, for A is not co-instantiated

with all other members of the minimally sufficient condition AC of B. Preempted

causes—as the firing of A—are also intuitively not identified as actual causes.

This example demonstrates why (AC) requires tokens to permanently connect

corresponding factors by active routes in order to be causally related. If the type-

level structure instantiated by the process in Fig. 4a is modeled relative to the set

F�4 ¼ fA;C;Eg; A _ C ) E turns out to be the direct minimal theory of E. As a

consequence, relative to F�4 both A and C are connected to E by active routes. The

set F�4 is not diverse enough to model the fact that the signal from neuron A to E can

be interrupted. Suitably expanding F�4 to F 4 yields the richer minimal theory (13)

which adequately models the interruptability of that signal and reveals that the firing

of A is preempted in the process of Fig. 4a.

Cases of late preemption are handled analogously. Since Lewis (1986, 203–204),

canonical examples of late preemption have the form of the scenario depicted in Fig.

4b, where neuron E is stimulated by G via C. E suppresses D; which would have

triggered E; had E not already received a stimulus along the other path. Modeling

the underlying type-level structure relative to the set F 5 ¼ fA;B;C;D;E;Gg yields

the following minimal theory:

ðG) CÞ ^ ðA) BÞ ^ ðBE ) DÞ ^ ðC _ D) EÞ^
ðG _ B) EÞi ^ ðG _ A) EÞi

ð14Þ

A, B, C, and G are all contained in a minimal theory of E. Yet, while G and C

additionally are located on an active route to E in Fig. 4b, A and B are not. (AC)

hence identifies only the firings of G and C as actual causes of the firing of E:
Again, this result accords with the usual causal intuitions.15

A caveat is required at this point. In recent years, there has been some variance in

the literature as to what exactly the difference between early and late preemption

amounts to. According to the understanding which hearkens back to Lewis (1986)

and which underlies Figs. 4a, b, the difference is that ‘‘in cases of early preemption,

the backup process is cut off before the effect occurs, whereas in cases of late

preemption, the process is cut off by the effect itself’’ (Hitchcock 2007, 526). By

contrast, e.g. Hall and Paul (2003, 111–112) hold that the characteristic feature of

early preemption is that a process is interrupted by another process, whereas in cases

of late preemption no interruption takes place, rather, the preempted process just

does not run to completion. Whatever the merits of these two accounts may be, it is

clear that in order to adequately reproduce cases of preemption within difference-

making theories of causation—be they of the counterfactual or the regularity

theoretic type—relevant causal models must contain a factor (or a random variable)

15 Keep in mind that (14) is not a propositional expression but a shorthand for a first-order expression

that, among other things, imposes spatiotemporal constraints on the instances of the involved factors. In

this particular case, these constraints must be taken to imply that BE and E are not proximately

instantiated (which would be impossible), when neuron E is triggered via D.
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that takes on different values depending on whether a corresponding cause is

preempted or not (cf. Halpern and Pearl 2005, 862). In a case where, say, two

neurons A and C fire at the same time, but the signal of A reaches and triggers

neuron E before the signal of C such that the signal of C does not run to completion,

such a marking factor (cf. Hitchcock 2004, 416) may e.g. model whether E has

already fired or not when the signal from C arrives (cf. Strevens 2007, 103). That is,

to reproduce cases of preemption, both structural equations accounts and (AC)

require that relevant factor sets are suitably expandable to include at least one

marking factor on the preempted causal path.

Figure 4c features another standard test case for counterfactual accounts:

symmetric overdetermination. In this process, neurons C and A trigger E
simultaneously, such that each stimulus would have itself been sufficient for E to

fire. Intuitively, we want to say that both overdetermining causes count as actual

causes of E’s firing. (AC) yields this result in a maximally simple manner. Relative

to the set F 6 ¼ fA;C;Eg the underlying type-level structure is given by the

following minimal theory:

A _ C ) E ð15Þ

That is, both A and C are type-level causes of E and, in Fig. 4c, are connected to E

by an active causal route each. Thus, the instances of A and C are both identified as

actual causes of E by (AC).

Let us now turn to what Hall (2007, 120) has dubbed short circuits. An example is

given in Fig. 5a. In this process, neuron C triggers F through D and, at the same time,

suppresses F by way of stimulating B: Moreover, F is connected to E through an

inhibitory edge, meaning that if F were to fire, E would be suppressed. While

structural equations accounts tend to identify the firing of C as an actual cause of E’s

firing, intuitively the firing of C makes no difference to E at all, because C’s

stimulatory influence on E’s potential suppressor F is canceled by C’s own inhibitory

signal via B: To see whether (AC) yields the same result, we again have to first

identify the relevant minimal theory. Relative to the factor set F 7 ¼
fA;B;C;D;E;Fg; with factors once more representing the firings of the corre-

sponding neurons, Fig. 5a seems to suggest that AF is both minimally sufficient and

necessary for E. However, on closer inspection, it turns out that in the type-level

structure underlying Fig. 5a, AF has a proper part that is sufficient and necessary for

E, viz. A, for the other part of AF; i.e. F; holds trivially. Under no circumstances

(a) (b) (c)

Fig. 5
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could neuron F ever fire, because C and C are each minimally sufficient for F: That

is, the tautologous disjunction C _ C determines F: Therefore, F poses no potential

threat to E whatsoever. As neuron F does not possibly make a difference to E; the

inhibitory edge between F and E in 5a is ungrounded. Moreover, since C is necessary

and sufficient for B and D, it follows that B is instantiated if and only if D is. As a

consequence, the type-level dependencies among B, D, and F are very ambiguous.

As a matter of fact, these factors might not be causally connected at all, for the

neuron diagram in Fig. 5a is empirically equivalent to Fig. 5b.16

Whatever the dependencies among C, B, D, F may be, it is clear that the minimal

theory regulating the behavior of E in the type-level structure underlying Fig. 5a and

b is simply this:

A) E ð16Þ

As a result, (AC) only identifies the instance of A as actual cause of the instance of E

in the process depicted in 5a and 5b, respectively, and hence accords with causal

intuitions.

Matters change radically if we, instead of this simple short circuit, consider the

slightly more complex short circuit depicted in Fig. 5c. Contrary to 5a (and 5b), 5c

features an additional neuron G that can actually cause F to fire. In the process

depicted in 5c, the stimulatory influence of G via D on F is suppressed by C through

B: In 5c, neuron F poses a real threat for E; and thus there exist circumstances (e.g.

the one depicted in 5c) in which firings of C make a difference to whether E fires. In

consequence, A is not itself sufficient for E. The type-level structure underlying the

behavior of E in 5c involves all factors in the set F 8 ¼ fA;B;C;D;E;F;Gg: The

pertinent minimal theory for Fig. 5c is this:

ðC ) BÞ ^ ðC _ G) DÞ ^ ðB _ D) FÞ ^ ðAF ) EÞ^
ðC _ G) FÞi ^ ðAB _ AD) EÞi ^ ðAC _ AG) EÞi

ð17Þ

C is now connected to E by an active causal route (via B and F) and C is moreover a

type-level cause of E. Hence, according to (AC), E’s firing in Fig. 5c is determined

to be a joint effect of the firings of C and of A: I consider this result to accord with

causal intuitions, for contrary to the process depicted in 5a, the firing of C makes a

difference to whether E fires or not in 5c.

Furthermore, I take this result to show that actual causation is not an intrinsic

relation of two tokens a and e and, if a is not a direct cause of e, intermediary tokens

mediating the causal influence of a on e.17 Whether two tokens are related in terms

of actual causation also hinges on the existence of suitable off-route tokens.

16 Readers with sympathies for interventionism will deny the equivalence of Fig. 5a and b by arguing that

5a and 5b do not have the same implications on how E behaves under possible interventions on D or B
that are independent of C: According to Fig. 5a and b, however, D and B can only be stimulated by C:
Hence, there are no possibilities to intervene on D and B independently of C: As will be shown below, as

soon as 5a and 5b are suitably expanded by further neurons that can stimulate D or B independently of C
the equivalence of 5a and 5b breaks down.
17 Hall (2004) takes an example analogous to the one in Fig. 5 to show that there exists at least one

concept of causation, viz. dependence, that does not amount to an intrinsic relation. Menzies (2002) also

significantly weakens his intrinsicness thesis (cf. Menzies 1996) in light of an example of this type.
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Expanding the neuron diagrams in Fig. 5a and b by the additional neuron G turns

the firings of C and B into actual causes of E’s firing, even though G is not located

on the route from C and B to E: The same also holds on the type-level. The contrast

between (16) and (17) reveals that adding G turns C and B into type-level causes of

E, even though G does not mediate between these factors. The non-intrinsicness of

both type and actual causation very naturally follows from analyzing these relations

in regularity theoretic terms.

The scenarios in Fig. 5 also demonstrate that the minimal theories representing

the type-level structures underlying neuron diagrams can be changed drastically by

integrating (or removing) single neurons. How (AC) analyzes a given example is

highly sensitive to the actual complexity of that example. This requires particular

caution when comparing the causal claims inferred on the basis of (AC) with an

intuitive assessment of a corresponding neuron diagram. The latter must be

intuitively assessed without implicitly assuming ways to manipulate certain neurons

that are not represented in that diagram.

I conclude this collection of exemplary applications of (AC) with an example that

Hall (2004, 263) takes to show that accounts of actual causation in terms material

regularities ultimately fail. In Fig. 6a, E is a so-called stubborn neuron (symbolized

by the grey shading) that only fires if it receives at least two stimulatory signals at

the same time. In the process depicted in 6a, E is stimulated by A via D and by C via

B. A not only stimulates E; but also suppresses H which would have triggered E as

well. Fig. 6a suggests that we should count both the firing of A and the firing of C as

actual causes of the firing of E: However, if we model the underlying type-level

structure relative to F 9 ¼ fA;B;C;D;E;Hg; it turns out that A is not part of a

minimally sufficient condition of E, for E is instantiated if and only if C (and B) is—

irrespectively of whether A is also instantiated or not. Under no circumstances could

A ever make a difference to E. The type-level structure instantiated by 6a is

expressed by the following minimal theory:

ðA) DÞ ^ ðCA) HÞ ^ ðC ) BÞ ^ ðB) EÞ ^ ðC ) EÞi ð18Þ

Against the background of (18), (AC) of course only identifies the instances of C

and B as actual causes of the instance of E in 6a. That is, contrary to what Fig. 6a

suggests, the firing of A does not come out as cause of the firing of E: Hall (2004)

(a) (b) (c)

Fig. 6
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takes this to constitute an insurmountable problem for pure regularity accounts of

actual causation.

However, note that expressing the type-level structure instantiated by Fig. 6a in

terms of the minimal theory (18), first and foremost, reveals that A, D, and H make

no difference to E in addition to C and B. Figure 6a is empirically equivalent to Fig.

6b, in which E is not represented as a stubborn neuron and which lacks edges from

D to E and from H to E: In view of the fact that causal structures—both on the type

and on the token-level—do not feature redundancies, the neuron process in question

here should be reproduced in terms of Fig. 6b rather than 6a. Obviously, in light of

6b, which does not contain redundant elements, it turns out to be a virtue of (AC)

that it does not identify the firing of A as an actual cause of the firing E: In fact, the

firing of A is no cause of the firing of E because the former makes no difference

whatsoever to the latter. Rather than giving rise to a problem for regularity accounts,

the fact that A is not part of a minimally sufficient condition of E reveals that 6a

features redundant elements and, hence, does not adequately represent a causal

process. Not any graph construed by connecting nodes by stimulatory or inhibitory

edges results in a neuron diagram that can be seen to adequately reproduce a causal

process.

It will be objected that the stubbornness of E and the capacity of D and H to

stimulate E can in fact be tested by suitably intervening on H; D; and B: For

instance, if we intervene to suppress H without at the same time stimulating D in a

situation where A does not fire, we can test whether the firing of C suffices to trigger

E or not, i.e. whether E in fact is stubborn. Similarly, if we can intervene to

stimulate D and to suppress B without at the same time suppressing H in a situation

where C fires and A does not, we can test whether the firings of D and H indeed

make a difference to the behavior of E: Plainly, provided that such interventions are

possible the stubbornness of E and the stimulatory impact of D and H on E are

easily testable. Figure 6a, however, does not feature any additional inhibitory and

stimulatory neurons that would be required for such intervention tests. Moreover,

Hall’s argument as to A’s failure to be part of a minimally sufficient condition of E

essentially hinges on the impossibility to perform these additional interventions. If

there indeed exist ways to hold H and B fixed and to stimulate D that are not

represented in Fig. 6a, relationships of minimal sufficiency change to the effect that

A will be part of a minimally sufficient condition of E after all. To see this, consider

Fig. 6c which results from 6a by integrating additional inhibitory neurons for H and

B and an additional stimulatory neuron for D: The minimal theory exhibiting the

type-level structure underlying 6c relative to F 10 ¼ fA;B;C;D;E;F; J;Hg is this:

ðCJ ) BÞ ^ ðA _ G) DÞ ^ ðCAF ) HÞ ^ ðBH _ DH _ DB) EÞ^
ðCAFJ _ GCAF _ ACJ _ GCJ ) EÞi

ð19Þ

In Fig. 6c, exactly the same neurons fire as in Fig. 6a. However, by integrating the

additional neurons required for the intervention tests described above, material

regularities change in such way that A is now part of a minimal theory of E and,

thus, a type-level cause of E. Moreover, in 6c, A is located on an active route to E.

That is, (AC) now rules that the firing of A is an actual cause of the firing of E.
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In sum, either Fig. 6a is complete or it is not. If it is complete, the firing of A
under no possible circumstances makes any difference whatsoever to the behavior

of E over and above the firing of C (and B). In that case, Fig. 6a is equivalent to 6b.

Correspondingly, the firing of A is not determined to be an actual cause of the firing

of E by (AC). By contrast, if Fig. 6a represents a mere substructure of, say, Fig. 6c,

there exist circumstances (e.g. the ones represented in 6c) under which the firing of

A makes a difference to the behavior of E: In that case, Fig. 6a is not equivalent to

6b. Then, A is part of a minimal theory of E and moreover located on an active route

to E. Consequently, the firing of A is identified as actual cause of the firing of E by

(AC). In my view, (AC) entails the intuitively adequate relationships of actual

causation both if 6a is complete and if it is not.

4 A Relativization to Typicality

An example that is due to Hiddleston (2005) has recently lead to intensified efforts

to relativize the notion of actual causation to a context-sensitive standard of

normality or typicality (cf. Hitchcock 2007; Hall 2007; Halpern 2008; Halpern and

Hitchcock 2010).18 Consider Fig. 7 where E receives an inhibitory signal from C
and no stimulatory signal from A: As a result E does not fire. This process

instantiates a type-level structure which, if modeled relative to F 11 ¼ fA;C;Eg;
entails the regularities expressed in the following minimal theory:

A _ C ) E ð20Þ

In Fig. 7, both A and C are located on an active causal route to E: Accordingly, both

the non-firing of A and the firing of C are identified as actual causes of the non-firing

of E by (AC). Structural equations accounts imply the same causal dependencies.

However, the intuitive adequacy of this result seems doubtful. In the situation

depicted in Fig. 7, A does not fire. Thus, the inhibitory signal E receives from C
appears to be completely irrelevant. That is, causal intuitions tend to identify the

non-firing of A as the only actual cause of the non-firing of E:19

Figure 7 is structurally isomorphic to Fig. 4c. While the latter exhibits a case of

an overdetermined occurrence, the former depicts an overdetermined absence.

Fig. 7

18 Instead of typicality, Handfield et al. (2008) relativize actual causation to a context-sensitive condition

of salience.
19 These intuitions are further strengthened by changing the interpretation of the occurrences in Fig. 7, as

e.g. done in a scenario Hitchcock, (2007, 523) calls Bogus Prevention.
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Unsurprisingly, the corresponding minimal theories (15) and (20) are isomorphic as

well. However, while in the case of Fig. 4c causal intuitions clearly identify both

overdetermining tokens as actual causes, intuitions tend towards a different

assessment in the case of Fig. 7. Hitchcock, Hall, and Halpern take this to show that

actual causation does not only depend on the counterfactual dependencies that are

implied by corresponding causal processes and that are encoded in structural

equations. Assessments of actual causation additionally depend on ‘‘a theory of

‘normality’ or ‘typicality’’’ (Halpern 2008, 204).

Plainly, relativizing actual causation to typicality standards renders actual

causation dependent on pragmatic features of the concrete context in which a causal

process is modeled. Yet, another widespread causal intuition has it that whether or

not two tokens are causally related is an entirely objective matter which in no way

hinges on contingencies of modeling contexts. Therefore, rather than taking the

conflict between the intuitive assessments of Figs. 4c and 7 to count against the

context-independence of actual causation, I would prefer to take this conflict to

reveal a confusion in our causal intuitions. Whoever hesitates to acknowledge that

the instance of C in Fig. 7 is an actual cause of E in fact has a pragmatic and

context-dependent causal notion in mind, most likely causal explanation. In the end,

however, whether or not Hiddleston-type examples are interpreted to show that the

notion of actual causation must be contextualized and approximated to the notion of

causal explanation is a terminological issue over which I do not want to argue. It is a

fact that many authors opt for contextualization. Therefore, I conclude this paper by

briefly indicating how the contextualization techniques adopted in the structural

equations framework can also be used to define a regularity theoretic notion of

actual causation that is relativized to a standard of typicality.

Factors that are connected by a deterministic causal structure can be instantiated

in certain configurations and not in others. For instance, according to the type-level

structure underlying Fig. 7 exactly the configurations listed in Table 1a are

empirically possible. That is, A and C can be instantiated while E is not

(configuration c1), or C can be instantiated while A and E are not (c2), or all three

factors can be absent (c3), or A and E can be instantiated while C is not (c4). All

other logically possible configurations of the factors in F 11 ¼ fA;C;Eg are

determined to be empirically impossible by the type-level structure behind Fig. 7.

Minimal theories simply express the configurations listed in Table 1a in a

standardized syntactic form. Accordingly, the minimal theory (20) is true if, and

only if, the factors in F 11 take one of the value configurations listed in Table 1a.

Table 1

106 M. Baumgartner

123



In ordinary contexts of causal modeling, not all possible value configurations for an

analyzed structure are equally typical. Hence, relativizing (AC) to contextually induced

typicality rankings, first and foremost, presupposes that possible value configurations

are ordered according to the typicality ranking that is relevant for a given modeling

context. In the structural equations framework, it is customary to assign the lowest rank

to the most typical configuration and to increase the rank with decreasing typicality. A

token a can then be said to be a contextualized actual cause of another token e iff a and e

satisfy (AC) and a additionally makes a difference to e relative to the configurations with

equal or lower typicality rank than the actual configuration (cf. Halpern 2008).

In order to make this idea somewhat more precise, consider Table 1b which

exhibits one conceivable ranking of the configurations listed in Table 1a. The

scenario depicted in Fig. 7 is of type c2 and, according to the ranking of Table 1b, is

of typicality rank 2. To determine whether the firing of C in Fig. 7 makes a difference

to the non-firing of E relative to all configurations with equal or lower rank than c2,

we first eliminate the one possible configuration with higher rank, i.e. c1, and second,

check whether the corresponding factor C is still part of a minimally necessary

condition of E relative to this truncated list of configurations. Table 1c constitutes

such a truncation of 1b. As can easily be seen, relative to the configurations in

Table 1c, C is not part of a minimally necessary condition of E any more. In

configurations c2 and c3 of 1c the value of C changes while both A and E remain

unchanged. Hence, relative to the configurations with a maximal rank of 2, C makes

no difference to E: The minimal theory expressing the configurations in 1c is this:

A) E ð21Þ

We might call (21) a contextually weighted minimal theory for Fig. 7. It

reproduces the relations of minimal sufficiency and necessity holding among the

factors in F 11 relative to the set of configurations with equal or lower typicality rank

than the configuration in the actual situation, i.e. in Fig. 7. Against this background,

a contextualized notion of actual causation can be more precisely defined as fol-

lows: a token a is a contextualized actual cause of a token e iff a and e satisfy (AC)

and, relative to a factor set F i that is used in a given modeling context and that

contains factors A and E such that A is instantiated by a and E by e, A is part of a

contextually weighted minimal theory Ui of E over F i: Thus, the firing of C in Fig.

7 is no contextualized actual cause of the non-firing of E because C is not contained

in the contextually weighted minimal theory (21).

Of course, this is only a rough sketch of a regularity theoretic notion of actual

causation that is relativized to typicality standards. Nonetheless, it should suffice to

substantiate that, if desired, a regularity theory can be relativized to such standards

along analogous lines as structural equations accounts.

5 Conclusion

This paper has shown that in order to account for token-level processes contained in

the standard set of test cases no recourse to nonforetracking counterfactuals nor
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even to non-actual possible worlds is required. Preemption, overdetermination,

switching, and short-circuiting—all of which cause problems for some counterfac-

tual analyses or other—can be accounted for on the basis of rigorously minimized

material regularities that are permanent across extensions of causally modeled factor

sets. As anticipated in the introduction, I do not claim that (AC) is beyond doubt in

all conceivable cases. For instance, I did not discuss cases of trumping (cf. Schaffer

2000) or of preemptive prevention (cf. Collins 2000). There are different intuitions

as to how to assess these structures. Hitchcock (2007, 512) treats trumping as a

species of overdetermination and preemptive prevention as a species of early

preemption (cf. also McDermott 2002; Halpern and Pearl 2005). If treated as such,

they do neither constitute a problem for structural equations accounts nor for (AC).

However, Schaffer (2000) and Collins (2000) hold that trumping and preemptive

prevention are not reducible to overdetermination and preemption. In that case, they

might well turn out to give rise to problems both for modern counterfactual accounts

and for (AC). Overall, I only want to claim that the latter performs at least as well as

the former. Moreover, contrary to theories employing structural equations, (AC)

achieves its goal by implementing uncontroversial and straightforward conceptual

and technical resources only. The ease with which structures of actual causation that

create problems for the structural equations framework can be properly reproduced

in a regularity theoretic framework should be reason enough to take regularity

theories more seriously than they are currently taken.
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