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Abstract We present a procedure which allows us to recover classical and non-

classical logical structures as concrete logics associated with physical theories

expressed by means of classical languages. This procedure consists in choosing, for

a given theory T and classical language L expressing T ; an observative sublan-

guage L of L with a notion of truth as correspondence, introducing in L a derived

and theory-dependent notion of C-truth (true with certainty), defining a physical
preorder � induced by C-truth, and finally selecting a set of sentences /V that are

verifiable (or testable) according to T ; on which a weak complementation \ is

induced by T : The triple ð/V ;�;? Þ is then the desired concrete logic. By applying

this procedure we recover a classical logic and a standard quantum logic as concrete

logics associated with classical and quantum mechanics, respectively. The latter

result is obtained in a purely formal way, but it can be provided with a physical

meaning by adopting a recent interpretation of quantum mechanics that reinterprets

quantum probabilities as conditional on detection rather than absolute. Hence

quantum logic can be considered as a mathematical structure formalizing the

properties of the notion of verification in quantum physics. This conclusion supports

the general idea that some nonclassical logics can coexist without conflicting with

classical logic (global pluralism) because they formalize metalinguistic notions that

do not coincide with the notion of truth as correspondence but are not alternative to

it either.
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via Arnesano, 73100 Lecce, Italy

e-mail: Garola@le.infn.it

S. Sozzo

Center Leo Apostel (CLEA), Vrije Universiteit Brussel (VUB),

Krijskundestraat 33, 1150 Brussels, Belgium

e-mail: Sozzo@le.infn.it; ssozzo@vub.ac.be

123

Erkenn (2013) 78:399–419

DOI 10.1007/s10670-011-9353-4



1 Introduction

After the birth of modern formal logic in the nineteenth century many nonstandard

logics were proposed, from Heyting’s intuitionistic logic (Heyting 1934, 1956) and

Łukasiewicz’s (1920) many valued logic to the recent relevance logic (Anderson

and Belnap 1975; Anderson et al. 1992) and linear logic (Girard 1987).

In many cases these logics are interpreted as formalizing the features of notions of

truth that are alternative to the classical notion of truth as correspondence formalized

by Tarski (1933, 1944), and many logicians maintain that the plurality of logics should

be considered as an important achievement of the twentieth century, which parallels

the plurality of geometries which constitutes one of the revolutionary results of the

mathematical research in the nineteenth century. Other logicians and philosophers

instead uphold the thesis that nonstandard logics can be recovered as fragments of a

suitable extension of classical logic (CL), in a unified view (global pluralism) which

restores the unity of logic and avoids many quarrels about the notion of truth (Haack

1974, 1978). In this perspective, for instance, it has been proven that intuitionistic logic

can be recovered as a part of a pragmatic extension of CL, intended to formalize the

features of the notion of logical proof rather than the features of an intuitionistic

nonclassical notion of truth (Dalla Pozza and Garola 1995).

In the physical realm, many nonstandard logics were propounded after the birth of

quantum mechanics (QM) (Jammer 1974). One only of them, however, acquired

growing importance in the literature, that is, the quantum logic (QL) propounded by

Birkhoff and von Neumann (1936) as the underlying logic of QM, now often called

standard (sharp) QL. This proposal indeed become rather popular because it seems to

spring out directly from the mathematical formalism of QM. Moreover, many scholars

maintain that some known paradoxes of QM could follow from an improper use of CL

for dealing with the basic notions of QM because this theory would implicitly

introduce a nonclassical notion of truth (quantum truth or, briefly, Q-truth) whose

features are formalized by standard QL (Rédei 1998; Dalla Chiara et al. 2004). Hence

a huge literature was produced on this topic, which is still flourishing nowadays.

Also in the specific case of standard QL, however, one may wonder whether a

perspective of global pluralism can be adopted which allow to recover standard QL

within an extended classical framework. In particular, one of us has observed in

some previous papers that standard QL could be seen as the mathematical structure

resulting from selecting a subset of sentences that are testable according to QM in

the set of all sentences of a suitable classical language, that is, as the structure

formalizing the features of the metalinguistic notion of testability in QM rather than

a notion of Q-truth (Garola 1992, 2008). The aim of the present paper is to

generalize and implement this view. To be precise, we intend to illustrate a

procedure for obtaining a concrete (theory-dependent) logic associated with a

physical theory T expressed by means of a classical language L with a notion of

truth as correspondence. This procedure consists of four steps.

(i) Consider an observational sublanguage L of L and introduce a derived notion

of C-truth (true/false with certainty) in L, defined in terms of classical truth but

depending on T :

400 C. Garola, S. Sozzo

123



(ii) Define a physical preorder � on L, induced by the notion of C-truth.

(iii) Introduce a notion of verification in L by selecting a subset /V of sentences of

L that are verifiable, or testable, according to T :
(iv) Define a weak complementation \ induced by T on ð/V ;�Þ:

The structure ð/V ;�; ?Þ is then the required concrete logic.

The above procedure is conceptually and philosophically relevant because it can

explain the origins of some important nonstandard logics. Indeed one can obtain

different concrete logics by changing some of its three basic elements, that is, T ; L
and the notion of verification.

We illustrate our procedure in Sects. 2 and 3 by introducing a very simple

observational (pretheoretical) language L(x) which is suitable for expressing basic

notions and relations in a wide class of physical theories. Then we consider two

fundamental theories of modern physics, i.e., classical mechanics (CM) and QM.

We obtain in Sect. 4 a classical logical structure as the concrete logic associated

with CM if all sentences of L(x) are considered verifiable (in principle), as usual in

CM. But we also prove by means of an example in Sect. 5 that one can obtain a

concrete logic that exhibits a non-Boolean lattice structure in a macroscopic domain

in which CM holds if one introduces a suitable extension L*(x) of L(x) and selects a

proper subset of sentences of L*(x) that are considered verifiable. Coming to QM we

then show in Sect. 6 that our procedure allows us to recover standard QL as the

concrete logic associated with QM (up to an equivalence relation) if a standard

notion of verification according to QM is adopted. Therefore we can construct a

quantum language LQ(x) in which quantum connectives occur and every sentence

has both a truth value and a C-truth value. These values generally do not coincide,

and the notion of C-truth can be interpreted as a derived notion which coexists with

the classical notion of truth as correspondence. Finally we compare our language

LQ(x) in Sect. 7 with the language LQ constructed by means of standard procedures

that do not make reference to classical truth (Rédei 1998; Dalla Chiara et al. 2004),

and show that the notion of Q-truth introduced in LQ is a verificationist (hence

theory dependent) notion, while truth and verification are carefully distinguished in

our approach.

Let us add now some comments and remarks on the results resumed above.

Firstly, we note that our approach does not conflict with logical localism (Dalla

Chiara 1974; Putnam 1968), for it entails that many nonstandard logics can be obtained

as concrete logics, depending both on the theory T and the notion of verification that is

considered. But it also supports global pluralism, because it implies that different

concrete logics can coexist which do not clash with classical logic.

Secondly, we note that our procedure has to cope with an important objection.

Indeed, a quantum physicist could argue that it recovers standard QL in a classical

framework in a purely formal way because QM cannot be expressed by a classical

language. More specifically, he would observe that we associate a set with every

property of a physical system (the extension of the property) whose elements are

interpreted as individual examples of the system possessing the property, while such

a set cannot be defined according to the orthodox interpretation of QM. Physical

properties are in fact nonobjective according to this interpretation, which means that
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the set of individual examples of the physical system in a given state that display a

given property whenever this property is measured depends on the set of

measurements that are actually performed and is not prefixed (hence one cannot

say that these examples ‘‘possess’’ the property before the measurement). To

overcome this objection we preliminarily note that our formal derivation of standard

QL is interesting anyway, for it is usually maintained that any derivation of this kind

is impossible. More important, the objection vanishes if one accepts the point of

view of some alternative interpretations of QM in which objectivity of physical

properties is recovered. In particular, an extensive criticism of the theorems that aim

to prove the contextuality and the nonlocality of QM [mainly the Bell–Kochen–

Specker (Bell 1966; Kochen and Specker 1967) and the Bell (1964) theorems],

hence nonobjectivity of physical properties, has been carried out by one of us

together with other authors. It has been shown that the proofs of these theorems

implicitly introduce an epistemological assumption which is problematic from the

point of view of QM. If this assumption is relaxed, the proofs cannot be completed

(Garola and Solombrino 1996a, b; Garola and Pykacz 2004). Basing on this

conclusion, a new theoretical proposal called extended semantic realism (ESR)

model has been recently worked out. The ESR model reinterprets quantum

probabilities as conditional on detection rather than absolute and embodies the

mathematical formalism of QM into a broader formalism which admits a local and

noncontextual physical interpretation (Garola and Sozzo 2009, 2010, 2011a, b),

recovering objectivity of physical properties. If this new perspective is adopted, our

derivation of standard QL is not purely formal because its basic elements are

provided with a physical interpretation.

Thirdly, we note that the elementary observational sublanguage L(x) introduced

in Sect. 2 takes into account only pure states and physical properties (exact effects)

and does not contain logical quantifiers, to avoid clouding the conceptual aspects of

our approach with technical complications. In principle, however, it can be extended

to account for any kind of state, effect and empirical law.

2 The Language L(x)

Let T be a physical theory in which the following notions are introduced

(Beltrametti and Cassinelli 1981; Ludwig 1983).

Physical system.

Physical property of a physical system, operationally defined as a class of

dichotomic registering devices that are physically equivalent according to T :
Pure state of a physical system, operationally defined as a class of preparing

devices that are physically equivalent according to T :
Physical object, or individual example of a physical system, operationally defined

as the activation of a given preparing device.

Furthermore, let us denote by c, \, [ and n set theoretical complementation,

meet, join and difference, respectively. Then we introduce a classical formal
language L(x), intended to express basic notions and relations in T ; by means of

standard definitions in CL, as follows.
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Definition 2.1 The alphabet of L(x) consists of the following elements.

Two disjoint sets of monadic predicates, E ¼ fE;F; . . .g (intended interpretation:

physical properties) and S ¼ fS; T; . . .g (intended interpretation: pure states).

Individual variable x.

Connectives :;^;_;! :
Parentheses (, ).

Definition 2.2 The set w(x) of all well formed formulas (wffs) of L(x) is the set

obtained by applying recursively standard formation rules in CL (to be precise, for

every A 2 E [S; AðxÞ 2 wðxÞ; for every aðxÞ 2 wðxÞ; :aðxÞ 2 wðxÞ; for every

aðxÞ; bðxÞ 2 wðxÞ; aðxÞ ^ bðxÞ 2 wðxÞ; aðxÞ _ bðxÞ 2 wðxÞ; aðxÞ ! bðxÞ 2 wðxÞ).
Furthermore, we put EðxÞ ¼ fEðxÞ jE 2 Eg; SðxÞ ¼ fSðxÞ j S 2Sg and call atomic
wff of w(x) every aðxÞ 2 EðxÞ [SðxÞ:

Definition 2.3 The semantics of L(x) consists of the following elements.

Universe U (intended interpretation: set of physical objects).

Injective mapping ext : A 2 E [S�! extðAÞ 2 PðUÞ (power set of U).

Boolean lattice hextðE [SÞi generated by extðE [SÞ via c, \, [.

Recursive definition of the surjective mapping (still called ext by abuse of language)

ext : aðxÞ 2 wðxÞ �! extðaðxÞÞ 2 hextðE [SÞi

(to be precise, for every E 2 E; extðEðxÞÞ ¼ extðEÞ; for every S 2S; extðSðxÞÞ ¼
extðSÞ; for every aðxÞ 2 wðxÞ; extð:aðxÞÞ ¼ U n extðaðxÞÞ ¼ ðextðaðxÞÞÞc; for every

aðxÞ;bðxÞ 2 wðxÞ; extðaðxÞ ^ bðxÞÞ ¼ extðaðxÞÞ \ extðbðxÞÞ; extðaðxÞ _ bðxÞÞ ¼ ext
ðaðxÞÞ [ extðbðxÞÞ; extðaðxÞ ! bðxÞÞ ¼ ðextðaðxÞÞÞc [ extðbðxÞÞ).

Interpretation of the variable r : x 2 fxg �! rðxÞ 2 U:
Set R of all interpretations of the variable.

For every r 2 R; truth assignment

vr : aðxÞ 2 wðxÞ �! vrðaðxÞÞ 2 fT;Fg

such that vr(a(x)) = T (F) iff rðxÞ 2 extðaðxÞÞ (rðxÞ 2 ðextðaðxÞÞÞc).

Definition of truth (falsity): for every aðxÞ 2 wðxÞ; aðxÞ is true (false) in r iff

vr(a(x)) = T (F).

Definition 2.4 The binary relations of logical preorder B and logical equivalence
: on w(x) are defined by setting, for every aðxÞ; bðxÞ 2 wðxÞ;

aðxÞ� bðxÞ iff ðfor every r 2 R; vrðaðxÞÞ ¼ T implies vrðbðxÞÞ ¼ TÞ

and

aðxÞ � bðxÞ iff ðfor every r 2 R; vrðaðxÞÞ ¼ T iff vrðbðxÞÞ ¼ TÞ:

One can then prove some statements that are useful to compare the logical

notions introduced in this section with the physical notions introduced in the

following sections.
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Proposition 2.1 (i) extðwðxÞÞ ¼ hextðE [SÞi; hence (ext (w(x)), \, [, c) is a
Boolean algebra; equivalently, ðextðwðxÞÞ;�; cÞ is a Boolean lattice.

(ii) For every aðxÞ; bðxÞ 2 wðxÞ;
aðxÞ� bðxÞ iff extðaðxÞÞ � ext ðbðxÞÞ

and

aðxÞ � bðxÞ iff ðaðxÞ� bðxÞ and bðxÞ� aðxÞÞ iff extðaðxÞÞ ¼ extðbðxÞÞ:

(iii) The equivalence relation : is compatible with :;^;_ and !; that is, for
every aðxÞ; bðxÞ; cðxÞ; dðxÞ 2 wðxÞ; aðxÞ � bðxÞ implies :aðxÞ � :bðxÞ; and
a(x):c(x) and b(x):d(x) imply aðxÞ ^ bðxÞ � cðxÞ ^ dðxÞ; aðxÞ _ bðxÞ � cðxÞ _
dðxÞ and aðxÞ ! bðxÞ � cðxÞ ! dðxÞ:

(iv) The structure ðwðxÞ=�;^0;_0;:0Þ (where ^0; _0 and :0 denote the operations
canonically induced on wðxÞ=� by ^; _ and :; respectively) is a Boolean algebra
isomorphic to (ext (w(x)), \, [, c) (Lindenbaum–Tarski algebra of L(x)); equiva-
lently, ðwðxÞ=�; � 0;:0Þ (where B0 is the order canonically induced on /ðxÞ=� by
the preorder B defined on w(x)) is a Boolean lattice isomorphic to ðextðwðxÞÞ;�; cÞ:

3 General Physical Conditions on L(x)

The notions introduced in this section hold for any physical theory T of the kind

considered at the beginning of Sect. 2, are suggested by the intended interpretation

of L(x) and are partially illustrated by the drawing in Fig. 1. For the sake of brevity

we shall understand the word ‘‘pure’’ when referring to states in the following.

Axiom P fextðSÞ j S 2 Sg is a partition of U:

Physical justification. States are defined as equivalence classes of preparations

(Sect. 2) and every physical object in U is prepared by one and only one preparation,

hence it belongs to one and only one extension of a state.

The following statement is then an immediate consequence of Axiom P.

Proposition 3.1 For every r 2 R; there is one and only one state Sr 2S such
that rðxÞ 2 extðSrÞ (equivalently, vr(Sr(x)) = T).

In a physical theory T of the kind considered in Sect. 2 it is customary to

associate every physical property E with a set of states SE such that, if a physical

object is prepared by a preparing device belonging to the state S 2SE; then it

Fig. 1 General representations
of the extensions of wffs and
states in the universe of all
physical objects
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displays the property E with certainty whenever a measurement of E is performed.

The following definition generalizes this idea.

Definition 3.1 We denote by /(x) the subset of wffs of w(x) which are constructed

by using only atomic wffs in EðxÞ; hence do not contain predicates denoting states.

Then, for every aðxÞ 2 /ðxÞ; we call physical proposition associated with a(x) the

set of states

pa ¼ fS 2S j extðSÞ � extðaðxÞÞg

and denote by P the set of all physical propositions associated with wffs of /(x).

The proof of the following statement is then straightforward.

Proposition 3.2 For every aðxÞ 2 /ðxÞ;
pa ¼ fS 2 S j for every r 2 R; vrðSðxÞ ! aðxÞÞ ¼ Tg:

By using the notion of physical proposition one can define a notion of C-truth on

/(x) (which depends on T because, for every aðxÞ 2 /ðxÞ; the set of states in the

physical proposition pa depends on T ).

Definition 3.2 For every aðxÞ 2 /ðxÞ; let us denote by p:a the physical proposition

associated with :aðxÞ: Then, for every S 2S; we say that a(x) is C-true (certainly
true) in S iff S 2 pa;C-false (certainly false) in S iff S 2 p:a: Furthermore, we say that

a(x) has no C-truth value (or that a(x) is C-indeterminate) iff S 62 pa [ p:a:
1

One can then easily prove the following statement.

Proposition 3.3 For every S 2 S and aðxÞ 2 /ðxÞ;
a(x) is C–true in S iff extðSÞ � extðaðxÞÞ iff (for every r 2 R; SðxÞ is true in r

implies a(x) is true in r) iff for every r 2 R; vrðSðxÞ ! aðxÞÞ ¼ T ;
and
a(x) is C-false in S iff extðSÞ � ðextðaðxÞÞÞc iff (for every r 2 R; SðxÞ is true in r

implies :aðxÞ is true in r) iff for every r 2 R vrðSðxÞ ! :aðxÞÞ ¼ T:

By using the notion of C-truth one can introduce new binary relations on /(x), as

follows.

Definition 3.3 We call physical preorder � and physical equivalence & the

binary relations defined on /(x) by setting, for every aðxÞ; bðxÞ 2 /ðxÞ;
aðxÞ � bðxÞ iff ðfor every S 2 S; aðxÞ is C-true in S implies bðxÞ is C-true in SÞ

and

aðxÞ � bðxÞ iff ðfor every S 2S; aðxÞ is C-true in S iff bðxÞ is C-true in SÞ:

1 Of course, truth and C-truth are different notions in our approach. But it must be noted that the

identification of true with certain, or certainly true, is basic in some approaches to the foundations of QM

(in particular, in the Geneva–Brussels approach (Piron 1976; Aerts 1999)). We show in Sect. 4 that true
and certainly true coincide in CM if pure states only are considered, which may lead one to overlook the

deep difference between the two notions.
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Furthermore, we denote by �0 the order canonically induced on /ðxÞ=� by the

preorder � defined on /(x).

The proofs of the following statements are then straightforward.

Proposition 3.4 (i) For every aðxÞ; bðxÞ 2 /ðxÞ;
aðxÞ � bðxÞ iff pa � pb

and

aðxÞ � bðxÞ iffpa ¼ pb iff ðaðxÞ � bðxÞ and bðxÞ � aðxÞÞ:

(ii) ð/ðxÞ=�;�0Þ is order-isomorphic to ðP;�Þ:
(iii) Let aðxÞ; bðxÞ 2 /ðxÞ: Then

aðxÞ� bðxÞ implies aðxÞ � bðxÞ

and

aðxÞ � bðxÞ implies aðxÞ � bðxÞ:

We observe now that the intended interpretation of L(x) implies that a wff aðxÞ 2
/ðxÞ can be verified whenever a dichotomic registering device exists which, for

every r 2 R; may perform a measurement on r(x) specifying whether a(x) is true or

false in r. But a dichotomic registering device of this kind characterizes a physical

property E in the theory T (Sect. 2), hence we are led to introduce the following

definition.

Definition 3.4 We call set of verifiable, or testable, wffs of L(x) the subset

/VðxÞ ¼ faðxÞ 2 /ðxÞ j 9Ea 2 E : aðxÞ � EaðxÞg � /ðxÞ

and call set of verifiable, or testable, propositions of L(x) the subset

PV ¼ fpa 2 P j aðxÞ 2 /VðxÞg � P:

Basing on Definition 3.4 one can prove at once the following statements.

Proposition 3.5 (i) /VðxÞ ¼ faðxÞ 2 /ðxÞ j 9Ea 2 E : extðaðxÞÞ ¼ extðEaðxÞÞg:
(ii) The following order structures and isomorphisms can be introduced basing

on the logical and physical orders.

(/(x), B).

/ðxÞ=�; � 0; order-isomorphic to ðextð/ðxÞÞ;�Þ:
(/V(x), B).

/VðxÞ=�; � 0; order-isomorphic to ðextðEÞ;�Þ:
ð/ðxÞ;�Þ:
ð/ðxÞ=�;�0Þ; order-isomorphic to ðP;�Þ:
ð/VðxÞ;�Þ:
ð/VðxÞ=�;�0Þ; order-isomorphic to ðPV ;�Þ:
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The crucial notion of logic associated with a physical theory T ; distinguished from

(but related to) the logical structure of the language by means of which T is

expressed, can now be introduced by means of the following definition.

Definition 3.5 Whenever the theory T induces a weak complementation \ on

ð/VðxÞ;�Þ; i.e., a mapping ? : aðxÞ 2 /VðxÞ �! ðaðxÞÞ? 2 /VðxÞ such that

(a(x))\\ & a(x) and aðxÞ � bðxÞ implies ðbðxÞÞ? � ðaðxÞÞ?; we say that the set

ð/VðxÞ;�; ?Þ is the concrete logic of T :

We stress that the set /V(x) is selected by adopting a standard notion of

verification that holds both in CM and in QM. Of course, different choices of /V(x)

may lead one to associate different concrete logics with T :

4 Classical Mechanics and Classical Logic

We intend to show in this section that the concrete logic of CM within the general

classical approach sketched in Sects. 2 and 3 has the structure of a classical logic.

To this end we preliminarily state the following fundamental axiom which

establishes the mathematical representation of states and physical properties in CM.

Axiom CM1 Every physical system X is represented in CM by a triple ðF ;u; vÞ;
where F ;u and v are defined as follows.

F is a phase space associated with the physical system X:
u : S 2S�! uðSÞ 2 F :
v : E 2 E �! vðEÞ 2 PðFÞ;

where PðFÞ is the power set of F :
The mappings u and v are bijective.

We introduce now two axioms that can be justified in CM on the basis of the

intended interpretation provided in Sect. 2. The first of them relates the

mathematical representation in Axiom CM1 with the set-theoretical representations

of states and physical properties provided in Sect. 2.

Axiom CM2 For every E 2 E and S 2S;

uðSÞ 2 vðEÞ iff ext ðSÞ � extðEÞ;
uðSÞ 2 F n vðEÞ iff ext ðSÞ � U n extðEÞ:

Physical justification. All physical objects in a given state (that is, prepared by

preparations that are physically equivalent in the sense established by CM) either

possess or do not possess a given physical property according to CM.

By using Axiom CM2 one can easily prove the following statements (which are

partially illustrated by the drawing in Fig. 2).

Proposition 4.1 (i) For every E 2 E and S 2S; either extðSÞ � extðEÞ or
extðSÞ � U n extðEÞ ¼ ðextðEÞÞc:
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(ii) For every aðxÞ 2 /ðxÞ and S 2 S; either extðSÞ � extðaðxÞÞ or extðSÞ �
U n extðaðxÞÞ ¼ ðextðaðxÞÞÞc (hence extðaðxÞÞ ¼ [fextðSÞ j extðSÞ � extðaðxÞÞg:

(iii) For every r 2 R and aðxÞ 2 /ðxÞ;
a(x) is true (false) in r iff a(x) is C-true (C-false) in Sr iff extðSrÞ � extðaðxÞÞ

(extðSrÞ � ðextðaðxÞÞÞc) iff Sr 2 pa (Sr 2S n pa).

(iv) For every aðxÞ;bðxÞ 2 /ðxÞ;
aðxÞ� bðxÞ iff aðxÞ � bðxÞ

and

aðxÞ � bðxÞ iff aðxÞ � bðxÞ:

It is important to note that Proposition 4.1, (iii), shows that truth and C-truth

coincide in CM. Indeed this coincidence explains why no distinction between the

two notions of truth is made in CM.

The last axiom then characterizes the notion of verification in CM.

Axiom CM3 The set /V(x) of all verifiable wffs of /(x) coincides with /(x).

Physical justification. All physical statements about physical objects are testable,

in principle, according to CM.

By using Axiom CM3 one can easily prove the following statements.

Proposition 4.2 (i) For every r 2 R and aðxÞ 2 /ðxÞ; aðxÞ is true (false) in r iff
Ea(x) is true (false) in r iff extðSrÞ � extðEaÞ (extðSrÞ � ðextðEaÞÞc).

(ii) For every aðxÞ; bðxÞ 2 /ðxÞ;
aðxÞ� bðxÞ iff EaðxÞ�EbðxÞ;

and

aðxÞ � bðxÞ iff EaðxÞ � EbðxÞ:

(iii) ð/ðxÞ; �Þ; ð/VðxÞ; �Þ ð/ðxÞ;�Þ and ð/VðxÞ;�Þ can be identified.

(iv) ð/ðxÞ=�; � 0Þ; ð/VðxÞ=�; � 0Þ; ð/ðxÞ=�;�0Þ and ð/VðxÞ=�;�0Þ can be
identified, and they are order-isomorphic to ðextð/ðxÞÞ;�Þ; ðextðEÞ;�Þ; ðP;�Þ and
ðPV ;�Þ:

(v) The mapping ? : aðxÞ 2 /VðxÞ �! :aðxÞ 2 /VðxÞ

Fig. 2 Representations of the
extensions of wffs and states in
the universe of all physical
objects in classical mechanics

408 C. Garola, S. Sozzo

123



is a weak complementation on ð/VðxÞ;�Þ:
(vi) The structure ð/VðxÞ;�; ?Þ is the concrete logic of CM and coincides with

(/(x), B , \).

(vii) The structure ð/VðxÞ=�;�0; ?
0Þ ¼ ð/ðxÞ=�; � 0; ?

0Þ (where \’ is the com-
plementation canonically induced by \ on /V(x)/& = /(x)/:) is a Boolean lattice
that can be identified with the Boolean algebra ð/ðxÞ=�;^0;_0;:0Þ:

The result in Proposition 4.2, (vi), explains from our present standpoint the

common statement in the literature that ‘‘the logic of a classical physical system is

classical logic’’. We stress, however, that this statement follows from Axioms CM2

and CM3 and could not be proven should these axioms not hold.

For the sake of completeness we add some statements which establish further

links between the mathematical representation in Axiom CM1 and the set-

theoretical representations of states and physical properties in Sect. 2.

Proposition 4.3 (i) For every E;F 2 E;
vðEÞ � vðFÞ iff extðEÞ � extðFÞ:

(ii) For every r 2 R and aðxÞ 2 /ðxÞ;
aðxÞ is true ðfalseÞ in r iff uðSrÞ 2 vðEaÞ ðuðSrÞ 2 F n vðEaÞÞ:

(iii) For every aðxÞ 2 /ðxÞ;
pa ¼ fS 2 S juðSÞ 2 vðEaÞg:

5 Non-Boolean Structures in Classical Mechanics

Proposition 4.2, (vi), states that ð/VðxÞ=�;�0; ?
0Þ is a Boolean lattice in CM which

can be identified with the Boolean algebra ð/ðxÞ=�;^0;_0;:0Þ: It is then important

to observe that non-Boolean algebras can be obtained in CM if the testability criteria

are suitably restricted. For instance, let us assume that not all wffs in /V(x), which

are testable in principle, are testable in practice, and let us introduce the subset

/P
VðxÞ � /VðxÞ of wffs of L(x) that are practically testable. In this case we can

consider the preordered set (/V
P(x), B) and the quotient set ð/P

VðxÞ=�; � 0Þ: Yet, the

latter generally is not a Boolean lattice, and it can be equipped with different

algebraic structures by choosing /V
P(x) in different ways (Garola 1992).

It is also interesting to note that there are examples of physical systems in the

literature in which quantum structures are obtained in a macroscopic domain where

CM holds. These examples are relevant because they falsify the widespread belief

that QL characterizes QM, hence indirectly support our position in this paper. Let us

therefore present briefly one of them, that is, Aerts’ quantum machine (Aerts 1988,

1991, 1995, 1998, 1999).

Aerts writes in (Aerts 1998):
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The machine that we consider consists of a physical entity S that is a point

particle P that can move on the surface of a sphere, denoted surf, with center

O and radius 1. The unit-vector v where the particle is located on surf
represents the state pv of the particle (. . .). For each point u 2 surf ; we

introduce the following measurement eu. We consider the diametrically

opposite point -u, and install a piece of elastic of length 2, such that it is fixed

with one of its end-points in u and the other end-point in -u. Once the elastic

is installed, the particle P falls from its original place v orthogonally onto the

elastic, and sticks on it (. . .). Then the elastic breaks and the particle

P, attached to one of the two pieces of the elastic (. . .), moves to one of the

two end-points u or -u (. . .). Depending on whether the particle P arrives in u
(. . .) or in -u, we give the outcome o1

u or o2
u to eu. We can easily calculate the

probabilities corresponding to the two possible outcomes. Therefore we

remark that the particle P arrives in u when the elastic breaks in a point of the

interval L1 (which is the length of the piece of the elastic between -u and the

point where the particle has arrived, or 1þ cos h), [where h is the angle

between u and v] and arrives in -u when it breaks in a point of the interval L2

(L2 = L - L1 = 2 - L1). We make the hypothesis that the elastic breaks

uniformly, which means that the probability that the particle, being in state

pv, arrives in u, is given by the length of L1 divided by the length of the total

elastic (which is 2). The probability that the particle in state pv arrives in -u is

the length of L2 (which is 1� cos h) divided by the length of the total elastic.

If we denote these probabilities respectively by P(o1
u, pv) and P(o2

u, pv) we

have:

Pðou
1; pvÞ ¼

1þ cos h
2

¼ cos2 h
2

Pðou
2; pvÞ ¼

1� cos h
2

¼ sin2 h
2

These transition probabilities are the same as the ones related to the outcomes of a

Stern–Gerlach spin measurement on a spin 1
2

quantum particle, . . .

Therefore Aerts concludes:

We can easily see now the two aspects in this quantum machine that we have

identified in the hidden measurement approach to give rise to the quantum

structure. The state of the particle P is effectively changed by the measuring

apparatus (pv changes to pu or to p-u under the influence of the measuring

process), which identifies the first aspect, and there is a lack of knowledge on

the interaction between the measuring apparatus and the particle, namely the

lack of knowledge of were exactly the elastic will break, which identifies the

second aspect. We can also easily understand now what is meant by the term

‘hidden measurements’. Each time the elastic breaks in one specific point

k, we could identify the measurement process that is carried out afterwards as

a hidden measurement eu
k. The measurement eu is then a classical mixture of
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the collection of all measurement eu
k namely eu consists of choosing at random

one of the eu
k and performing this chosen eu

k.

Let us qualitatively discuss the above example from the point of view proposed

in the present paper. It follows from Aerts’ description that the physical system that

is considered is a classical particle P of which a complete deterministic description

is possible, in principle, in CM. But Aerts introduces hidden variables (the

parameter k) in his measurement processes, which must therefore be considered as

unsharp measurements. Such measurements occur in actual physical situations,

whenever ideal measurements that exactly test a given physical object has a given

property do not exist in practice, and cannot be described by means of the simple

language L(x) introduced in Sect. 2. One must indeed extend the alphabet of L(x) by

adding new monadic predicates denoting unsharp properties (or effects), which can

be considered in CM as new entities, introduced by generalizing the standard notion

of physical property. An unsharp property E is a contextual property, in the sense

that the knowledge that a given physical object belongs to the extension of a given

state S is not sufficient to predict whether the object displays E when E is measured

because the result of the measurement depends also on hidden variables associated

with the measuring apparatus.2 Hence Axiom CM2 does not hold and the physical

preorder does not coincide with the logical preorder in the extended language L*(x)).

Moreover, it is apparent that Aerts considers as verifiable only sentences of L*(x)

that are logically equivalent to atomic sentences containing predicates that denote

very peculiar unsharp properties. This implies that the concrete logic that is obtained

in this case is not a Boolean algebra. Indeed, Aerts’ results entail that it is

isomorphic to the QL of a spin–1
2

quantum particle, hence to the modular

orthocomplemented lattice of all subspaces of C2:
Our informal discussion of this example is thus completed. We add that Aerts and

his coworkers have constructed similar models for arbitrary quantum entities (Aerts

1985, 1986, 1987) which can be used to illustrate further our procedures.

6 Quantum Mechanics and Quantum Logic

We intend to show in this section that standard QL can be recovered (up to an

equivalence relation) as the concrete logic of QM within the general classical

approach sketched in Sects. 2 and 3. To this end we preliminarily state the following

fundamental axiom, which establishes the mathematical representation of states and

2 A measurement can be described as an interaction between a physical object and a measuring apparatus

in CM. In a real measurement the apparatus is in a mixed state because one never knows all its properties

at a microscopic level, hence probabilities must be introduced in the theoretical description (which admit

an ignorance interpretation, hence are epistemic). Unsharp properties and contextuality then occur if one

wants to refer to the physical object only, avoiding a complete description of the interaction with the

measuring apparatus (the ‘‘hidden measurement’’ processes in the case of Aerts’ quantum machine). It

must be noted, however, that a deeper form of nonlocal contextuality occurs in QM according to an

orthodox view (Bell 1964; Greenberger et al. 1990; Mermin 1993) and that this kind of contextuality is

avoided in the ESR model mentioned in Sect. 1 (Garola and Sozzo 2009, 2010, 2011a, b).
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physical properties in QM in the case of quantum systems in which superselection

rules do not occur.

Axiom QM1 Every physical system X is represented in QM by a triple ðH;w;xÞ;
where H; w and x are defined as follows.

H is a Hilbert space over the complex field C associated with the physical system
X:

w : S 2 S�! wðSÞ 2L1ðHÞ;

where L1ðHÞ is the set of all one-dimensional subspaces of H:

x : E 2 E �! xðEÞ 2LðHÞ;

where LðHÞ is the set of all closed subspaces of H:

The mappings w and x are bijective.

The following statement is then well known in QM.

Proposition 6.1 The structure ðLðHÞ;�; ?Þ; where ? is the mapping which
associates every closed subspace of LðHÞ with its orthogonal complement, is a
complete orthomodular lattice, which is canonically equivalent to the algebra

ðLðHÞ;e;d; ?Þ (where e and d denote the meet and join, respectively, in the

lattice ðLðHÞ;�; ?Þ).

The lattice ðLðHÞ;�; ?Þ or, equivalently, the algebra ðLðHÞ;e;d; ?Þ; plays a

crucial role in standard QL. Indeed it allows one to define a lattice structure on E by

means of the following definition.

Definition 6.1 We call lattice of physical properties in QM the orthomodular

lattice ðE;b; ?Þ; where b denotes the order and ? the orthocomplementation

induced on E; via x, by the order � and the orthocomplementation ?; respectively,

defined on LðHÞ; and denote by ðE;e;d; ?Þ the algebra canonically equivalent to

ðE;b; ?Þ and isomorphic to ðLðHÞ;e;d; ?Þ:

We can now introduce a further lattice in QM by means of the following definition,

which is standard in the foundations of QM (Beltrametti and Cassinelli 1981).

Definition 6.2 Let E 2 E: We call certainly yes domain of E the subset of states

SE ¼ fS 2S jwðSÞ � xðEÞg

and put PE ¼ fSE jE 2 Eg:

Then, the following proposition holds.

Proposition 6.2 The mapping

q : SE 2 PE �! xðEÞ 2LðHÞ

is bijective and, for every E;F 2 E; SE �SF iff xðEÞ � xðFÞ: Therefore the

structure ðPE ;�; ?Þ; where ? denotes the orthocomplementation induced on PE ; via

q, by the orthocomplementation ? defined on LðHÞ; is an orthomodular lattice
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isomorphic to ðLðHÞ;�; ?Þ: Then the algebra ðPE ;e;d; ?Þ canonically equivalent

to ðPE ;�; ?Þ is isomorphic to ðLðHÞ;e;d; ?Þ:

We have thus singled out three isomorphic algebras, that is, ðLðHÞ;e;d; ?Þ;
ðE;e;d; ?Þ and ðPE ;e;d; ?Þ; which only differ because of their supports and can

be identified with the standard QL in the literature (which takes its name from the

interpretation of the elements of LðHÞ proposed by Birkhoff and von Neumann

(1936).

We introduce now two axioms that can be justified in QM on the basis of the

intended interpretation provided in Sect. 2. The first of them relates the

mathematical representation in Axiom QM1 with the set-theoretical representation

of states and physical properties provided in Sect. 2.

Axiom QM2 For every E 2 E and S 2 S;

wðSÞ 2 xðEÞ (equivalently, S 2SE) iff extðSÞ � extðEÞ;
wðSÞ 2 xðE?Þ (equivalently, S 2 SE?) iff extðSÞ � U n extðEÞ:

Physical justification. For every physical property E there exist in QM infinitely

many states such that the quantum probability of E in each of them is neither 0 nor

1. Hence there exist preparing devices that can be used to prepare ensembles of

physical objects such that, for every ensemble, some elements display E whenever a

measurement of E is performed and some do not. It follows that one cannot assert in

QM that, for every state S and property E, a physical object prepared by a preparing

device belonging to S either possesses or does not possess the property E. Therefore

one can only characterize the sets of states for which one of the two alternatives

occur.

By using Axiom QM2 one can easily prove the following statement.

Proposition 6.3 For every aðxÞ 2 /VðxÞ and S 2S;

aðxÞ is C-true (C-false) in S iff S 2SEa ðS 2 ðSEaÞ
?Þ:

The last axiom then distinguishes the notion of verification in QM from the

notion of verification in CM.

Axiom QM3 The set /V(x) of all verifiable wffs of /(x) is strictly included in /(x).

Physical justification. A nontrivial compatibility relation exists in QM which

prohibits testing sentences as EðxÞ ^ FðxÞ if the physical properties E and F are not

compatible.

The proof of the following statements is then straightforward.

Proposition 6.4 (i) For every aðxÞ 2 /VðxÞ; pa ¼SEa ; hence PV ¼ PE :
(ii) For every E;F 2 E;

E ¼ F iff EðxÞ � FðxÞ iff EðxÞ � FðxÞ;

hence the equivalence relations : and & coincide on /V(x).

(iii) The mapping
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?Q : aðxÞ 2 /VðxÞ �! a?QðxÞ ¼ E?a ðxÞ 2 /VðxÞ

is a weak complementation on ð/VðxÞ;�Þ; hence ð/VðxÞ;�; ?QÞ is the concrete
logic of QM.

(iv) For every aðxÞ 2 /VðxÞ; the equivalence class [a(x)]& contains one and only
one wff of EðxÞ; that is, Ea(x), hence the mapping

?0Q : ½aðxÞ�� 2 /VðxÞ=� �! ½aðxÞ�
?0Q
� ¼ ½a?QðxÞ�� ¼ ½E?a ðxÞ�� 2 /VðxÞ=�

is well defined and bijective.

(v) The mapping

n : ½aðxÞ�� 2 /VðxÞ=� �! pa 2 PE

is an order isomorphism of ð/VðxÞ=�;�0; ?
0
QÞ onto ðPE ;�; ?Þ which maps ½aðxÞ�?

0
Q
�

on p
?
a ; hence ð/VðxÞ=�;�0; ?

0
QÞ is a standard QL.

Proposition 6.4 shows, in particular, that the concrete logic of QM, obtained

within a classical framework by means of the procedures expounded in Sects. 2 and

3, can be identified with a standard QL, up to an equivalence relation.

One can now construct a quantum language LQ(x) by enlarging /V(x) by means

of new quantum connectives, as follows.

Definition 6.3 (i) The alphabet of LQ(x) consists of the following symbols.

All wffs of /V(x).

Quantum connectives :Q ^Q and _Q:
Parentheses (, ).

(ii) The set /Q(x) of all wffs of LQ(x) is the set obtained by applying recursively

the following formation rules.

/VðxÞ � /QðxÞ:
For every aðxÞ 2 /QðxÞ; :QaðxÞ 2 /QðxÞ:
For every aðxÞ; bðxÞ 2 /QðxÞ aðxÞ ^Q bðxÞ 2 /QðxÞ and aðxÞ _Q bðxÞ 2 /QðxÞ:
(iii) A truth and a C-truth assignment are introduced on /Q(x) by assuming that

every aðxÞ 2 /QðxÞ is logically equivalent to an atomic wff of EðxÞ obtained by

applying recursively the replacement rule and the following semantic rules.

For every aðxÞ 2 /VðxÞ; :QaðxÞ � E
?
a ðxÞ:

For every aðxÞ; bðxÞ 2 /VðxÞ; aðxÞ ^Q bðxÞ � ðEaeEbÞðxÞ and aðxÞ _Q bðxÞ �
ðEadEbÞðxÞ:
(iv) A logical preorder B and a logical equivalence : are introduced on /Q(x)

by referring to the truth assignment, proceeding as in Definition 2.4.

A physical preorder � and a physical equivalence & are introduced on /Q(x) by

referring to the C-truth assignment, proceeding as in Definition 3.3.

The following statements can then be proved.

Proposition 6.5 (i) The equivalence relations : and & coincide on /Q(x).

(ii) The equivalence relation & is compatible with :Q; ^Q and _Q; that is, for
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every aðxÞ; bðxÞ; cðxÞ; dðxÞ 2 /QðxÞ; aðxÞ � bðxÞ implies :QaðxÞ � :QbðxÞ; and

a(x) & c(x) and b(x) & d(x) imply aðxÞ ^Q bðxÞ � cðxÞ ^Q dðxÞ and aðxÞ _Q bðxÞ �
cðxÞ _Q dðxÞ:

(iii) The algebra ð/QðxÞ=�;^0Q;_0Q;:0QÞ (where ^0Q; _0Q and :0Q denote the

operations canonically induced on ð/QðxÞ=�; ^Q; _Q and :Q; respectively) is a

standard QL isomorphic to ðPE ;e;d; ?Þ; ðE;e;d; ?ÞÞ and ðLðHÞ;e;d; ?Þ:

The following remarks are important.

(i) Proposition 6.5, (iii), implies that the algebra ð/QðxÞ=�;^0Q;_0Q;:0QÞ is

canonically equivalent to a lattice which is isomorphic to ð/VðxÞ=�;�0; ?
0
QÞ:

(ii) Definition 6.5, (iii), implies that, for every r 2 R; every aðxÞ 2 /QðxÞ has both

a truth value and a C-truth value (if one takes C-indeterminate as a third

C-truth value, see Definition 3.2) which, generally do not coincide, even if a(x)

is true (false) in r whenever it is C-true (C-false) in Sr (see Proposition 3.3).

Hence the notion of C-truth can be interpreted as a derived notion, which

applies to verifiable sentences only and is not alternative to the classical notion

of truth as correspondence.

(iii) The meaning of the derived and theory-dependent quantum connectives

(which is determined by QM) must be clearly distinguished from the meaning

of classical connectives, in agreement with the known principle of Quine,

‘‘change of logic, change of subject’’ (Garola 1992; Quine 2006).

We have thus accomplished our task. We recall however from Sect. 1 that our

procedure for recovering standard QL can be charged to be purely formal if one

adopts the orthodox interpretation of QM. To overcome this objection we have

observed that a physical interpretation of our procedure can be given by referring to

the recent proposal of a theory (ESR model) which generalizes QM embedding its

mathematical apparatus into a broader mathematical formalism and reinterpreting

quantum probabilities as conditional on detection rather than absolute (Garola and

Sozzo 2009, 2010, 2011a, b). We can be more precise here and specify that

objectivity of physical properties, which holds in the ESR model, allows one to

provide, for every E 2 E; a physical interpretation of ext(E) as the set of all physical

objects that possess the property E independently of any measurement. This

interpretation is obviously impossible if the orthodox interpretation of quantum

probabilities is maintained.

7 The Orthodox Approach to Standard Quantum Logic

Because of the objection discussed at the end of Sect. 6, orthodox quantum logicians

avoid associating an extension with the predicates denoting physical properties.3

Hence they introduce standard QL by adopting procedures that are mainly based on

3 Note that a similar objection does not occur in the case of predicates denoting states, because the

extension ext(S) of a state S 2S can be interpreted as the set of all physical objects that are actually

prepared in the state S.
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the mathematical representation of states and effects in QM (Rédei 1998; Dalla

Chiara et al. 2004). To allow a comparison with our approach we sketch in this

section an introduction to standard QL which particularizes and simplifies the

methods described in (Dalla Chiara et al. 2004).

Let us consider a quantum system X and the notions of pure state, physical

property and physical object as defined in QM (Beltrametti and Cassinelli 1981;

Ludwig 1983). Then, let us denote by LQ a formal language, intended to express

basic notions and relations in QM, constructed as follows.

Definition 7.1 The alphabet of LQ consists of the following elements.

A set E ¼ fE;F; . . .g of atomic sentences (intended interpretation: physical

properties).

Connectives :Q;^Q;_Q:
Parentheses (, ).

Definition 7.2 The set /Q of all well formed formulas (wffs) of LQ is the set

obtained by applying recursively standard formation rules (to be precise, for every

E 2 E; E 2 /Q; for every a 2 /Q; :Qa 2 /Q; for every a; b 2 /Q; a ^Q b 2 /Q

and a _Q b 2 /Q).

Definition 7.3 By referring to the algebraic structure ðPE ;e;d; ?Þ introduced in

Sect. 6, Proposition 6.2, a physical proposition pa is associated with every a 2 /Q;

recursively defined as follows.

For every E 2 E; pE ¼ SE:

For every a 2 /Q; p:Qa ¼ ðpaÞ?:
For every a; b 2 /Q; pa^Qb ¼ paepb; pa_Qb ¼ padpb:

The proof of the following statement is then straightforward.

Proposition 7.1 For every a 2 /Q there exists a unique Ea 2 E such that

pa = pE_a, and the set PQ of all physical propositions associated with wffs of /Q

coincides with PE :

The notion of Q-truth can now be introduced by means of the following

definition.

Definition 7.4 For every a 2 /Q and S 2S; a is Q-true (quantum true) in S iff

S 2 pa, a is Q-false (quantum false) in S iff S 2 ðpaÞ?; a has no Q-truth value

(equivalently, a is Q-indeterminate) iff S 62 pa [ ðpaÞ?:

One can then prove the following nontrivial statement.

Proposition 7.2 For every a 2 /Q and S 2S;

(a has a Q-truth value in S) iff wðSÞ � xðEaÞ [ ðxðEaÞÞ? iff (the probability of
the property Ea in the state S is either 1 or 0) iff (a measurement of the property Ea

exists which does not modify the state S).
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Proof The first equivalence follows from Definition 7.4, Axiom QM1 and

Proposition 6.2. The second equivalence follows from the standard rules of QM.

The third equivalence is proven in (Garola and Sozzo 2004).

Definition 7.5 The binary relations of quantum preorder BQ and quantum
equivalence :Q on /Q are defined by setting, for every a; b 2 /Q;

a BQ b iff (for every S 2S; a is Q-true in S implies b is Q-true in S)

and

a :Q b iff (for every S 2S; a is Q-true in S iff b is Q-true in S).

The proof of the following statements is then straightforward.

Proposition 7.3 (i) For every a; b 2 /Q;

a BQ b iff pa � pb iff (for every S 2 S; b is Q-false in S implies a is Q-false in S)

iff ðpbÞ? � ðpaÞ?

and

a :Q b iff (a BQ b and b BQ a) iff pa = pb iff (for every S 2 S; b is Q-false in S

iff a is Q-false in S) iff ðpbÞ? ¼ ðpaÞ?:
(ii) The equivalence relation :Q is compatible with :Q; ^Q and _Q (to be

precise, for every a; b 2 /Q; a �Q b implies :Qa �Q :Qb; for every a; b; c; d 2
/Q; a �Q c and b :Q d imply a ^Q b �Q c ^Q d and a _Q b �Q c _Q d).

(iii) Let ^0Q; _0Q; :0Q denote the operations canonically induced on /Q=�Q
by ^Q,

_Q; :Q; respectively. Then, the mapping f : ½a��Q
2 /Q=�Q

�! pa 2SEa is an

isomorphism of ð/Q=�Q
;^0Q;_0Q;:0QÞ onto ðPE ;e;d; ?Þ (standard QL).

We have thus concluded our short presentation of the orthodox approach to QL.

By comparing our general methods in Sects. 2 and 3 with this approach we can

single out some relevant similarities and differences.

(i) The language LQ is a propositional logic in which no reference is done to

individual examples of physical systems, and states are considered in the

orthodox approach as possible worlds of a Kripkean semantics, not as predicates.

(ii) The assignment of a Q-truth value to a wff a of LQ is given resorting to the

physical proposition pa associated with a, hence it parallels the assignment of a

C-truth value to a wff a(x) of L(x) introduced in Definition 3.2 rather than the

assignment of a truth value introduced in Definition 2.3.

(iii) Proposition 7.2 shows that the definition of Q-truth introduces a notion of

truth as verification, which is considered problematic by many logicians and

philosophers (Russell 1940; Pap 1961; Popper 1963; Lycan 2000) and is at odds

with our choice of introducing a notion of truth as correspondence in Sects. 2 and

3, carefully distinguishing between truth and verification. Consistently, the set PQ

of all physical propositions associated with wffs of /Q coincides with the set PE
of all physical propositions associated with atomic wffs of /Q, which implies that

only verifiable quantum sentences have been taken into account from the very

beginning when constructing LQ.
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